--- MITgcm_contrib/articles/ceaice/ceaice_model.tex 2008/02/28 20:09:23 1.4 +++ MITgcm_contrib/articles/ceaice/ceaice_model.tex 2008/03/06 21:54:55 1.7 @@ -12,7 +12,7 @@ C-grid variants are available; the C-grid code allows for no-slip and free-slip lateral boundary conditions; \item two different solution methods for solving the nonlinear - momentum equations have been adopted: LSOR \citep{zha97}, EVP + momentum equations have been adopted: LSOR \citep{zhang97}, EVP \citep{hunke97}; \item ice-ocean stress can be formulated as in \citet{hibler87}; \item ice variables are advected by sophisticated advection schemes; @@ -98,7 +98,7 @@ \left(\dot{\epsilon}_{11}^2+\dot{\epsilon}_{22}^2\right) (1+e^{-2}) + 4e^{-2}\dot{\epsilon}_{12}^2 + 2\dot{\epsilon}_{11}\dot{\epsilon}_{22} (1-e^{-2}) - \right]^{-\frac{1}{2}} + \right]^{\frac{1}{2}} \end{align*} The bulk viscosities are bounded above by imposing both a minimum $\Delta_{\min}=10^{-11}\text{\,s}^{-1}$ (for numerical reasons) and a @@ -283,16 +283,13 @@ Effective ich thickness (ice volume per unit area, $c\cdot{h}$), concentration $c$ and effective snow thickness ($c\cdot{h}_{s}$) are advected by ice velocities: -\begin{align} - \frac{\partial(c\,{h})}{\partial{t}} &= - \nabla\left(\vek{u}\,c\,{h}\right) + - \Gamma_{h} + D_{h} \\ - \frac{\partial{c}}{\partial{t}} &= - \nabla\left(\vek{u}\,c\right) + - \Gamma_{c} + D_{c} \\ - \frac{\partial(c\,{h}_{s})}{\partial{t}} &= - \nabla\left(\vek{u}\,c\,{h}_{s}\right) + - \Gamma_{h_{s}} + D_{h_{s}} -\end{align} +\begin{equation} + \label{eq:advection} + \frac{\partial{X}}{\partial{t}} = - \nabla\cdot\left(\vek{u}\,X\right) + + \Gamma_{X} + D_{X} +\end{equation} where $\Gamma_X$ are the thermodynamic source terms and $D_{X}$ the -diffusive terms for quantity $X=h, c, h_{s}$. +diffusive terms for quantities $X=(c\cdot{h}), c, (c\cdot{h}_{s})$. % From the various advection scheme that are available in the MITgcm \citep{mitgcm02}, we choose flux-limited schemes