1 |
mmazloff |
1.1 |
Total Nb of available Diagnostics: ndiagt= 180 |
2 |
|
|
------------------------------------------------------------------------------------ |
3 |
|
|
Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) |
4 |
|
|
------------------------------------------------------------------------------------ |
5 |
|
|
1 |SDIAG1 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #1 |
6 |
|
|
2 |SDIAG2 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #2 |
7 |
|
|
3 |SDIAG3 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #3 |
8 |
|
|
4 |SDIAG4 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #4 |
9 |
|
|
5 |SDIAG5 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #5 |
10 |
|
|
6 |SDIAG6 | 1 | |SM L1|user-defined |User-Defined Surface Diagnostic #6 |
11 |
|
|
7 |SDIAG7 | 1 | |SU L1|user-defined |User-Defined U.pt Surface Diagnostic #7 |
12 |
|
|
8 |SDIAG8 | 1 | |SV L1|user-defined |User-Defined V.pt Surface Diagnostic #8 |
13 |
|
|
9 |SDIAG9 | 1 | 10 |UU L1|user-defined |User-Defined U.vector Surface Diag. #9 |
14 |
|
|
10 |SDIAG10 | 1 | 9 |VV L1|user-defined |User-Defined V.vector Surface Diag. #10 |
15 |
|
|
11 |UDIAG1 | 8 | |SM MR|user-defined |User-Defined Model-Level Diagnostic #1 |
16 |
|
|
12 |UDIAG2 | 8 | |SM MR|user-defined |User-Defined Model-Level Diagnostic #2 |
17 |
|
|
13 |UDIAG3 | 8 | |SMR MR|user-defined |User-Defined Model-Level Diagnostic #3 |
18 |
|
|
14 |UDIAG4 | 8 | |SMR MR|user-defined |User-Defined Model-Level Diagnostic #4 |
19 |
|
|
15 |UDIAG5 | 8 | |SU MR|user-defined |User-Defined U.pt Model-Level Diag. #5 |
20 |
|
|
16 |UDIAG6 | 8 | |SV MR|user-defined |User-Defined V.pt Model-Level Diag. #6 |
21 |
|
|
17 |UDIAG7 | 8 | 18 |UUR MR|user-defined |User-Defined U.vector Model-Lev Diag.#7 |
22 |
|
|
18 |UDIAG8 | 8 | 17 |VVR MR|user-defined |User-Defined V.vector Model-Lev Diag.#8 |
23 |
|
|
19 |UDIAG9 | 8 | |SM ML|user-defined |User-Defined Phys-Level Diagnostic #9 |
24 |
|
|
20 |UDIAG10 | 8 | |SM ML|user-defined |User-Defined Phys-Level Diagnostic #10 |
25 |
|
|
21 |SDIAGC | 1 | 22 |SM C L1|user-defined |User-Defined Counted Surface Diagnostic |
26 |
|
|
22 |SDIAGCC | 1 | |SM L1|count |User-Defined Surface Diagnostic Counter |
27 |
|
|
23 |ETAN | 1 | |SM M1|m |Surface Height Anomaly |
28 |
|
|
24 |ETANSQ | 1 | |SM P M1|m^2 |Square of Surface Height Anomaly |
29 |
|
|
25 |DETADT2 | 1 | |SM M1|m^2/s^2 |Square of Surface Height Anomaly Tendency |
30 |
|
|
26 |THETA | 8 | |SMR MR|degC |Potential Temperature |
31 |
|
|
27 |SALT | 8 | |SMR MR|psu |Salinity |
32 |
|
|
28 |RELHUM | 8 | |SMR MR|percent |Relative Humidity |
33 |
|
|
29 |SALTanom| 8 | |SMR MR|psu |Salt anomaly (=SALT-35; g/kg) |
34 |
|
|
30 |UVEL | 8 | 31 |UUR MR|m/s |Zonal Component of Velocity (m/s) |
35 |
|
|
31 |VVEL | 8 | 30 |VVR MR|m/s |Meridional Component of Velocity (m/s) |
36 |
|
|
32 |WVEL | 8 | |WM LR|m/s |Vertical Component of Velocity (r_units/s) |
37 |
|
|
33 |THETASQ | 8 | |SMRP MR|degC^2 |Square of Potential Temperature |
38 |
|
|
34 |SALTSQ | 8 | |SMRP MR|(psu)^2 |Square of Salinity |
39 |
|
|
35 |SALTSQan| 8 | |SMRP MR|(psu)^2 |Square of Salt anomaly (=(SALT-35)^2 (g^2/kg^2) |
40 |
|
|
36 |UVELSQ | 8 | 37 |UURP MR|m^2/s^2 |Square of Zonal Comp of Velocity (m^2/s^2) |
41 |
|
|
37 |VVELSQ | 8 | 36 |VVRP MR|m^2/s^2 |Square of Meridional Comp of Velocity (m^2/s^2) |
42 |
|
|
38 |WVELSQ | 8 | |WM P LR|m^2/s^2 |Square of Vertical Comp of Velocity |
43 |
|
|
39 |UE_VEL_C| 8 | 40 |UMR MR|m/s |Eastward Velocity (m/s) (cell center) |
44 |
|
|
40 |VN_VEL_C| 8 | 39 |VMR MR|m/s |Northward Velocity (m/s) (cell center) |
45 |
|
|
41 |UV_VEL_C| 8 | 41 |UMR MR|m^2/s^2 |Product of horizontal Comp of velocity (cell center) |
46 |
|
|
42 |UV_VEL_Z| 8 | 42 |UZR MR|m^2/s^2 |Meridional Transport of Zonal Momentum (m^2/s^2) |
47 |
|
|
43 |WU_VEL | 8 | |WU LR|m.m/s^2 |Vertical Transport of Zonal Momentum |
48 |
|
|
44 |WV_VEL | 8 | |WV LR|m.m/s^2 |Vertical Transport of Meridional Momentum |
49 |
|
|
45 |UVELMASS| 8 | 46 |UUr MR|m/s |Zonal Mass-Weighted Comp of Velocity (m/s) |
50 |
|
|
46 |VVELMASS| 8 | 45 |VVr MR|m/s |Meridional Mass-Weighted Comp of Velocity (m/s) |
51 |
|
|
47 |WVELMASS| 8 | |WM LR|m/s |Vertical Mass-Weighted Comp of Velocity |
52 |
|
|
48 |UTHMASS | 8 | 49 |UUr MR|degC.m/s |Zonal Mass-Weight Transp of Pot Temp |
53 |
|
|
49 |VTHMASS | 8 | 48 |VVr MR|degC.m/s |Meridional Mass-Weight Transp of Pot Temp |
54 |
|
|
50 |WTHMASS | 8 | |WM LR|degC.m/s |Vertical Mass-Weight Transp of Pot Temp (K.m/s) |
55 |
|
|
51 |USLTMASS| 8 | 52 |UUr MR|psu.m/s |Zonal Mass-Weight Transp of Salinity |
56 |
|
|
52 |VSLTMASS| 8 | 51 |VVr MR|psu.m/s |Meridional Mass-Weight Transp of Salinity |
57 |
|
|
53 |WSLTMASS| 8 | |WM LR|psu.m/s |Vertical Mass-Weight Transp of Salinity |
58 |
|
|
54 |UVELTH | 8 | 55 |UUR MR|degC.m/s |Zonal Transport of Pot Temp |
59 |
|
|
55 |VVELTH | 8 | 54 |VVR MR|degC.m/s |Meridional Transport of Pot Temp |
60 |
|
|
56 |WVELTH | 8 | |WM LR|degC.m/s |Vertical Transport of Pot Temp |
61 |
|
|
57 |UVELSLT | 8 | 58 |UUR MR|psu.m/s |Zonal Transport of Salinity |
62 |
|
|
58 |VVELSLT | 8 | 57 |VVR MR|psu.m/s |Meridional Transport of Salinity |
63 |
|
|
59 |WVELSLT | 8 | |WM LR|psu.m/s |Vertical Transport of Salinity |
64 |
|
|
60 |UVELPHI | 8 | 61 |UUr MR|m^3/s^3 |Zonal Mass-Weight Transp of Pressure Pot.(p/rho) Anomaly |
65 |
|
|
61 |VVELPHI | 8 | 60 |VVr MR|m^3/s^3 |Meridional Mass-Weight Transp of Pressure Pot.(p/rho) Anomaly |
66 |
|
|
62 |RHOAnoma| 8 | |SMR MR|kg/m^3 |Density Anomaly (=Rho-rhoConst) |
67 |
|
|
63 |RHOANOSQ| 8 | |SMRP MR|kg^2/m^6 |Square of Density Anomaly (=(Rho-rhoConst)^2) |
68 |
|
|
64 |URHOMASS| 8 | 65 |UUr MR|kg/m^2/s |Zonal Transport of Density |
69 |
|
|
65 |VRHOMASS| 8 | 64 |VVr MR|kg/m^2/s |Meridional Transport of Density |
70 |
|
|
66 |WRHOMASS| 8 | |WM LR|kg/m^2/s |Vertical Transport of Potential Density |
71 |
|
|
67 |PHIHYD | 8 | |SMR MR|m^2/s^2 |Hydrostatic Pressure Pot.(p/rho) Anomaly |
72 |
|
|
68 |PHIHYDSQ| 8 | |SMRP MR|m^4/s^4 |Square of Hyd. Pressure Pot.(p/rho) Anomaly |
73 |
|
|
69 |PHIBOT | 1 | |SM M1|m^2/s^2 |Bottom Pressure Pot.(p/rho) Anomaly |
74 |
|
|
70 |PHIBOTSQ| 1 | |SM P M1|m^4/s^4 |Square of Bottom Pressure Pot.(p/rho) Anomaly |
75 |
|
|
71 |MXLDEPTH| 1 | |SM M1|m |Mixed-Layer Depth (>0) |
76 |
|
|
72 |DRHODR | 8 | |SM LR|kg/m^4 |Stratification: d.Sigma/dr (kg/m3/r_unit) |
77 |
|
|
73 |CONVADJ | 8 | |SMR LR|fraction |Convective Adjustment Index [0-1] |
78 |
|
|
74 |oceTAUX | 1 | 75 |UU U1|N/m^2 |zonal surface wind stress, >0 increases uVel |
79 |
|
|
75 |oceTAUY | 1 | 74 |VV U1|N/m^2 |meridional surf. wind stress, >0 increases vVel |
80 |
|
|
76 |atmPload| 1 | |SM U1|Pa |Atmospheric pressure loading |
81 |
|
|
77 |sIceLoad| 1 | |SM U1|kg/m^2 |sea-ice loading (in Mass of ice+snow / area unit) |
82 |
|
|
78 |oceFWflx| 1 | |SM U1|kg/m^2/s |net surface Fresh-Water flux into the ocean (+=down), >0 decreases salinity |
83 |
|
|
79 |oceSflux| 1 | |SM U1|g/m^2/s |net surface Salt flux into the ocean (+=down), >0 increases salinity |
84 |
|
|
80 |oceQnet | 1 | |SM U1|W/m^2 |net surface heat flux into the ocean (+=down), >0 increases theta |
85 |
|
|
81 |oceQsw | 1 | |SM U1|W/m^2 |net Short-Wave radiation (+=down), >0 increases theta |
86 |
|
|
82 |oceFreez| 1 | |SM U1|W/m^2 |heating from freezing of sea-water (allowFreezing=T) |
87 |
|
|
83 |TRELAX | 1 | |SM U1|W/m^2 |surface temperature relaxation, >0 increases theta |
88 |
|
|
84 |SRELAX | 1 | |SM U1|g/m^2/s |surface salinity relaxation, >0 increases salt |
89 |
|
|
85 |surForcT| 1 | |SM U1|W/m^2 |model surface forcing for Temperature, >0 increases theta |
90 |
|
|
86 |surForcS| 1 | |SM U1|g/m^2/s |model surface forcing for Salinity, >0 increases salinity |
91 |
|
|
87 |TFLUX | 1 | |SM U1|W/m^2 |total heat flux (match heat-content variations), >0 increases theta |
92 |
|
|
88 |SFLUX | 1 | |SM U1|g/m^2/s |total salt flux (match salt-content variations), >0 increases salt |
93 |
|
|
89 |RCENTER | 8 | |SM MR|m |Cell-Center Height |
94 |
|
|
90 |RSURF | 1 | |SM M1|m |Surface Height |
95 |
|
|
91 |TOTUTEND| 8 | 92 |UUR MR|m/s/day |Tendency of Zonal Component of Velocity |
96 |
|
|
92 |TOTVTEND| 8 | 91 |VVR MR|m/s/day |Tendency of Meridional Component of Velocity |
97 |
|
|
93 |TOTTTEND| 8 | |SMR MR|degC/day |Tendency of Potential Temperature |
98 |
|
|
94 |TOTSTEND| 8 | |SMR MR|psu/day |Tendency of Salinity |
99 |
|
|
95 |ADVr_TH | 8 | |WM LR|degC.m^3/s |Vertical Advective Flux of Pot.Temperature |
100 |
|
|
96 |ADVx_TH | 8 | 97 |UU MR|degC.m^3/s |Zonal Advective Flux of Pot.Temperature |
101 |
|
|
97 |ADVy_TH | 8 | 96 |VV MR|degC.m^3/s |Meridional Advective Flux of Pot.Temperature |
102 |
|
|
98 |DFrE_TH | 8 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Explicit part) |
103 |
|
|
99 |DFxE_TH | 8 | 100 |UU MR|degC.m^3/s |Zonal Diffusive Flux of Pot.Temperature |
104 |
|
|
------------------------------------------------------------------------------------ |
105 |
|
|
Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) |
106 |
|
|
------------------------------------------------------------------------------------ |
107 |
|
|
100 |DFyE_TH | 8 | 99 |VV MR|degC.m^3/s |Meridional Diffusive Flux of Pot.Temperature |
108 |
|
|
101 |DFrI_TH | 8 | |WM LR|degC.m^3/s |Vertical Diffusive Flux of Pot.Temperature (Implicit part) |
109 |
|
|
102 |ADVr_SLT| 8 | |WM LR|psu.m^3/s |Vertical Advective Flux of Salinity |
110 |
|
|
103 |ADVx_SLT| 8 | 104 |UU MR|psu.m^3/s |Zonal Advective Flux of Salinity |
111 |
|
|
104 |ADVy_SLT| 8 | 103 |VV MR|psu.m^3/s |Meridional Advective Flux of Salinity |
112 |
|
|
105 |DFrE_SLT| 8 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity (Explicit part) |
113 |
|
|
106 |DFxE_SLT| 8 | 107 |UU MR|psu.m^3/s |Zonal Diffusive Flux of Salinity |
114 |
|
|
107 |DFyE_SLT| 8 | 106 |VV MR|psu.m^3/s |Meridional Diffusive Flux of Salinity |
115 |
|
|
108 |DFrI_SLT| 8 | |WM LR|psu.m^3/s |Vertical Diffusive Flux of Salinity (Implicit part) |
116 |
|
|
109 |SALTFILL| 8 | |SM MR|psu.m^3/s |Filling of Negative Values of Salinity |
117 |
|
|
110 |VISCAHZ | 8 | |SZ MR|m^2/s |Harmonic Visc Coefficient (m2/s) (Zeta Pt) |
118 |
|
|
111 |VISCA4Z | 8 | |SZ MR|m^4/s |Biharmonic Visc Coefficient (m4/s) (Zeta Pt) |
119 |
|
|
112 |VISCAHD | 8 | |SM MR|m^2/s |Harmonic Viscosity Coefficient (m2/s) (Div Pt) |
120 |
|
|
113 |VISCA4D | 8 | |SM MR|m^4/s |Biharmonic Viscosity Coefficient (m4/s) (Div Pt) |
121 |
|
|
114 |VISCAHW | 8 | |WM LR|m^2/s |Harmonic Viscosity Coefficient (m2/s) (W Pt) |
122 |
|
|
115 |VISCA4W | 8 | |WM LR|m^4/s |Biharmonic Viscosity Coefficient (m4/s) (W Pt) |
123 |
|
|
116 |VAHZMAX | 8 | |SZ MR|m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Zeta Pt) |
124 |
|
|
117 |VA4ZMAX | 8 | |SZ MR|m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Zeta Pt) |
125 |
|
|
118 |VAHDMAX | 8 | |SM MR|m^2/s |CFL-MAX Harm Visc Coefficient (m2/s) (Div Pt) |
126 |
|
|
119 |VA4DMAX | 8 | |SM MR|m^4/s |CFL-MAX Biharm Visc Coefficient (m4/s) (Div Pt) |
127 |
|
|
120 |VAHZMIN | 8 | |SZ MR|m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Zeta Pt) |
128 |
|
|
121 |VA4ZMIN | 8 | |SZ MR|m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Zeta Pt) |
129 |
|
|
122 |VAHDMIN | 8 | |SM MR|m^2/s |RE-MIN Harm Visc Coefficient (m2/s) (Div Pt) |
130 |
|
|
123 |VA4DMIN | 8 | |SM MR|m^4/s |RE-MIN Biharm Visc Coefficient (m4/s) (Div Pt) |
131 |
|
|
124 |VAHZLTH | 8 | |SZ MR|m^2/s |Leith Harm Visc Coefficient (m2/s) (Zeta Pt) |
132 |
|
|
125 |VA4ZLTH | 8 | |SZ MR|m^4/s |Leith Biharm Visc Coefficient (m4/s) (Zeta Pt) |
133 |
|
|
126 |VAHDLTH | 8 | |SM MR|m^2/s |Leith Harm Visc Coefficient (m2/s) (Div Pt) |
134 |
|
|
127 |VA4DLTH | 8 | |SM MR|m^4/s |Leith Biharm Visc Coefficient (m4/s) (Div Pt) |
135 |
|
|
128 |VAHZLTHD| 8 | |SZ MR|m^2/s |LeithD Harm Visc Coefficient (m2/s) (Zeta Pt) |
136 |
|
|
129 |VA4ZLTHD| 8 | |SZ MR|m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Zeta Pt) |
137 |
|
|
130 |VAHDLTHD| 8 | |SM MR|m^2/s |LeithD Harm Visc Coefficient (m2/s) (Div Pt) |
138 |
|
|
131 |VA4DLTHD| 8 | |SM MR|m^4/s |LeithD Biharm Visc Coefficient (m4/s) (Div Pt) |
139 |
|
|
132 |VAHZSMAG| 8 | |SZ MR|m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Zeta Pt) |
140 |
|
|
133 |VA4ZSMAG| 8 | |SZ MR|m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Zeta Pt) |
141 |
|
|
134 |VAHDSMAG| 8 | |SM MR|m^2/s |Smagorinsky Harm Visc Coefficient (m2/s) (Div Pt) |
142 |
|
|
135 |VA4DSMAG| 8 | |SM MR|m^4/s |Smagorinsky Biharm Visc Coeff. (m4/s) (Div Pt) |
143 |
|
|
136 |momKE | 8 | |SMR MR|m^2/s^2 |Kinetic Energy (in momentum Eq.) |
144 |
|
|
137 |momHDiv | 8 | |SMR MR|s^-1 |Horizontal Divergence (in momentum Eq.) |
145 |
|
|
138 |momVort3| 8 | |SZR MR|s^-1 |3rd component (vertical) of Vorticity |
146 |
|
|
139 |Strain | 8 | |SZR MR|s^-1 |Horizontal Strain of Horizontal Velocities |
147 |
|
|
140 |Tension | 8 | |SMR MR|s^-1 |Horizontal Tension of Horizontal Velocities |
148 |
|
|
141 |UBotDrag| 8 | 142 |UUR MR|m/s^2 |U momentum tendency from Bottom Drag |
149 |
|
|
142 |VBotDrag| 8 | 141 |VVR MR|m/s^2 |V momentum tendency from Bottom Drag |
150 |
|
|
143 |USidDrag| 8 | 144 |UUR MR|m/s^2 |U momentum tendency from Side Drag |
151 |
|
|
144 |VSidDrag| 8 | 143 |VVR MR|m/s^2 |V momentum tendency from Side Drag |
152 |
|
|
145 |Um_Diss | 8 | 146 |UUR MR|m/s^2 |U momentum tendency from Dissipation |
153 |
|
|
146 |Vm_Diss | 8 | 145 |VVR MR|m/s^2 |V momentum tendency from Dissipation |
154 |
|
|
147 |Um_Advec| 8 | 148 |UUR MR|m/s^2 |U momentum tendency from Advection terms |
155 |
|
|
148 |Vm_Advec| 8 | 147 |VVR MR|m/s^2 |V momentum tendency from Advection terms |
156 |
|
|
149 |Um_Cori | 8 | 150 |UUR MR|m/s^2 |U momentum tendency from Coriolis term |
157 |
|
|
150 |Vm_Cori | 8 | 149 |VVR MR|m/s^2 |V momentum tendency from Coriolis term |
158 |
|
|
151 |Um_dPHdx| 8 | 152 |UUR MR|m/s^2 |U momentum tendency from Hydrostatic Pressure grad |
159 |
|
|
152 |Vm_dPHdy| 8 | 151 |VVR MR|m/s^2 |V momentum tendency from Hydrostatic Pressure grad |
160 |
|
|
153 |Um_Ext | 8 | 154 |UUR MR|m/s^2 |U momentum tendency from external forcing |
161 |
|
|
154 |Vm_Ext | 8 | 153 |VVR MR|m/s^2 |V momentum tendency from external forcing |
162 |
|
|
155 |Um_AdvZ3| 8 | 156 |UUR MR|m/s^2 |U momentum tendency from Vorticity Advection |
163 |
|
|
156 |Vm_AdvZ3| 8 | 155 |VVR MR|m/s^2 |V momentum tendency from Vorticity Advection |
164 |
|
|
157 |Um_AdvRe| 8 | 158 |UUR MR|m/s^2 |U momentum tendency from vertical Advection (Explicit part) |
165 |
|
|
158 |Vm_AdvRe| 8 | 157 |VVR MR|m/s^2 |V momentum tendency from vertical Advection (Explicit part) |
166 |
|
|
159 |VISrI_Um| 8 | |WU LR|m^4/s^2 |Vertical Viscous Flux of U momentum (Implicit part) |
167 |
|
|
160 |VISrI_Vm| 8 | |WV LR|m^4/s^2 |Vertical Viscous Flux of V momentum (Implicit part) |
168 |
|
|
161 |EXFhs | 1 | |SM U1|W/m^2 |Sensible heat flux into ocean, >0 increases theta |
169 |
|
|
162 |EXFhl | 1 | |SM U1|W/m^2 |Latent heat flux into ocean, >0 increases theta |
170 |
|
|
163 |EXFlwnet| 1 | |SM U1|W/m^2 |Net upward longwave radiation, >0 decreases theta |
171 |
|
|
164 |EXFswnet| 1 | |SM U1|W/m^2 |Net upward shortwave radiation, >0 decreases theta |
172 |
|
|
165 |EXFlwdn | 1 | |SM U1|W/m^2 |Downward longwave radiation, >0 increases theta |
173 |
|
|
166 |EXFswdn | 1 | |SM U1|W/m^2 |Downward shortwave radiation, >0 increases theta |
174 |
|
|
167 |EXFqnet | 1 | |SM U1|W/m^2 |Net upward heat flux (turb+rad), >0 decreases theta |
175 |
|
|
168 |EXFtaux | 1 | |UM U1|N/m^2 |zonal surface wind stress, >0 increases uVel |
176 |
|
|
169 |EXFtauy | 1 | |VM U1|N/m^2 |meridional surface wind stress, >0 increases vVel |
177 |
|
|
170 |EXFuwind| 1 | |UM U1|m/s |zonal 10-m wind speed, >0 increases uVel |
178 |
|
|
171 |EXFvwind| 1 | |VM U1|m/s |meridional 10-m wind speed, >0 increases uVel |
179 |
|
|
172 |EXFwspee| 1 | |SM U1|m/s |10-m wind speed modulus ( >= 0 ) |
180 |
|
|
173 |EXFatemp| 1 | |SM U1|degK |surface (2-m) air temperature |
181 |
|
|
174 |EXFaqh | 1 | |SM U1|kg/kg |surface (2-m) specific humidity |
182 |
|
|
175 |EXFevap | 1 | |SM U1|m/s |evaporation, > 0 increases salinity |
183 |
|
|
176 |EXFpreci| 1 | |SM U1|m/s |precipitation, > 0 decreases salinity |
184 |
|
|
177 |EXFsnow | 1 | |SM U1|m/s |snow precipitation, > 0 decreases salinity |
185 |
|
|
178 |EXFempmr| 1 | |SM U1|m/s |net upward freshwater flux, > 0 increases salinity |
186 |
|
|
179 |EXFpress| 1 | |SM U1|N/m^2 |atmospheric pressure field |
187 |
|
|
180 |EXFroff | 1 | |SM U1|m/s |river runoff, > 0 decreases salinity |
188 |
|
|
------------------------------------------------------------------------------------ |
189 |
|
|
Num |<-Name->|Levs| mate |<- code ->|<-- Units -->|<- Tile (max=80c) |
190 |
|
|
------------------------------------------------------------------------------------ |