/[MITgcm]/MITgcm_contrib/atnguyen/code_21Dec2012_saltplume/kpp_forcing_surf.F
ViewVC logotype

Annotation of /MITgcm_contrib/atnguyen/code_21Dec2012_saltplume/kpp_forcing_surf.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download)
Fri May 2 05:46:01 2014 UTC (11 years, 3 months ago) by atn
Branch: MAIN
CVS Tags: HEAD
Changes since 1.4: +7 -6 lines
change individual 3-d boplume(k) to accumulated 3d in kpp_forcing_surf

1 atn 1.5 C $Header: /u/gcmpack/MITgcm_contrib/atnguyen/code_21Dec2012_saltplume/kpp_forcing_surf.F,v 1.4 2014/05/01 21:30:48 atn Exp $
2 atn 1.1 C $Name: $
3    
4     #include "KPP_OPTIONS.h"
5 atn 1.2 #ifdef ALLOW_SALT_PLUME
6     #include "SALT_PLUME_OPTIONS.h"
7     #endif
8 atn 1.1
9     CBOP
10     C !ROUTINE: KPP_FORCING_SURF
11    
12     C !INTERFACE: ==========================================================
13     SUBROUTINE KPP_FORCING_SURF(
14     I rhoSurf, surfForcU, surfForcV,
15     I surfForcT, surfForcS, surfForcTice,
16     I Qsw,
17     #ifdef ALLOW_SALT_PLUME
18 atn 1.3 I SPforcS,SPforcT,
19 atn 1.1 #endif /* ALLOW_SALT_PLUME */
20     I ttalpha, ssbeta,
21     O ustar, bo, bosol,
22     #ifdef ALLOW_SALT_PLUME
23     O boplume,
24     #endif /* ALLOW_SALT_PLUME */
25     O dVsq,
26     I ikppkey, iMin, iMax, jMin, jMax, bi, bj, myTime, myThid )
27    
28     C !DESCRIPTION: \bv
29     C /==========================================================\
30     C | SUBROUTINE KPP_FORCING_SURF |
31     C | o Compute all surface related KPP fields: |
32     C | - friction velocity ustar |
33     C | - turbulent and radiative surface buoyancy forcing, |
34     C | bo and bosol, and surface haline buoyancy forcing |
35     C | boplume |
36     C | - velocity shear relative to surface squared (this is |
37     C | not really a surface affected quantity unless it is |
38     C | computed with respect to some resolution independent |
39     C | reference level, that is KPP_ESTIMATE_UREF defined ) |
40     C |==========================================================|
41     C \==========================================================/
42     IMPLICIT NONE
43    
44     c taux / rho = surfForcU (N/m^2)
45     c tauy / rho = surfForcV (N/m^2)
46     c ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho ) (m/s)
47     c bo = - g * ( alpha*surfForcT +
48     c beta *surfForcS ) / rho (m^2/s^3)
49     c bosol = - g * alpha * Qsw * drF(1) / rho (m^2/s^3)
50     c boplume = g * ( beta *saltPlumeFlux/rhoConst )/rho (m^2/s^3)
51     c------------------------------------------------------------------------
52    
53     c \ev
54    
55     C !USES: ===============================================================
56     #include "SIZE.h"
57     #include "EEPARAMS.h"
58     #include "PARAMS.h"
59     #include "GRID.h"
60     #include "DYNVARS.h"
61     #include "KPP_PARAMS.h"
62    
63     C !INPUT PARAMETERS: ===================================================
64     C Routine arguments
65     C ikppkeyb - key for storing trajectory for adjoint (taf)
66     c imin, imax, jmin, jmax - array computation indices
67     C bi, bj - array indices on which to apply calculations
68     C myTime - Current time in simulation
69     C myThid - Current thread id
70     c rhoSurf- density of surface layer (kg/m^3)
71     C surfForcU units are r_unit.m/s^2 (=m^2/s^2 if r=z)
72     C surfForcV units are r_unit.m/s^2 (=m^2/s^-2 if r=z)
73     C surfForcS units are r_unit.psu/s (=psu.m/s if r=z)
74     C - EmPmR * S_surf plus salinity relaxation*drF(1)
75     C surfForcT units are r_unit.Kelvin/s (=Kelvin.m/s if r=z)
76     C - Qnet (+Qsw) plus temp. relaxation*drF(1)
77     C -> calculate -lambda*(T(model)-T(clim))
78     C Qnet assumed to be net heat flux including ShortWave rad.
79     C surfForcTice
80     C - equivalent Temperature flux in the top level that corresponds
81     C to the melting or freezing of sea-ice.
82     C Note that the surface level temperature is modified
83     C directly by the sea-ice model in order to maintain
84     C water temperature under sea-ice at the freezing
85     C point. But we need to keep track of the
86     C equivalent amount of heat that this surface-level
87     C temperature change implies because it is used by
88     C the KPP package (kpp_calc.F and kpp_transport_t.F).
89     C Units are r_unit.K/s (=Kelvin.m/s if r=z) (>0 for ocean warming).
90     C
91     C Qsw - surface shortwave radiation (upwards positive)
92     C saltPlumeFlux - salt rejected during freezing (downward = positive)
93     C ttalpha - thermal expansion coefficient without 1/rho factor
94     C d(rho{k,k})/d(T(k)) (kg/m^3/C)
95     C ssbeta - salt expansion coefficient without 1/rho factor
96     C d(rho{k,k})/d(S(k)) (kg/m^3/PSU)
97     C !OUTPUT PARAMETERS:
98     C ustar (nx,ny) - surface friction velocity (m/s)
99     C bo (nx,ny) - surface turbulent buoyancy forcing (m^2/s^3)
100     C bosol (nx,ny) - surface radiative buoyancy forcing (m^2/s^3)
101 atn 1.5 C boplume(nx,ny,Nr+1) - surface haline buoyancy forcing (m^2/s^3)
102 atn 1.1 C dVsq (nx,ny,Nr) - velocity shear re surface squared
103     C at grid levels for bldepth (m^2/s^2)
104    
105     INTEGER ikppkey
106     INTEGER iMin, iMax, jMin, jMax
107     INTEGER bi, bj
108     INTEGER myThid
109     _RL myTime
110    
111     _RL rhoSurf (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
112     _RL surfForcU (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
113     _RL surfForcV (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
114     _RL surfForcT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
115     _RL surfForcS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
116     _RL surfForcTice(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
117     _RS Qsw (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
118     _RL TTALPHA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nrp1)
119     _RL SSBETA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nrp1)
120    
121     _RL ustar ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
122     _RL bo ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
123     _RL bosol ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
124     #ifdef ALLOW_SALT_PLUME
125 atn 1.3 _RL SPforcS (1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr )
126     _RL SPforcT (1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr )
127 atn 1.5 _RL boplume (1-OLx:sNx+OLx, 1-OLy:sNy+OLy, 0:Nr )
128 atn 1.3 _RL temparray (1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
129 atn 1.1 #endif /* ALLOW_SALT_PLUME */
130     _RL dVsq ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy, Nr )
131    
132     C !LOCAL VARIABLES: ====================================================
133     c Local constants
134     c minusone, p0, p5, p25, p125, p0625
135     _RL p0 , p5 , p125
136     parameter( p0=0.0, p5=0.5, p125=0.125 )
137     integer i, j, k, im1, ip1, jm1, jp1
138     _RL tempvar2
139    
140     _RL work3 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
141    
142     #ifdef KPP_ESTIMATE_UREF
143     _RL tempvar1, dBdz1, dBdz2, ustarX, ustarY
144     _RL z0 ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
145     _RL zRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
146     _RL uRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
147     _RL vRef ( 1-OLx:sNx+OLx, 1-OLy:sNy+OLy )
148     #endif
149     CEOP
150    
151     c------------------------------------------------------------------------
152     c friction velocity, turbulent and radiative surface buoyancy forcing
153     c -------------------------------------------------------------------
154     c taux / rho = surfForcU (N/m^2)
155     c tauy / rho = surfForcV (N/m^2)
156     c ustar = sqrt( sqrt( taux^2 + tauy^2 ) / rho ) (m/s)
157     c bo = - g * ( alpha*surfForcT +
158     c beta *surfForcS ) / rho (m^2/s^3)
159     c bosol = - g * alpha * Qsw * drF(1) / rho (m^2/s^3)
160     c boplume = g * ( beta *saltPlumeFlux/rhoConst )/rho (m^2/s^3)
161     c------------------------------------------------------------------------
162    
163     c initialize arrays to zero
164     DO j = 1-OLy, sNy+OLy
165     DO i = 1-OLx, sNx+OLx
166     ustar(i,j) = p0
167     bo (I,J) = p0
168     bosol(I,J) = p0
169     #ifdef ALLOW_SALT_PLUME
170 atn 1.4 DO k = 1, Nr
171     boplume(I,J,k) = p0
172     ENDDO
173 atn 1.5 boplume(I,J,0) = p0
174 atn 1.1 #endif /* ALLOW_SALT_PLUME */
175     END DO
176     END DO
177    
178     DO j = jmin, jmax
179     jp1 = j + 1
180     DO i = imin, imax
181     ip1 = i+1
182     work3(i,j) =
183     & (surfForcU(i,j,bi,bj) + surfForcU(ip1,j,bi,bj)) *
184     & (surfForcU(i,j,bi,bj) + surfForcU(ip1,j,bi,bj)) +
185     & (surfForcV(i,j,bi,bj) + surfForcV(i,jp1,bi,bj)) *
186     & (surfForcV(i,j,bi,bj) + surfForcV(i,jp1,bi,bj))
187     END DO
188     END DO
189     cph(
190     CADJ store work3 = comlev1_kpp, key = ikppkey
191     cph)
192     DO j = jmin, jmax
193     jp1 = j + 1
194     DO i = imin, imax
195     ip1 = i+1
196    
197     if ( work3(i,j) .lt. (phepsi*phepsi*drF(1)*drF(1)) ) then
198     ustar(i,j) = SQRT( phepsi * p5 * drF(1) )
199     else
200     tempVar2 = SQRT( work3(i,j) ) * p5
201     ustar(i,j) = SQRT( tempVar2 )
202     endif
203    
204     END DO
205     END DO
206    
207     DO j = jmin, jmax
208     jp1 = j + 1
209     DO i = imin, imax
210     ip1 = i+1
211     bo(I,J) = - gravity *
212     & ( TTALPHA(I,J,1) * (surfForcT(i,j,bi,bj)+
213     & surfForcTice(i,j,bi,bj)) +
214     & SSBETA(I,J,1) * surfForcS(i,j,bi,bj) )
215     & / rhoSurf(I,J)
216     bosol(I,J) = gravity * TTALPHA(I,J,1) * Qsw(i,j,bi,bj) *
217     & recip_Cp*recip_rhoConst
218     & / rhoSurf(I,J)
219     END DO
220     END DO
221    
222     #ifdef ALLOW_SALT_PLUME
223 atn 1.3 Catn: need check sign of SPforcT
224     Cnote: on input, if notdef salt_plume_volume, SPforc[S,T](k>1)=!0
225 atn 1.1 IF ( useSALT_PLUME ) THEN
226     DO j = jmin, jmax
227     DO i = imin, imax
228 atn 1.3 DO k = 1, Nr
229 atn 1.5 temparray(I,J) = - gravity *
230 atn 1.3 & ( SSBETA(I,J,k) * SPforcS(i,j,k) +
231     & TTALPHA(I,J,k)* SPforcT(i,j,k) * recip_Cp )
232 atn 1.1 & * recip_rhoConst / rhoSurf(I,J)
233 atn 1.5 boplume(I,J,k) = boplume(I,J,k-1)+temparray(I,J)
234 atn 1.3 ENDDO
235 atn 1.1 END DO
236     END DO
237     ENDIF
238     #endif /* ALLOW_SALT_PLUME */
239    
240     cph(
241     CADJ store ustar = comlev1_kpp, key = ikppkey
242     cph)
243    
244     #ifdef ALLOW_DIAGNOSTICS
245     IF ( useDiagnostics ) THEN
246     CALL DIAGNOSTICS_FILL(bo ,'KPPbo ',0,1,2,bi,bj,myThid)
247     CALL DIAGNOSTICS_FILL(bosol ,'KPPbosol',0,1,2,bi,bj,myThid)
248     #ifdef ALLOW_SALT_PLUME
249 atn 1.5 CALL DIAGNOSTICS_FILL(boplume,'KPPboplm',1,1,2,bi,bj,myThid)
250 atn 1.1 #endif /* ALLOW_SALT_PLUME */
251     ENDIF
252     #endif /* ALLOW_DIAGNOSTICS */
253    
254     c------------------------------------------------------------------------
255     c velocity shear
256     c --------------
257     c Get velocity shear squared, averaged from "u,v-grid"
258     c onto "t-grid" (in (m/s)**2):
259     c dVsq(k)=(Uref-U(k))**2+(Vref-V(k))**2 at grid levels
260     c------------------------------------------------------------------------
261    
262     c initialize arrays to zero
263     DO k = 1, Nr
264     DO j = 1-OLy, sNy+OLy
265     DO i = 1-OLx, sNx+OLx
266     dVsq(i,j,k) = p0
267     END DO
268     END DO
269     END DO
270    
271     c dVsq computation
272    
273     #ifdef KPP_ESTIMATE_UREF
274    
275     c Get rid of vertical resolution dependence of dVsq term by
276     c estimating a surface velocity that is independent of first level
277     c thickness in the model. First determine mixed layer depth hMix.
278     c Second zRef = espilon * hMix. Third determine roughness length
279     c scale z0. Third estimate reference velocity.
280    
281     DO j = jmin, jmax
282     jp1 = j + 1
283     DO i = imin, imax
284     ip1 = i + 1
285    
286     c Determine mixed layer depth hMix as the shallowest depth at which
287     c dB/dz exceeds 5.2e-5 s^-2.
288     work1(i,j) = nzmax(i,j,bi,bj)
289     DO k = 1, Nr
290     IF ( k .LT. nzmax(i,j,bi,bj) .AND.
291     & maskC(I,J,k,bi,bj) .GT. 0. .AND.
292     & dbloc(i,j,k) / drC(k+1) .GT. dB_dz )
293     & work1(i,j) = k
294     ENDDO
295    
296     c Linearly interpolate to find hMix.
297     k = work1(i,j)
298     IF ( k .EQ. 0 .OR. nzmax(i,j,bi,bj) .EQ. 1 ) THEN
299     zRef(i,j) = p0
300     ELSEIF ( k .EQ. 1) THEN
301     dBdz2 = dbloc(i,j,1) / drC(2)
302     zRef(i,j) = drF(1) * dB_dz / dBdz2
303     ELSEIF ( k .LT. nzmax(i,j,bi,bj) ) THEN
304     dBdz1 = dbloc(i,j,k-1) / drC(k )
305     dBdz2 = dbloc(i,j,k ) / drC(k+1)
306     zRef(i,j) = rF(k) + drF(k) * (dB_dz - dBdz1) /
307     & MAX ( phepsi, dBdz2 - dBdz1 )
308     ELSE
309     zRef(i,j) = rF(k+1)
310     ENDIF
311    
312     c Compute roughness length scale z0 subject to 0 < z0
313     tempVar1 = p5 * (
314     & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) *
315     & (uVel(i, j, 1,bi,bj)-uVel(i, j, 2,bi,bj)) +
316     & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) *
317     & (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, 2,bi,bj)) +
318     & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) *
319     & (vVel(i, j, 1,bi,bj)-vVel(i, j, 2,bi,bj)) +
320     & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) *
321     & (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,2,bi,bj)) )
322     IF ( tempVar1 .lt. (epsln*epsln) ) THEN
323     tempVar2 = epsln
324     ELSE
325     tempVar2 = SQRT ( tempVar1 )
326     ENDIF
327     z0(i,j) = rF(2) *
328     & ( rF(3) * LOG ( rF(3) / rF(2) ) /
329     & ( rF(3) - rF(2) ) -
330     & tempVar2 * vonK /
331     & MAX ( ustar(i,j), phepsi ) )
332     z0(i,j) = MAX ( z0(i,j), phepsi )
333    
334     c zRef is set to 0.1 * hMix subject to z0 <= zRef <= drF(1)
335     zRef(i,j) = MAX ( epsilon * zRef(i,j), z0(i,j) )
336     zRef(i,j) = MIN ( zRef(i,j), drF(1) )
337    
338     c Estimate reference velocity uRef and vRef.
339     uRef(i,j) = p5 * ( uVel(i,j,1,bi,bj) + uVel(ip1,j,1,bi,bj) )
340     vRef(i,j) = p5 * ( vVel(i,j,1,bi,bj) + vVel(i,jp1,1,bi,bj) )
341     IF ( zRef(i,j) .LT. drF(1) ) THEN
342     ustarX = ( surfForcU(i, j,bi,bj) +
343     & surfForcU(ip1,j,bi,bj) ) * p5 *recip_drF(1)
344     ustarY = ( surfForcV(i,j, bi,bj) +
345     & surfForcV(i,jp1,bi,bj) ) * p5 *recip_drF(1)
346     tempVar1 = ustarX * ustarX + ustarY * ustarY
347     if ( tempVar1 .lt. (epsln*epsln) ) then
348     tempVar2 = epsln
349     else
350     tempVar2 = SQRT ( tempVar1 )
351     endif
352     tempVar2 = ustar(i,j) *
353     & ( LOG ( zRef(i,j) / rF(2) ) +
354     & z0(i,j) / zRef(i,j) - z0(i,j) / rF(2) ) /
355     & vonK / tempVar2
356     uRef(i,j) = uRef(i,j) + ustarX * tempVar2
357     vRef(i,j) = vRef(i,j) + ustarY * tempVar2
358     ENDIF
359    
360     ENDDO
361     ENDDO
362    
363     DO k = 1, Nr
364     DO j = jmin, jmax
365     jm1 = j - 1
366     jp1 = j + 1
367     DO i = imin, imax
368     im1 = i - 1
369     ip1 = i + 1
370     dVsq(i,j,k) = p5 * (
371     $ (uRef(i,j) - uVel(i, j, k,bi,bj)) *
372     $ (uRef(i,j) - uVel(i, j, k,bi,bj)) +
373     $ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) *
374     $ (uRef(i,j) - uVel(ip1,j, k,bi,bj)) +
375     $ (vRef(i,j) - vVel(i, j, k,bi,bj)) *
376     $ (vRef(i,j) - vVel(i, j, k,bi,bj)) +
377     $ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) *
378     $ (vRef(i,j) - vVel(i, jp1,k,bi,bj)) )
379     #ifdef KPP_SMOOTH_DVSQ
380     dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * (
381     $ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) *
382     $ (uRef(i,j) - uVel(i, jm1,k,bi,bj)) +
383     $ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) *
384     $ (uRef(i,j) - uVel(ip1,jm1,k,bi,bj)) +
385     $ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) *
386     $ (uRef(i,j) - uVel(i, jp1,k,bi,bj)) +
387     $ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) *
388     $ (uRef(i,j) - uVel(ip1,jp1,k,bi,bj)) +
389     $ (vRef(i,j) - vVel(im1,j, k,bi,bj)) *
390     $ (vRef(i,j) - vVel(im1,j, k,bi,bj)) +
391     $ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) *
392     $ (vRef(i,j) - vVel(im1,jp1,k,bi,bj)) +
393     $ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) *
394     $ (vRef(i,j) - vVel(ip1,j, k,bi,bj)) +
395     $ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) *
396     $ (vRef(i,j) - vVel(ip1,jp1,k,bi,bj)) )
397     #endif /* KPP_SMOOTH_DVSQ */
398     ENDDO
399     ENDDO
400     ENDDO
401    
402     #else /* KPP_ESTIMATE_UREF */
403    
404     DO k = 1, Nr
405     DO j = jmin, jmax
406     jm1 = j - 1
407     jp1 = j + 1
408     DO i = imin, imax
409     im1 = i - 1
410     ip1 = i + 1
411     dVsq(i,j,k) = p5 * (
412     $ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) *
413     $ (uVel(i, j, 1,bi,bj)-uVel(i, j, k,bi,bj)) +
414     $ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) *
415     $ (uVel(ip1,j, 1,bi,bj)-uVel(ip1,j, k,bi,bj)) +
416     $ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) *
417     $ (vVel(i, j, 1,bi,bj)-vVel(i, j, k,bi,bj)) +
418     $ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) *
419     $ (vVel(i, jp1,1,bi,bj)-vVel(i, jp1,k,bi,bj)) )
420     #ifdef KPP_SMOOTH_DVSQ
421     dVsq(i,j,k) = p5 * dVsq(i,j,k) + p125 * (
422     $ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) *
423     $ (uVel(i, jm1,1,bi,bj)-uVel(i, jm1,k,bi,bj)) +
424     $ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) *
425     $ (uVel(ip1,jm1,1,bi,bj)-uVel(ip1,jm1,k,bi,bj)) +
426     $ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) *
427     $ (uVel(i, jp1,1,bi,bj)-uVel(i, jp1,k,bi,bj)) +
428     $ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) *
429     $ (uVel(ip1,jp1,1,bi,bj)-uVel(ip1,jp1,k,bi,bj)) +
430     $ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) *
431     $ (vVel(im1,j, 1,bi,bj)-vVel(im1,j, k,bi,bj)) +
432     $ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) *
433     $ (vVel(im1,jp1,1,bi,bj)-vVel(im1,jp1,k,bi,bj)) +
434     $ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) *
435     $ (vVel(ip1,j, 1,bi,bj)-vVel(ip1,j, k,bi,bj)) +
436     $ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) *
437     $ (vVel(ip1,jp1,1,bi,bj)-vVel(ip1,jp1,k,bi,bj)) )
438     #endif /* KPP_SMOOTH_DVSQ */
439     ENDDO
440     ENDDO
441     ENDDO
442    
443     #endif /* KPP_ESTIMATE_UREF */
444    
445     RETURN
446     END
447    

  ViewVC Help
Powered by ViewVC 1.1.22