1 |
atn |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/kpp/kpp_forcing_surf.F,v 1.5 2009/11/21 01:27:07 dimitri Exp $ |
2 |
|
|
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "KPP_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
CBOP |
7 |
|
|
C !ROUTINE: KPP_FORCING_SURF |
8 |
|
|
|
9 |
|
|
C !INTERFACE: ========================================================== |
10 |
|
|
SUBROUTINE KPP_FORCING_SURF( |
11 |
|
|
I rhoSurf, surfForcU, surfForcV, |
12 |
|
|
I surfForcT, surfForcS, surfForcTice, |
13 |
|
|
I Qsw, |
14 |
|
|
#ifdef ALLOW_SALT_PLUME |
15 |
|
|
#ifndef SALT_PLUME_VOLUME |
16 |
|
|
I saltPlumeFlux, |
17 |
|
|
#endif /* SALT_PLUME_VOLUME */ |
18 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
19 |
|
|
I ttalpha, ssbeta, |
20 |
|
|
O ustar, bo, bosol, |
21 |
|
|
#ifdef ALLOW_SALT_PLUME |
22 |
|
|
#ifndef SALT_PLUME_VOLUME |
23 |
|
|
O boplume, |
24 |
|
|
#endif /* SALT_PLUME_VOLUME */ |
25 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
26 |
|
|
O dVsq, |
27 |
|
|
I ikppkey, iMin, iMax, jMin, jMax, bi, bj, myTime, myThid ) |
28 |
|
|
|
29 |
|
|
C !DESCRIPTION: \bv |
30 |
|
|
C /==========================================================\ |
31 |
|
|
C | SUBROUTINE KPP_FORCING_SURF | |
32 |
|
|
C | o Compute all surface related KPP fields: | |
33 |
|
|
C | - friction velocity ustar | |
34 |
|
|
C | - turbulent and radiative surface buoyancy forcing, | |
35 |
|
|
C | bo and bosol, and surface haline buoyancy forcing | |
36 |
|
|
C | boplume | |
37 |
|
|
C | - velocity shear relative to surface squared (this is | |
38 |
|
|
C | not really a surface affected quantity unless it is | |
39 |
|
|
C | computed with respect to some resolution independent | |
40 |
|
|
C | reference level, that is KPP_ESTIMATE_UREF defined ) | |
41 |
|
|
C |==========================================================| |
42 |
|
|
C \==========================================================/ |
43 |
|
|
IMPLICIT NONE |
44 |
|
|
|
45 |
|
|
c taux / rho = surfForcU (N/m^2) |
46 |
|
|
c tauy / rho = surfForcV (N/m^2) |
47 |
|
|
c ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho ) (m/s) |
48 |
|
|
c bo = - g * ( alpha*surfForcT + |
49 |
|
|
c beta *surfForcS ) / rho (m^2/s^3) |
50 |
|
|
c bosol = - g * alpha * Qsw * drF(1) / rho (m^2/s^3) |
51 |
|
|
c boplume = g * ( beta *saltPlumeFlux/rhoConst )/rho (m^2/s^3) |
52 |
|
|
c------------------------------------------------------------------------ |
53 |
|
|
|
54 |
|
|
c \ev |
55 |
|
|
|
56 |
|
|
C !USES: =============================================================== |
57 |
|
|
#include "SIZE.h" |
58 |
|
|
#include "EEPARAMS.h" |
59 |
|
|
#include "PARAMS.h" |
60 |
|
|
#include "GRID.h" |
61 |
|
|
#include "DYNVARS.h" |
62 |
|
|
#include "KPP_PARAMS.h" |
63 |
|
|
|
64 |
|
|
C !INPUT PARAMETERS: =================================================== |
65 |
|
|
C Routine arguments |
66 |
|
|
C ikppkeyb - key for storing trajectory for adjoint (taf) |
67 |
|
|
c imin, imax, jmin, jmax - array computation indices |
68 |
|
|
C bi, bj - array indices on which to apply calculations |
69 |
|
|
C myTime - Current time in simulation |
70 |
|
|
C myThid - Current thread id |
71 |
|
|
c rhoSurf- density of surface layer (kg/m^3) |
72 |
|
|
C surfForcU units are r_unit.m/s^2 (=m^2/s^2 if r=z) |
73 |
|
|
C surfForcV units are r_unit.m/s^2 (=m^2/s^-2 if r=z) |
74 |
|
|
C surfForcS units are r_unit.psu/s (=psu.m/s if r=z) |
75 |
|
|
C - EmPmR * S_surf plus salinity relaxation*drF(1) |
76 |
|
|
C surfForcT units are r_unit.Kelvin/s (=Kelvin.m/s if r=z) |
77 |
|
|
C - Qnet (+Qsw) plus temp. relaxation*drF(1) |
78 |
|
|
C -> calculate -lambda*(T(model)-T(clim)) |
79 |
|
|
C Qnet assumed to be net heat flux including ShortWave rad. |
80 |
|
|
C surfForcTice |
81 |
|
|
C - equivalent Temperature flux in the top level that corresponds |
82 |
|
|
C to the melting or freezing of sea-ice. |
83 |
|
|
C Note that the surface level temperature is modified |
84 |
|
|
C directly by the sea-ice model in order to maintain |
85 |
|
|
C water temperature under sea-ice at the freezing |
86 |
|
|
C point. But we need to keep track of the |
87 |
|
|
C equivalent amount of heat that this surface-level |
88 |
|
|
C temperature change implies because it is used by |
89 |
|
|
C the KPP package (kpp_calc.F and kpp_transport_t.F). |
90 |
|
|
C Units are r_unit.K/s (=Kelvin.m/s if r=z) (>0 for ocean warming). |
91 |
|
|
C |
92 |
|
|
C Qsw - surface shortwave radiation (upwards positive) |
93 |
|
|
C saltPlumeFlux - salt rejected during freezing (downward = positive) |
94 |
|
|
C ttalpha - thermal expansion coefficient without 1/rho factor |
95 |
|
|
C d(rho{k,k})/d(T(k)) (kg/m^3/C) |
96 |
|
|
C ssbeta - salt expansion coefficient without 1/rho factor |
97 |
|
|
C d(rho{k,k})/d(S(k)) (kg/m^3/PSU) |
98 |
|
|
C !OUTPUT PARAMETERS: |
99 |
|
|
C ustar (nx,ny) - surface friction velocity (m/s) |
100 |
|
|
C bo (nx,ny) - surface turbulent buoyancy forcing (m^2/s^3) |
101 |
|
|
C bosol (nx,ny) - surface radiative buoyancy forcing (m^2/s^3) |
102 |
|
|
C boplume(nx,ny) - surface haline buoyancy forcing (m^2/s^3) |
103 |
|
|
C dVsq (nx,ny,Nr) - velocity shear re surface squared |
104 |
|
|
C at grid levels for bldepth (m^2/s^2) |
105 |
|
|
|
106 |
|
|
INTEGER ikppkey |
107 |
|
|
INTEGER iMin, iMax, jMin, jMax |
108 |
|
|
INTEGER bi, bj |
109 |
|
|
INTEGER myThid |
110 |
|
|
_RL myTime |
111 |
|
|
|
112 |
|
|
_RL rhoSurf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
113 |
|
|
_RL surfForcU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
114 |
|
|
_RL surfForcV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
115 |
|
|
_RL surfForcT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
116 |
|
|
_RL surfForcS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
117 |
|
|
_RL surfForcTice(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
118 |
|
|
_RS Qsw (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
119 |
|
|
_RL TTALPHA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nrp1) |
120 |
|
|
_RL SSBETA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nrp1) |
121 |
|
|
|
122 |
|
|
_RL ustar ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
123 |
|
|
_RL bo ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
124 |
|
|
_RL bosol ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
125 |
|
|
#ifdef ALLOW_SALT_PLUME |
126 |
|
|
#ifndef SALT_PLUME_VOLUME |
127 |
|
|
_RL saltPlumeFlux (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
128 |
|
|
_RL boplume(1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
129 |
|
|
#endif /* SALT_PLUME_VOLUME */ |
130 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
131 |
|
|
_RL dVsq ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr ) |
132 |
|
|
|
133 |
|
|
C !LOCAL VARIABLES: ==================================================== |
134 |
|
|
c Local constants |
135 |
|
|
c minusone, p0, p5, p25, p125, p0625 |
136 |
|
|
_RL p0 , p5 , p125 |
137 |
|
|
parameter( p0=0.0, p5=0.5, p125=0.125 ) |
138 |
|
|
integer i, j, k, im1, ip1, jm1, jp1 |
139 |
|
|
_RL tempvar2 |
140 |
|
|
|
141 |
|
|
_RL work3 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
142 |
|
|
|
143 |
|
|
#ifdef KPP_ESTIMATE_UREF |
144 |
|
|
_RL tempvar1, dBdz1, dBdz2, ustarX, ustarY |
145 |
|
|
_RL z0 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
146 |
|
|
_RL zRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
147 |
|
|
_RL uRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
148 |
|
|
_RL vRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy ) |
149 |
|
|
#endif |
150 |
|
|
CEOP |
151 |
|
|
|
152 |
|
|
c------------------------------------------------------------------------ |
153 |
|
|
c friction velocity, turbulent and radiative surface buoyancy forcing |
154 |
|
|
c ------------------------------------------------------------------- |
155 |
|
|
c taux / rho = surfForcU (N/m^2) |
156 |
|
|
c tauy / rho = surfForcV (N/m^2) |
157 |
|
|
c ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho ) (m/s) |
158 |
|
|
c bo = - g * ( alpha*surfForcT + |
159 |
|
|
c beta *surfForcS ) / rho (m^2/s^3) |
160 |
|
|
c bosol = - g * alpha * Qsw * drF(1) / rho (m^2/s^3) |
161 |
|
|
c boplume = g * ( beta *saltPlumeFlux/rhoConst )/rho (m^2/s^3) |
162 |
|
|
c------------------------------------------------------------------------ |
163 |
|
|
|
164 |
|
|
c initialize arrays to zero |
165 |
|
|
DO j = 1-OLy, sNy+OLy |
166 |
|
|
DO i = 1-OLx, sNx+OLx |
167 |
|
|
ustar(i,j) = p0 |
168 |
|
|
bo (I,J) = p0 |
169 |
|
|
bosol(I,J) = p0 |
170 |
|
|
#ifdef ALLOW_SALT_PLUME |
171 |
|
|
#ifndef SALT_PLUME_VOLUME |
172 |
|
|
boplume(I,J) = p0 |
173 |
|
|
#endif /* SALT_PLUME_VOLUME */ |
174 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
175 |
|
|
END DO |
176 |
|
|
END DO |
177 |
|
|
|
178 |
|
|
DO j = jmin, jmax |
179 |
|
|
jp1 = j + 1 |
180 |
|
|
DO i = imin, imax |
181 |
|
|
ip1 = i+1 |
182 |
|
|
work3(i,j) = |
183 |
|
|
& (surfForcU(i,j,bi,bj) + surfForcU(ip1,j,bi,bj)) * |
184 |
|
|
& (surfForcU(i,j,bi,bj) + surfForcU(ip1,j,bi,bj)) + |
185 |
|
|
& (surfForcV(i,j,bi,bj) + surfForcV(i,jp1,bi,bj)) * |
186 |
|
|
& (surfForcV(i,j,bi,bj) + surfForcV(i,jp1,bi,bj)) |
187 |
|
|
END DO |
188 |
|
|
END DO |
189 |
|
|
cph( |
190 |
|
|
CADJ store work3 = comlev1_kpp, key = ikppkey |
191 |
|
|
cph) |
192 |
|
|
DO j = jmin, jmax |
193 |
|
|
jp1 = j + 1 |
194 |
|
|
DO i = imin, imax |
195 |
|
|
ip1 = i+1 |
196 |
|
|
|
197 |
|
|
if ( work3(i,j) .lt. (phepsi*phepsi*drF(1)*drF(1)) ) then |
198 |
|
|
ustar(i,j) = SQRT( phepsi * p5 * drF(1) ) |
199 |
|
|
else |
200 |
|
|
tempVar2 = SQRT( work3(i,j) ) * p5 |
201 |
|
|
ustar(i,j) = SQRT( tempVar2 ) |
202 |
|
|
endif |
203 |
|
|
|
204 |
|
|
END DO |
205 |
|
|
END DO |
206 |
|
|
|
207 |
|
|
DO j = jmin, jmax |
208 |
|
|
jp1 = j + 1 |
209 |
|
|
DO i = imin, imax |
210 |
|
|
ip1 = i+1 |
211 |
|
|
bo(I,J) = - gravity * |
212 |
|
|
& ( TTALPHA(I,J,1) * (surfForcT(i,j,bi,bj)+ |
213 |
|
|
& surfForcTice(i,j,bi,bj)) + |
214 |
|
|
& SSBETA(I,J,1) * surfForcS(i,j,bi,bj) ) |
215 |
|
|
& / rhoSurf(I,J) |
216 |
|
|
bosol(I,J) = gravity * TTALPHA(I,J,1) * Qsw(i,j,bi,bj) * |
217 |
|
|
& recip_Cp*recip_rhoConst |
218 |
|
|
& / rhoSurf(I,J) |
219 |
|
|
END DO |
220 |
|
|
END DO |
221 |
|
|
|
222 |
|
|
#ifdef ALLOW_SALT_PLUME |
223 |
|
|
#ifndef SALT_PLUME_VOLUME |
224 |
|
|
IF ( useSALT_PLUME ) THEN |
225 |
|
|
DO j = jmin, jmax |
226 |
|
|
jp1 = j + 1 |
227 |
|
|
DO i = imin, imax |
228 |
|
|
ip1 = i+1 |
229 |
|
|
boplume(I,J) = - gravity * SSBETA(I,J,1) |
230 |
|
|
& * saltPlumeFlux(i,j,bi,bj) |
231 |
|
|
& * recip_rhoConst / rhoSurf(I,J) |
232 |
|
|
END DO |
233 |
|
|
END DO |
234 |
|
|
ENDIF |
235 |
|
|
#endif /* SALT_PLUME_VOLUME */ |
236 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
237 |
|
|
|
238 |
|
|
cph( |
239 |
|
|
CADJ store ustar = comlev1_kpp, key = ikppkey |
240 |
|
|
cph) |
241 |
|
|
|
242 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
243 |
|
|
IF ( useDiagnostics ) THEN |
244 |
|
|
CALL DIAGNOSTICS_FILL(bo ,'KPPbo ',0,1,2,bi,bj,myThid) |
245 |
|
|
CALL DIAGNOSTICS_FILL(bosol ,'KPPbosol',0,1,2,bi,bj,myThid) |
246 |
|
|
#ifdef ALLOW_SALT_PLUME |
247 |
|
|
#ifndef SALT_PLUME_VOLUME |
248 |
|
|
CALL DIAGNOSTICS_FILL(boplume,'KPPboplm',0,1,2,bi,bj,myThid) |
249 |
|
|
#endif /* SALT_PLUME_VOLUME */ |
250 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
251 |
|
|
ENDIF |
252 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
253 |
|
|
|
254 |
|
|
c------------------------------------------------------------------------ |
255 |
|
|
c velocity shear |
256 |
|
|
c -------------- |
257 |
|
|
c Get velocity shear squared, averaged from "u,v-grid" |
258 |
|
|
c onto "t-grid" (in (m/s)**2): |
259 |
|
|
c dVsq(k)=(Uref-U(k))**2+(Vref-V(k))**2 at grid levels |
260 |
|
|
c------------------------------------------------------------------------ |
261 |
|
|
|
262 |
|
|
c initialize arrays to zero |
263 |
|
|
DO k = 1, Nr |
264 |
|
|
DO j = 1-OLy, sNy+OLy |
265 |
|
|
DO i = 1-OLx, sNx+OLx |
266 |
|
|
dVsq(i,j,k) = p0 |
267 |
|
|
END DO |
268 |
|
|
END DO |
269 |
|
|
END DO |
270 |
|
|
|
271 |
|
|
c dVsq computation |
272 |
|
|
|
273 |
|
|
#ifdef KPP_ESTIMATE_UREF |
274 |
|
|
|
275 |
|
|
c Get rid of vertical resolution dependence of dVsq term by |
276 |
|
|
c estimating a surface velocity that is independent of first level |
277 |
|
|
c thickness in the model. First determine mixed layer depth hMix. |
278 |
|
|
c Second zRef = espilon * hMix. Third determine roughness length |
279 |
|
|
c scale z0. Third estimate reference velocity. |
280 |
|
|
|
281 |
|
|
DO j = jmin, jmax |
282 |
|
|
jp1 = j + 1 |
283 |
|
|
DO i = imin, imax |
284 |
|
|
ip1 = i + 1 |
285 |
|
|
|
286 |
|
|
c Determine mixed layer depth hMix as the shallowest depth at which |
287 |
|
|
c dB/dz exceeds 5.2e-5 s^-2. |
288 |
|
|
work1(i,j) = nzmax(i,j,bi,bj) |
289 |
|
|
DO k = 1, Nr |
290 |
|
|
IF ( k .LT. nzmax(i,j,bi,bj) .AND. |
291 |
|
|
& maskC(I,J,k,bi,bj) .GT. 0. .AND. |
292 |
|
|
& dbloc(i,j,k) / drC(k+1) .GT. dB_dz ) |
293 |
|
|
& work1(i,j) = k |
294 |
|
|
ENDDO |
295 |
|
|
|
296 |
|
|
c Linearly interpolate to find hMix. |
297 |
|
|
k = work1(i,j) |
298 |
|
|
IF ( k .EQ. 0 .OR. nzmax(i,j,bi,bj) .EQ. 1 ) THEN |
299 |
|
|
zRef(i,j) = p0 |
300 |
|
|
ELSEIF ( k .EQ. 1) THEN |
301 |
|
|
dBdz2 = dbloc(i,j,1) / drC(2) |
302 |
|
|
zRef(i,j) = drF(1) * dB_dz / dBdz2 |
303 |
|
|
ELSEIF ( k .LT. nzmax(i,j,bi,bj) ) THEN |
304 |
|
|
dBdz1 = dbloc(i,j,k-1) / drC(k ) |
305 |
|
|
dBdz2 = dbloc(i,j,k ) / drC(k+1) |
306 |
|
|
zRef(i,j) = rF(k) + drF(k) * (dB_dz - dBdz1) / |
307 |
|
|
& MAX ( phepsi, dBdz2 - dBdz1 ) |
308 |
|
|
ELSE |
309 |
|
|
zRef(i,j) = rF(k+1) |
310 |
|
|
ENDIF |
311 |
|
|
|
312 |
|
|
c Compute roughness length scale z0 subject to 0 < z0 |
313 |
|
|
tempVar1 = p5 * ( |
314 |
|
|
& (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) * |
315 |
|
|
& (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) + |
316 |
|
|
& (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) * |
317 |
|
|
& (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) + |
318 |
|
|
& (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) * |
319 |
|
|
& (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) + |
320 |
|
|
& (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) * |
321 |
|
|
& (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) ) |
322 |
|
|
IF ( tempVar1 .lt. (epsln*epsln) ) THEN |
323 |
|
|
tempVar2 = epsln |
324 |
|
|
ELSE |
325 |
|
|
tempVar2 = SQRT ( tempVar1 ) |
326 |
|
|
ENDIF |
327 |
|
|
z0(i,j) = rF(2) * |
328 |
|
|
& ( rF(3) * LOG ( rF(3) / rF(2) ) / |
329 |
|
|
& ( rF(3) - rF(2) ) - |
330 |
|
|
& tempVar2 * vonK / |
331 |
|
|
& MAX ( ustar(i,j), phepsi ) ) |
332 |
|
|
z0(i,j) = MAX ( z0(i,j), phepsi ) |
333 |
|
|
|
334 |
|
|
c zRef is set to 0.1 * hMix subject to z0 <= zRef <= drF(1) |
335 |
|
|
zRef(i,j) = MAX ( epsilon * zRef(i,j), z0(i,j) ) |
336 |
|
|
zRef(i,j) = MIN ( zRef(i,j), drF(1) ) |
337 |
|
|
|
338 |
|
|
c Estimate reference velocity uRef and vRef. |
339 |
|
|
uRef(i,j) = p5 * ( uVel(i,j,1,bi,bj) + uVel(ip1,j,1,bi,bj) ) |
340 |
|
|
vRef(i,j) = p5 * ( vVel(i,j,1,bi,bj) + vVel(i,jp1,1,bi,bj) ) |
341 |
|
|
IF ( zRef(i,j) .LT. drF(1) ) THEN |
342 |
|
|
ustarX = ( surfForcU(i, j,bi,bj) + |
343 |
|
|
& surfForcU(ip1,j,bi,bj) ) * p5 *recip_drF(1) |
344 |
|
|
ustarY = ( surfForcV(i,j, bi,bj) + |
345 |
|
|
& surfForcV(i,jp1,bi,bj) ) * p5 *recip_drF(1) |
346 |
|
|
tempVar1 = ustarX * ustarX + ustarY * ustarY |
347 |
|
|
if ( tempVar1 .lt. (epsln*epsln) ) then |
348 |
|
|
tempVar2 = epsln |
349 |
|
|
else |
350 |
|
|
tempVar2 = SQRT ( tempVar1 ) |
351 |
|
|
endif |
352 |
|
|
tempVar2 = ustar(i,j) * |
353 |
|
|
& ( LOG ( zRef(i,j) / rF(2) ) + |
354 |
|
|
& z0(i,j) / zRef(i,j) - z0(i,j) / rF(2) ) / |
355 |
|
|
& vonK / tempVar2 |
356 |
|
|
uRef(i,j) = uRef(i,j) + ustarX * tempVar2 |
357 |
|
|
vRef(i,j) = vRef(i,j) + ustarY * tempVar2 |
358 |
|
|
ENDIF |
359 |
|
|
|
360 |
|
|
ENDDO |
361 |
|
|
ENDDO |
362 |
|
|
|
363 |
|
|
DO k = 1, Nr |
364 |
|
|
DO j = jmin, jmax |
365 |
|
|
jm1 = j - 1 |
366 |
|
|
jp1 = j + 1 |
367 |
|
|
DO i = imin, imax |
368 |
|
|
im1 = i - 1 |
369 |
|
|
ip1 = i + 1 |
370 |
|
|
dVsq(i,j,k) = p5 * ( |
371 |
|
|
$ (uRef(i,j) - uVel(i, j, k,bi,bj)) * |
372 |
|
|
$ (uRef(i,j) - uVel(i, j, k,bi,bj)) + |
373 |
|
|
$ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) * |
374 |
|
|
$ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) + |
375 |
|
|
$ (vRef(i,j) - vVel(i, j, k,bi,bj)) * |
376 |
|
|
$ (vRef(i,j) - vVel(i, j, k,bi,bj)) + |
377 |
|
|
$ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) * |
378 |
|
|
$ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) ) |
379 |
|
|
#ifdef KPP_SMOOTH_DVSQ |
380 |
|
|
dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * ( |
381 |
|
|
$ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) * |
382 |
|
|
$ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) + |
383 |
|
|
$ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) * |
384 |
|
|
$ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) + |
385 |
|
|
$ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) * |
386 |
|
|
$ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) + |
387 |
|
|
$ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) * |
388 |
|
|
$ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) + |
389 |
|
|
$ (vRef(i,j) - vVel(im1,j, k,bi,bj)) * |
390 |
|
|
$ (vRef(i,j) - vVel(im1,j, k,bi,bj)) + |
391 |
|
|
$ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) * |
392 |
|
|
$ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) + |
393 |
|
|
$ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) * |
394 |
|
|
$ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) + |
395 |
|
|
$ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) * |
396 |
|
|
$ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) ) |
397 |
|
|
#endif /* KPP_SMOOTH_DVSQ */ |
398 |
|
|
ENDDO |
399 |
|
|
ENDDO |
400 |
|
|
ENDDO |
401 |
|
|
|
402 |
|
|
#else /* KPP_ESTIMATE_UREF */ |
403 |
|
|
|
404 |
|
|
DO k = 1, Nr |
405 |
|
|
DO j = jmin, jmax |
406 |
|
|
jm1 = j - 1 |
407 |
|
|
jp1 = j + 1 |
408 |
|
|
DO i = imin, imax |
409 |
|
|
im1 = i - 1 |
410 |
|
|
ip1 = i + 1 |
411 |
|
|
dVsq(i,j,k) = p5 * ( |
412 |
|
|
$ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) * |
413 |
|
|
$ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) + |
414 |
|
|
$ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) * |
415 |
|
|
$ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) + |
416 |
|
|
$ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) * |
417 |
|
|
$ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) + |
418 |
|
|
$ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) * |
419 |
|
|
$ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) ) |
420 |
|
|
#ifdef KPP_SMOOTH_DVSQ |
421 |
|
|
dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * ( |
422 |
|
|
$ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) * |
423 |
|
|
$ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) + |
424 |
|
|
$ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) * |
425 |
|
|
$ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) + |
426 |
|
|
$ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) * |
427 |
|
|
$ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) + |
428 |
|
|
$ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) * |
429 |
|
|
$ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) + |
430 |
|
|
$ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) * |
431 |
|
|
$ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) + |
432 |
|
|
$ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) * |
433 |
|
|
$ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) + |
434 |
|
|
$ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) * |
435 |
|
|
$ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) + |
436 |
|
|
$ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) * |
437 |
|
|
$ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) ) |
438 |
|
|
#endif /* KPP_SMOOTH_DVSQ */ |
439 |
|
|
ENDDO |
440 |
|
|
ENDDO |
441 |
|
|
ENDDO |
442 |
|
|
|
443 |
|
|
#endif /* KPP_ESTIMATE_UREF */ |
444 |
|
|
|
445 |
|
|
RETURN |
446 |
|
|
END |
447 |
|
|
|