1 |
C SEAICE GROWTH REBORN v02 2015/01/15 |
2 |
|
3 |
#include "SEAICE_OPTIONS.h" |
4 |
#ifdef ALLOW_EXF |
5 |
# include "EXF_OPTIONS.h" |
6 |
#endif |
7 |
#ifdef ALLOW_SALT_PLUME |
8 |
# include "SALT_PLUME_OPTIONS.h" |
9 |
#endif |
10 |
#ifdef ALLOW_AUTODIFF |
11 |
# include "AUTODIFF_OPTIONS.h" |
12 |
#endif |
13 |
|
14 |
CBOP |
15 |
C !ROUTINE: SEAICE_GROWTH |
16 |
C !INTERFACE: |
17 |
SUBROUTINE SEAICE_GROWTH( myTime, myIter, myThid ) |
18 |
C !DESCRIPTION: \bv |
19 |
C *==========================================================* |
20 |
C | SUBROUTINE seaice_growth |
21 |
C | o rebirth of seaice_growth_if |
22 |
C *==========================================================* |
23 |
C \ev |
24 |
|
25 |
C !USES: |
26 |
IMPLICIT NONE |
27 |
C === Global variables === |
28 |
#include "SIZE.h" |
29 |
#include "EEPARAMS.h" |
30 |
#include "PARAMS.h" |
31 |
#include "DYNVARS.h" |
32 |
#include "GRID.h" |
33 |
#include "FFIELDS.h" |
34 |
#include "SEAICE_SIZE.h" |
35 |
#include "SEAICE_PARAMS.h" |
36 |
#include "SEAICE.h" |
37 |
#include "SEAICE_TRACER.h" |
38 |
#ifdef ALLOW_EXF |
39 |
# include "EXF_PARAM.h" |
40 |
# include "EXF_FIELDS.h" |
41 |
#endif |
42 |
#ifdef ALLOW_SALT_PLUME |
43 |
# include "SALT_PLUME.h" |
44 |
#endif |
45 |
#ifdef ALLOW_AUTODIFF_TAMC |
46 |
# include "tamc.h" |
47 |
#endif |
48 |
|
49 |
C !INPUT/OUTPUT PARAMETERS: |
50 |
C === Routine arguments === |
51 |
C myTime :: Simulation time |
52 |
C myIter :: Simulation timestep number |
53 |
C myThid :: Thread no. that called this routine. |
54 |
_RL myTime |
55 |
INTEGER myIter, myThid |
56 |
CEOP |
57 |
|
58 |
#if (defined ALLOW_EXF) && (defined ALLOW_ATM_TEMP) |
59 |
C !FUNCTIONS: |
60 |
#ifdef ALLOW_DIAGNOSTICS |
61 |
LOGICAL DIAGNOSTICS_IS_ON |
62 |
EXTERNAL DIAGNOSTICS_IS_ON |
63 |
#endif |
64 |
|
65 |
C !LOCAL VARIABLES: |
66 |
C === Local variables === |
67 |
C |
68 |
C unit/sign convention: |
69 |
|
70 |
|
71 |
C HEFF is effective Hice thickness (m3/m2) |
72 |
C HSNOW is Heffective snow thickness (m3/m2) |
73 |
C HSALT is Heffective salt content (g/m2) |
74 |
C AREA is the seaice cover fraction (0<=AREA<=1) |
75 |
|
76 |
|
77 |
|
78 |
C i,j,bi,bj :: Loop counters |
79 |
INTEGER i, j, bi, bj |
80 |
C number of surface interface layer |
81 |
INTEGER kSurface |
82 |
C IT :: ice thickness category index (MULTICATEGORIES and ITD code) |
83 |
INTEGER IT |
84 |
C msgBuf :: Informational/error message buffer |
85 |
#ifdef ALLOW_BALANCE_FLUXES |
86 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
87 |
#elif (defined (SEAICE_DEBUG)) |
88 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
89 |
CHARACTER*12 msgBufForm |
90 |
#endif |
91 |
C constants |
92 |
_RL tempFrz, ICE2SNOW, SNOW2ICE, surf_theta |
93 |
_RL QI, QS, recip_QI |
94 |
_RL RHOSW |
95 |
_RL lhSublim |
96 |
|
97 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
98 |
_RL convertQ2HI, convertHI2Q |
99 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
100 |
_RL convertPRECIP2HI, convertHI2PRECIP |
101 |
|
102 |
|
103 |
|
104 |
C wind speed square |
105 |
_RL SPEED_SQ |
106 |
|
107 |
C Regularization values squared |
108 |
_RL area_reg_sq, hice_reg_sq |
109 |
|
110 |
C pathological cases thresholds |
111 |
_RL heffTooHeavy |
112 |
|
113 |
C Helper variables: reciprocal of some constants |
114 |
_RL recip_multDim |
115 |
_RL recip_deltaTtherm |
116 |
_RL recip_rhoIce |
117 |
|
118 |
C local value (=1/HO or 1/HO_south) |
119 |
_RL recip_HO |
120 |
|
121 |
C local value (=1/ice thickness) |
122 |
_RL recip_HH |
123 |
|
124 |
#ifndef SEAICE_ITD |
125 |
C facilitate multi-category snow implementation |
126 |
_RL pFac, pFacSnow |
127 |
#endif |
128 |
|
129 |
C temporary variables available for the various computations |
130 |
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
131 |
|
132 |
#ifdef ALLOW_SITRACER |
133 |
INTEGER iTr |
134 |
#ifdef ALLOW_DIAGNOSTICS |
135 |
CHARACTER*8 diagName |
136 |
#endif |
137 |
|
138 |
|
139 |
#endif /* ALLOW_SITRACER */ |
140 |
#ifdef ALLOW_AUTODIFF_TAMC |
141 |
INTEGER ilockey |
142 |
#endif |
143 |
|
144 |
C== local arrays == |
145 |
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
146 |
_RL TmixLoc (1:sNx,1:sNy) |
147 |
|
148 |
#ifndef SEAICE_ITD |
149 |
C actual ice thickness (with upper and lower limit) |
150 |
_RL hiceActual (1:sNx,1:sNy) |
151 |
C actual snow thickness |
152 |
_RL hsnowActual (1:sNx,1:sNy) |
153 |
#endif |
154 |
C actual ice thickness (with lower limit only) Reciprocal |
155 |
_RL recip_hiceActual (1:sNx,1:sNy) |
156 |
|
157 |
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
158 |
_RL AREApreTH (1:sNx,1:sNy) |
159 |
_RL HEFFpreTH (1:sNx,1:sNy) |
160 |
_RL HSNWpreTH (1:sNx,1:sNy) |
161 |
|
162 |
|
163 |
C wind speed |
164 |
_RL UG (1:sNx,1:sNy) |
165 |
|
166 |
C temporary variables available for the various computations |
167 |
_RL tmparr1 (1:sNx,1:sNy) |
168 |
|
169 |
_RL ticeInMult (1:sNx,1:sNy,nITD) |
170 |
_RL ticeOutMult (1:sNx,1:sNy,nITD) |
171 |
_RL hiceActualMult (1:sNx,1:sNy,nITD) |
172 |
_RL hsnowActualMult (1:sNx,1:sNy,nITD) |
173 |
|
174 |
_RL F_io_net_mult (1:sNx,1:sNy,nITD) |
175 |
_RL F_ia_net_mult (1:sNx,1:sNy,nITD) |
176 |
_RL F_ia_mult (1:sNx,1:sNy,nITD) |
177 |
_RL QSWI_mult (1:sNx,1:sNy,nITD) |
178 |
_RL FWsublim_mult (1:sNx,1:sNy,nITD) |
179 |
|
180 |
#ifdef ALLOW_DIAGNOSTICS |
181 |
C Helper variables for diagnostics |
182 |
_RL DIAGarrayA (1:sNx,1:sNy) |
183 |
_RL DIAGarrayB (1:sNx,1:sNy) |
184 |
_RL DIAGarrayC (1:sNx,1:sNy) |
185 |
_RL DIAGarrayD (1:sNx,1:sNy) |
186 |
#endif /* ALLOW_DIAGNOSTICS */ |
187 |
|
188 |
|
189 |
_RL QSWO_BELOW_FIRST_LAYER (1:sNx,1:sNy) |
190 |
_RL QSWO_IN_FIRST_LAYER (1:sNx,1:sNy) |
191 |
_RL QSWO (1:sNx,1:sNy) |
192 |
_RL QSWI (1:sNx,1:sNy) |
193 |
|
194 |
C Sea ice growth rates (m/s) |
195 |
_RL ActualNewTotalVolumeChange (1:sNx,1:sNy) |
196 |
_RL ActualNewTotalSnowMelt (1:sNx,1:sNy) |
197 |
|
198 |
_RL NetExistingIceGrowthRate (1:sNx,1:sNy) |
199 |
_RL IceGrowthRateUnderExistingIce (1:sNx,1:sNy) |
200 |
_RL IceGrowthRateFromSurface (1:sNx,1:sNy) |
201 |
_RL IceGrowthRateOpenWater (1:sNx,1:sNy) |
202 |
_RL IceGrowthRateMixedLayer (1:sNx,1:sNy) |
203 |
|
204 |
_RL EnergyInNewTotalIceVolume (1:sNx,1:sNy) |
205 |
_RL NetEnergyFluxOutOfOcean (1:sNx,1:sNy) |
206 |
c |
207 |
C The energy taken out of the ocean which is not converted |
208 |
C to sea ice (Joules) |
209 |
_RL ResidualEnergyOutOfOcean (1:sNx,1:sNy) |
210 |
|
211 |
C Snow accumulation rate over ice (m/s) |
212 |
_RL SnowAccRateOverIce (1:sNx,1:sNy) |
213 |
|
214 |
C Total snow accumulation over ice (m) |
215 |
_RL SnowAccOverIce (1:sNx,1:sNy) |
216 |
|
217 |
C The precipitation rate over the ice which goes immediately into the ocean |
218 |
_RL PrecipRateOverIceSurfaceToSea (1:sNx,1:sNy) |
219 |
|
220 |
C The potential snow melt rate if all snow surface heat flux convergences |
221 |
C goes to melting snow (m/s) |
222 |
_RL PotSnowMeltRateFromSurf (1:sNx,1:sNy) |
223 |
|
224 |
C The potential thickness of snow which could be melted by snow surface |
225 |
C heat flux convergence (m) |
226 |
_RL PotSnowMeltFromSurf (1:sNx,1:sNy) |
227 |
|
228 |
C The actual snow melt rate due to snow surface heat flux convergence |
229 |
_RL SnowMeltRateFromSurface (1:sNx,1:sNy) |
230 |
|
231 |
C The actual surface heat flux convergence used to melt snow (W/m^2) |
232 |
_RL SurfHeatFluxConvergToSnowMelt (1:sNx,1:sNy) |
233 |
|
234 |
C The actual thickness of snow to be melted by snow surface |
235 |
C heat flux convergence (m) |
236 |
_RL SnowMeltFromSurface (1:sNx,1:sNy) |
237 |
|
238 |
C The freshwater contribution to the ocean from melting snow (m) |
239 |
_RL FreshwaterContribFromSnowMelt (1:sNx,1:sNy) |
240 |
|
241 |
C The freshwater contribution to (from) the ocean from melting (growing) ice (m) |
242 |
_RL FreshwaterContribFromIce (1:sNx,1:sNy) |
243 |
|
244 |
C S_a : d(AREA)/dt |
245 |
_RL S_a (1:sNx,1:sNy) |
246 |
|
247 |
C S_h : d(HEFF)/dt |
248 |
_RL S_h (1:sNx,1:sNy) |
249 |
|
250 |
C S_hsnow : d(HSNOW)/dt |
251 |
_RL S_hsnow (1:sNx,1:sNy) |
252 |
|
253 |
|
254 |
C F_ia - sea ice/snow surface heat flux with atmosphere (W/m^2) |
255 |
C F_ia > 0, heat loss to atmosphere |
256 |
C F_ia < 0, atmospheric heat flux convergence (ice/snow surface melt) |
257 |
_RL F_ia (1:sNx,1:sNy) |
258 |
|
259 |
C F_ia_net - the net heat flux divergence at the sea ice/snow surface |
260 |
C including sea ice conductive fluxes and atmospheric fluxes (W/m^2) |
261 |
C F_ia_net = 0, sea ice/snow surface energy balance condition met |
262 |
C upward conductive fluxes balance surface heat loss |
263 |
C F_ia_net < 0, net heat flux convergence at ice/snow surface |
264 |
C zero conductive fluxes and net atmospheric convergence |
265 |
_RL F_ia_net (1:sNx,1:sNy) |
266 |
|
267 |
C F_ia_net - the net heat flux divergence at the sea ice/snow surface |
268 |
C before snow is melted with any convergence (W/m^2) |
269 |
C F_ia_net < 0, some snow, if present, will melt |
270 |
_RL F_ia_net_before_snow (1:sNx,1:sNy) |
271 |
|
272 |
C F_io_net - the net upward conductive heat flux through the ice+snow system |
273 |
C realized at the sea ice/snow surface |
274 |
C F_io_net > 0, heat conducting upward from ice base --> basal thickening |
275 |
C F_io_net = 0, no upward heat conduction |
276 |
C ice/snow surface temperature > SEAICE_freeze) |
277 |
_RL F_io_net (1:sNx,1:sNy) |
278 |
|
279 |
C F_ao - heat flux from atmosphere to ocean (W/m^2) |
280 |
C F_ao > 0 |
281 |
_RL F_ao (1:sNx,1:sNy) |
282 |
|
283 |
C F_mi - heat flux from ocean to the ice (W/m^2) |
284 |
_RL F_mi (1:sNx,1:sNy) |
285 |
|
286 |
_RL FWsublim (1:sNx,1:sNy) |
287 |
|
288 |
C S_a_from_IGROW : d(AREA)/dt [from ice growth rate from open water fluxes] |
289 |
_RL S_a_IGROW (1:sNx,1:sNy) |
290 |
|
291 |
C S_a_from_IGROW : d(AREA)/dt [from ice growth rate from ocean-ice fluxes] |
292 |
_RL S_a_IGRML (1:sNx,1:sNy) |
293 |
|
294 |
C S_a_from_IGROW : d(AREA)/dt [from ice growth rate from ice-atm fluxes] |
295 |
_RL S_a_IGRNE (1:sNx,1:sNy) |
296 |
|
297 |
C Factor by which we increase the upper ocean friction velocity (u*) when |
298 |
|
299 |
C ice is absent in a grid cell (dimensionless) |
300 |
_RL MLTF (1:sNx,1:sNy) |
301 |
|
302 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
303 |
|
304 |
C =================================================================== |
305 |
C =================PART 0: constants and initializations============= |
306 |
C =================================================================== |
307 |
|
308 |
IF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN |
309 |
kSurface = Nr |
310 |
ELSE |
311 |
kSurface = 1 |
312 |
ENDIF |
313 |
|
314 |
C avoid unnecessary divisions in loops |
315 |
recip_multDim = SEAICE_multDim |
316 |
recip_multDim = ONE / recip_multDim |
317 |
C above/below: double/single precision calculation of recip_multDim |
318 |
c recip_multDim = 1./float(SEAICE_multDim) |
319 |
recip_deltaTtherm = ONE / SEAICE_deltaTtherm |
320 |
recip_rhoIce = ONE / SEAICE_rhoIce |
321 |
|
322 |
C Cutoff for iceload |
323 |
heffTooHeavy=drF(kSurface) / 5. _d 0 |
324 |
|
325 |
C RATIO OF SEA ICE DENSITY to SNOW DENSITY |
326 |
ICE2SNOW = SEAICE_rhoIce/SEAICE_rhoSnow |
327 |
SNOW2ICE = ONE / ICE2SNOW |
328 |
|
329 |
C Heat Flux * QI = [W] [m^3/kg] [kg/J] = [m^3/s] or [m/s] per unit area |
330 |
QI = ONE/(SEAICE_rhoIce*SEAICE_lhFusion) |
331 |
C Heat Flux * QS = [W] [m^3/kg] [kg/J] = [m^3/s] or [m/s] per unit area |
332 |
QS = ONE/(SEAICE_rhoSnow*SEAICE_lhFusion) |
333 |
|
334 |
c A reference seawater density (kg m^-3) |
335 |
RHOSW = 1026. _d 0 |
336 |
C ICE LATENT HEAT CONSTANT |
337 |
lhSublim = SEAICE_lhEvap + SEAICE_lhFusion |
338 |
|
339 |
C regularization constants |
340 |
area_reg_sq = SEAICE_area_reg * SEAICE_area_reg |
341 |
hice_reg_sq = SEAICE_hice_reg * SEAICE_hice_reg |
342 |
|
343 |
|
344 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
345 |
DO bj=myByLo(myThid),myByHi(myThid) |
346 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
347 |
|
348 |
#ifdef ALLOW_AUTODIFF_TAMC |
349 |
act1 = bi - myBxLo(myThid) |
350 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
351 |
act2 = bj - myByLo(myThid) |
352 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
353 |
act3 = myThid - 1 |
354 |
max3 = nTx*nTy |
355 |
act4 = ikey_dynamics - 1 |
356 |
iicekey = (act1 + 1) + act2*max1 |
357 |
& + act3*max1*max2 |
358 |
& + act4*max1*max2*max3 |
359 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
360 |
|
361 |
cph-test( |
362 |
#ifdef ALLOW_AUTODIFF_TAMC |
363 |
CADJ STORE area = comlev1_bibj, key = iicekey, byte = isbyte |
364 |
CADJ STORE heff = comlev1_bibj, key = iicekey, byte = isbyte |
365 |
CADJ STORE hsnow = comlev1_bibj, key = iicekey, byte = isbyte |
366 |
CADJ STORE qnet = comlev1_bibj, key = iicekey, byte = isbyte |
367 |
CADJ STORE qsw = comlev1_bibj, key = iicekey, byte = isbyte |
368 |
CADJ STORE tices = comlev1_bibj, key = iicekey, byte = isbyte |
369 |
#endif |
370 |
cph-test) |
371 |
|
372 |
C array initializations |
373 |
C ===================== |
374 |
|
375 |
DO J=1,sNy |
376 |
DO I=1,sNx |
377 |
|
378 |
C NEW VARIABLE NAMES |
379 |
NetExistingIceGrowthRate(I,J) = 0.0 _d 0 |
380 |
IceGrowthRateOpenWater(I,J) = 0.0 _d 0 |
381 |
IceGrowthRateFromSurface(I,J) = 0.0 _d 0 |
382 |
IceGrowthRateMixedLayer(I,J) = 0.0 _d 0 |
383 |
|
384 |
EnergyInNewTotalIceVolume(I,J) = 0.0 _d 0 |
385 |
NetEnergyFluxOutOfOcean(I,J) = 0.0 _d 0 |
386 |
ResidualEnergyOutOfOcean(I,J) = 0.0 _d 0 |
387 |
|
388 |
PrecipRateOverIceSurfaceToSea(I,J) = 0.0 _d 0 |
389 |
|
390 |
DO IT=1,SEAICE_multDim |
391 |
ticeInMult(I,J,IT) = 0.0 _d 0 |
392 |
ticeOutMult(I,J,IT) = 0.0 _d 0 |
393 |
|
394 |
F_io_net_mult(I,J,IT) = 0.0 _d 0 |
395 |
F_ia_net_mult(I,J,IT) = 0.0 _d 0 |
396 |
F_ia_mult(I,J,IT) = 0.0 _d 0 |
397 |
|
398 |
QSWI_mult(I,J,IT) = 0.0 _d 0 |
399 |
FWsublim_mult(I,J,IT) = 0.0 _d 0 |
400 |
ENDDO |
401 |
|
402 |
F_io_net(I,J) = 0.0 _d 0 |
403 |
F_ia_net(I,J) = 0.0 _d 0 |
404 |
F_ia(I,J) = 0.0 _d 0 |
405 |
|
406 |
QSWI(I,J) = 0.0 _d 0 |
407 |
FWsublim(I,J) = 0.0 _d 0 |
408 |
|
409 |
QSWO_BELOW_FIRST_LAYER (I,J) = 0.0 _d 0 |
410 |
QSWO_IN_FIRST_LAYER (I,J) = 0.0 _d 0 |
411 |
QSWO(I,J) = 0.0 _d 0 |
412 |
|
413 |
ActualNewTotalVolumeChange(I,J) = 0.0 _d 0 |
414 |
ActualNewTotalSnowMelt(I,J) = 0.0 _d 0 |
415 |
|
416 |
SnowAccOverIce(I,J) = 0.0 _d 0 |
417 |
SnowAccRateOverIce(I,J) = 0.0 _d 0 |
418 |
|
419 |
PotSnowMeltRateFromSurf(I,J) = 0.0 _d 0 |
420 |
PotSnowMeltFromSurf(I,J) = 0.0 _d 0 |
421 |
SnowMeltRateFromSurface(I,J) = 0.0 _d 0 |
422 |
SurfHeatFluxConvergToSnowMelt(I,J) = 0.0 _d 0 |
423 |
SnowMeltFromSurface(I,J) = 0.0 _d 0 |
424 |
|
425 |
FreshwaterContribFromSnowMelt(I,J) = 0.0 _d 0 |
426 |
FreshwaterContribFromIce(I,J) = 0.0 _d 0 |
427 |
|
428 |
S_a(I,J) = 0.0 _d 0 |
429 |
S_a_IGROW(I,J) = 0.0 _d 0 |
430 |
S_a_IGRML(I,J) = 0.0 _d 0 |
431 |
S_a_IGRNE(I,J) = 0.0 _d 0 |
432 |
|
433 |
S_h(I,J) = 0.0 _d 0 |
434 |
S_hsnow(I,J) = 0.0 _d 0 |
435 |
|
436 |
MLTF(I,J) = 0.0 _d 0 |
437 |
ENDDO |
438 |
ENDDO |
439 |
|
440 |
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
441 |
DO J=1-oLy,sNy+oLy |
442 |
DO I=1-oLx,sNx+oLx |
443 |
frWtrAtm(I,J,bi,bj) = 0.0 _d 0 |
444 |
ENDDO |
445 |
ENDDO |
446 |
#endif |
447 |
|
448 |
C ===================================================================== |
449 |
C PART 1: Store ice and snow state on onset + regularize actual |
450 |
C ice area and ice thickness |
451 |
C ===================================================================== |
452 |
|
453 |
DO J=1,sNy |
454 |
DO I=1,sNx |
455 |
|
456 |
HEFF(I,J,bi,bj) = MAX(ZERO, HEFF(I,J,bi,bj)) |
457 |
AREA(I,J,bi,bj) = MAX(ZERO, AREA(I,J,bi,bj)) |
458 |
|
459 |
c Cap the area if it exceedes area_max (may also have been |
460 |
c done in do_ridging) |
461 |
AREA(I,J,bi,bj) = MIN(AREA(I,J,bi,bj), SEAICE_area_max) |
462 |
|
463 |
IF (HEFF(I,J,bi,bj) .LE. ZERO) then |
464 |
AREA(I,J, bi,bj) = ZERO |
465 |
HSNOW(I,J, bi,bj) = ZERO |
466 |
ELSEIF (AREA(I,J,bi,bj) .LE. ZERO) then |
467 |
HEFF(I,J,bi,bj) = ZERO |
468 |
HSNOW(I,J,bi,bj) = ZERO |
469 |
ENDIF |
470 |
|
471 |
HEFFpreTH(I,J) = HEFF(I,J,bi,bj) |
472 |
c HSNWpreTH(I,J) = HSNOW(I,J,bi,bj) |
473 |
AREApreTH(I,J) = AREA(I,J,bi,bj) |
474 |
|
475 |
#ifdef ALLOW_DIAGNOSTICS |
476 |
DIAGarrayB(I,J) = AREA(I,J,bi,bj) |
477 |
DIAGarrayC(I,J) = HEFF(I,J,bi,bj) |
478 |
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
479 |
#endif |
480 |
ENDDO |
481 |
ENDDO |
482 |
|
483 |
#ifdef ALLOW_DIAGNOSTICS |
484 |
IF ( useDiagnostics ) THEN |
485 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIareaGA',0,1,3,bi,bj,myThid) |
486 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIheffGA',0,1,3,bi,bj,myThid) |
487 |
CALL DIAGNOSTICS_FILL(DIAGarrayD,'SIhsnoGA',0,1,3,bi,bj,myThid) |
488 |
ENDIF |
489 |
#endif /* ALLOW_DIAGNOSTICS */ |
490 |
|
491 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
492 |
#ifdef ALLOW_AUTODIFF_TAMC |
493 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
494 |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
495 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
496 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
497 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
498 |
|
499 |
C COMPUTE ACTUAL ICE/SNOW THICKNESS; USE MIN/MAX VALUES |
500 |
C TO REGULARIZE SEAICE_SOLVE4TEMP/d_AREA COMPUTATIONS |
501 |
|
502 |
DO J=1,sNy |
503 |
DO I=1,sNx |
504 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
505 |
c regularize AREA with SEAICE_area_reg |
506 |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
507 |
|
508 |
c hiceActual calculated with the regularized AREA |
509 |
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
510 |
|
511 |
c regularize hiceActual with SEAICE_hice_reg (add lower bound) |
512 |
c hiceActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
513 |
hiceActual(I,J) = MAX(0.05 _d 0, tmpscal2) |
514 |
|
515 |
c hsnowActual calculated with the regularized AREA (no lower bound) |
516 |
c hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
517 |
c actually I do not think we need to regularize this. |
518 |
c hsnowActual(I,J) = HSNWpreTH(I,J) / AREApreTH(I,J) |
519 |
|
520 |
c regularize the inverse of hiceActual by hice_reg |
521 |
recip_hiceActual(I,J) = AREApreTH(I,J) / |
522 |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
523 |
|
524 |
c Do not regularize when HEFFpreTH = 0 |
525 |
ELSE |
526 |
hiceActual (I,J) = ZERO |
527 |
hsnowActual(I,J) = ZERO |
528 |
recip_hiceActual(I,J) = ZERO |
529 |
ENDIF |
530 |
|
531 |
ENDDO |
532 |
ENDDO |
533 |
|
534 |
|
535 |
C ============================================================================= |
536 |
C Part 2: Precipitation as snow or rain over ice |
537 |
C ============================================================================= |
538 |
|
539 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
540 |
#ifdef ALLOW_AUTODIFF_TAMC |
541 |
CADJ STORE SnowAccRateOverIce = comlev1_bibj,key=iicekey,byte=isbyte |
542 |
CADJ STORE SnowAccOverIce = comlev1_bibj,key=iicekey,byte=isbyte |
543 |
CADJ STORE PrecipRateOverIceSurfaceToSea = |
544 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
545 |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
546 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
547 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
548 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
549 |
|
550 |
DO J=1,sNy |
551 |
DO I=1,sNx |
552 |
c if we have ice and the temperature of the ice is below the freezing point |
553 |
c then the precip falls and accumulates as snow |
554 |
#ifndef FROZEN |
555 |
IF (( AREApreTH(I,J) .GT. ZERO) .AND. |
556 |
& ( TICES(I,J,1,bi,bj) .LT. celsius2k) ) THEN |
557 |
#else |
558 |
IF ( AREApreTH(I,J) .GT. ZERO) THEN |
559 |
#endif |
560 |
|
561 |
c use either prescribed snowfall or PRECIP rate |
562 |
IF ( snowPrecipFile .NE. ' ' ) THEN |
563 |
c rate of actual snow accumulation in m/s over ice |
564 |
c y [m/s] \approx 1.0 [kg/m^3] / 0.9 [m^3/kg] * x [m/s] |
565 |
SnowAccRateOverIce(I,J) = rhoConstFresh/SEAICE_rhoSnow * |
566 |
& snowPrecip(i,j,bi,bj) |
567 |
ELSE |
568 |
SnowAccRateOverIce(I,J) = rhoConstFresh/SEAICE_rhoSnow * |
569 |
& PRECIP(i,j,bi,bj) |
570 |
ENDIF |
571 |
PrecipRateOverIceSurfaceToSea(I,J) = ZERO |
572 |
|
573 |
ELSE |
574 |
c The snow/ice surface is not frozen (wet) so the precipitation |
575 |
c remains wet and runs into the ocean |
576 |
SnowAccRateOverIce(I,J) = ZERO |
577 |
PrecipRateOverIceSurfaceToSea(I,J) = PRECIP(i,j,bi,bj) |
578 |
ENDIF |
579 |
|
580 |
c SnowAccOverIce is the change of mean snow thickness, i.e. HSNOW |
581 |
c over one time step. |
582 |
SnowAccOverIce(I,J) = |
583 |
& SnowAccRateOverIce(I,J) * SEAICE_deltaTtherm * AREApreTH(I,J) |
584 |
c I,J |
585 |
ENDDO |
586 |
ENDDO |
587 |
|
588 |
c acumulate snow on the surface |
589 |
c before we do any surface energy balance calculations |
590 |
DO J=1,sNy |
591 |
DO I=1,sNx |
592 |
IF ( AREApreTH(I,J) .GT. ZERO) THEN |
593 |
|
594 |
c update mean and actual snow thickness. |
595 |
c to this point there are no any thermodynamic calculations, |
596 |
c only potentially accumulated snow based on precip and the |
597 |
c ice surface temp from the previous time step |
598 |
|
599 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + SnowAccOverIce(I,J) |
600 |
HSNWpreTH(I,J) = HSNOW(I,J,bi,bj) |
601 |
hsnowActual(I,J) = HSNWpreTH(I,J) / AREApreTH(I,J) |
602 |
ENDIF |
603 |
ENDDO |
604 |
ENDDO |
605 |
|
606 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
607 |
#ifdef ALLOW_AUTODIFF_TAMC |
608 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
609 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
610 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
611 |
|
612 |
C ============================================================================= |
613 |
C FIND WIND SPEED |
614 |
C ============================================================================= |
615 |
|
616 |
DO j=1,sNy |
617 |
DO i=1,sNx |
618 |
C ocean surface/mixed layer temperature |
619 |
TmixLoc(i,j) = theta(i,j,kSurface,bi,bj) + celsius2K |
620 |
C wind speed from exf |
621 |
UG(I,J) = MAX(SEAICE_EPS, wspeed(I,J,bi,bj)) |
622 |
ENDDO |
623 |
ENDDO |
624 |
|
625 |
|
626 |
C ============================================================================= |
627 |
c Retrieve the air-sea heat and shortwave radiative fluxes |
628 |
C ============================================================================= |
629 |
|
630 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
631 |
#ifdef ALLOW_AUTODIFF_TAMC |
632 |
CADJ STORE qnet(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
633 |
CADJ STORE qsw(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
634 |
cCADJ STORE UG = comlev1_bibj, key = iicekey,byte=isbyte |
635 |
cCADJ STORE TmixLoc = comlev1_bibj, key = iicekey,byte=isbyte |
636 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
637 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
638 |
|
639 |
CALL SEAICE_BUDGET_OCEAN( |
640 |
I UG, |
641 |
I TmixLoc, |
642 |
O F_ao, QSWO, |
643 |
I bi, bj, myTime, myIter, myThid ) |
644 |
|
645 |
|
646 |
C ============================================================================= |
647 |
C Calc air-sea fluxes in the uppermost grid cell |
648 |
C ============================================================================= |
649 |
|
650 |
c-- Not all of the sw radiation is absorbed in the uppermost ocean grid cell layer. |
651 |
c Only that fraction which converges in the uppermost ocean grid cell is used to |
652 |
c melt ice. |
653 |
c SWFRACB - the fraction of incoming sw radiation absorbed in the |
654 |
c uppermost ocean grid cell (calculated in seaice_init_vari.F) |
655 |
DO J=1,sNy |
656 |
DO I=1,sNx |
657 |
|
658 |
c The contribution of shortwave heating is |
659 |
c not included without #define SHORTWAVE_HEATING |
660 |
#ifdef SHORTWAVE_HEATING |
661 |
QSWO_BELOW_FIRST_LAYER(I,J)= QSWO(I,J)*SWFRACB |
662 |
QSWO_IN_FIRST_LAYER(I,J) = QSWO(I,J)*(ONE - SWFRACB) |
663 |
#else |
664 |
QSWO_BELOW_FIRST_LAYER(I,J)= ZERO |
665 |
QSWO_IN_FIRST_LAYER(I,J) = ZERO |
666 |
#endif |
667 |
IceGrowthRateOpenWater(I,J) = QI * |
668 |
& (F_ao(I,J) - QSWO(I,J) + QSWO_IN_FIRST_LAYER(I,J)) |
669 |
|
670 |
ENDDO |
671 |
ENDDO |
672 |
|
673 |
|
674 |
|
675 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
676 |
#ifdef ALLOW_AUTODIFF_TAMC |
677 |
CADJ STORE hsnowActual = comlev1_bibj, key = iicekey, byte = isbyte |
678 |
CADJ STORE hiceActual = comlev1_bibj, key = iicekey, byte = isbyte |
679 |
CADJ STORE UG = comlev1_bibj, key = iicekey, byte = isbyte |
680 |
CADJ STORE tices(:,:,:,bi,bj) |
681 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
682 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
683 |
CADJ & key = iicekey, byte = isbyte |
684 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
685 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
686 |
|
687 |
C ============================================================================= |
688 |
c calculate heat fluxes within ice (conduction), F_io, and across the |
689 |
c ice/atmosphere interface, F_ia |
690 |
C ============================================================================= |
691 |
|
692 |
C-- Start loop over multi-categories |
693 |
DO IT=1,SEAICE_multDim |
694 |
|
695 |
DO J=1,sNy |
696 |
DO I=1,sNx |
697 |
c record prior ice surface temperatures |
698 |
ticeInMult(I,J,IT) = TICES(I,J,IT,bi,bj) |
699 |
ticeOutMult(I,J,IT) = TICES(I,J,IT,bi,bj) |
700 |
TICES(I,J,IT,bi,bj) = ZERO |
701 |
ENDDO |
702 |
ENDDO |
703 |
|
704 |
c set relative thickness of ice categories |
705 |
pFac = (2.0 _d 0*IT - 1.0 _d 0)*recip_multDim |
706 |
pFacSnow = 1. _d 0 |
707 |
|
708 |
c find actual snow and ice thickness within categories categories |
709 |
IF ( SEAICE_useMultDimSnow ) pFacSnow=pFac |
710 |
|
711 |
DO J=1,sNy |
712 |
DO I=1,sNx |
713 |
hiceActualMult(I,J,IT) = hiceActual(I,J) *pFac |
714 |
hsnowActualMult(I,J,IT) = hsnowActual(I,J)*pFacSnow |
715 |
ENDDO |
716 |
ENDDO |
717 |
|
718 |
ENDDO /* multDim */ |
719 |
|
720 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
721 |
#ifdef ALLOW_AUTODIFF_TAMC |
722 |
CADJ STORE hiceActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
723 |
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
724 |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
725 |
CADJ STORE F_io_net_mult = |
726 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
727 |
CADJ STORE F_ia_net_mult = |
728 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
729 |
CADJ STORE F_ia_mult = |
730 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
731 |
CADJ STORE QSWI_mult = |
732 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
733 |
CADJ STORE FWsublim_mult = |
734 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
735 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
736 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
737 |
|
738 |
c ======================================================================= |
739 |
c find calculate heat fluxes within ice (conduction) and across the |
740 |
c ice/atmosphere interface for each thickness category |
741 |
c ======================================================================= |
742 |
|
743 |
DO IT=1,SEAICE_multDim |
744 |
CALL SEAICE_SOLVE4TEMP( |
745 |
I UG, hiceActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
746 |
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
747 |
O F_io_net_mult(1,1,IT), |
748 |
O F_ia_net_mult(1,1,IT), |
749 |
O F_ia_mult(1,1,IT), |
750 |
O QSWI_mult(1,1,IT), |
751 |
O FWsublim_mult(1,1,IT), |
752 |
I bi, bj, myTime, myIter, myThid ) |
753 |
ENDDO |
754 |
|
755 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
756 |
#ifdef ALLOW_AUTODIFF_TAMC |
757 |
CADJ STORE hiceActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
758 |
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
759 |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
760 |
CADJ STORE F_io_net_mult = |
761 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
762 |
CADJ STORE F_ia_net_mult = |
763 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
764 |
CADJ STORE F_ia_mult = |
765 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
766 |
CADJ STORE QSWI_mult = |
767 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
768 |
CADJ STORE FWsublim_mult = |
769 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
770 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
771 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
772 |
|
773 |
|
774 |
c ======================================================================= |
775 |
c record the ice surface temperature in each category |
776 |
c and find the average of fluxes across each category |
777 |
|
778 |
DO IT=1,SEAICE_multDim |
779 |
DO J=1,sNy |
780 |
DO I=1,sNx |
781 |
|
782 |
C update TICES |
783 |
TICES(I,J,IT,bi,bj) = ticeOutMult(I,J,IT) |
784 |
|
785 |
F_io_net(I,J) = F_io_net(I,J) + |
786 |
& F_io_net_mult(I,J,IT)*recip_multDim |
787 |
|
788 |
F_ia_net(I,J) = F_ia_net(I,J) + |
789 |
& F_ia_net_mult(I,J,IT)*recip_multDim |
790 |
|
791 |
F_ia(I,J) = F_ia(I,J) + |
792 |
& F_ia_mult(I,J,IT)*recip_multDim |
793 |
|
794 |
QSWI(I,J) = QSWI(I,J) + QSWI_mult(I,J,IT)*recip_multDim |
795 |
|
796 |
FWsublim(I,J) = FWsublim(I,J) + |
797 |
& FWsublim_mult(I,J,IT)*recip_multDim |
798 |
|
799 |
ENDDO |
800 |
ENDDO |
801 |
ENDDO |
802 |
|
803 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
804 |
#ifdef ALLOW_AUTODIFF_TAMC |
805 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
806 |
CADJ STORE F_io_net = comlev1_bibj, key = iicekey, byte = isbyte |
807 |
CADJ STORE F_ia_net = comlev1_bibj, key = iicekey, byte = isbyte |
808 |
CADJ STORE F_ia = comlev1_bibj, key = iicekey, byte = isbyte |
809 |
CADJ STORE QSWI = comlev1_bibj, key = iicekey, byte = isbyte |
810 |
CADJ STORE FWSublim = comlev1_bibj, key = iicekey, byte = isbyte |
811 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
812 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
813 |
|
814 |
DO J=1,sNy |
815 |
DO I=1,sNx |
816 |
c If there is heat flux convergence at the snow surface, |
817 |
c use that energy to melt snow before melting ice. It is |
818 |
c possible that some snow will remain after melting, |
819 |
c which will drive F_ia_net to zero, or that all of the |
820 |
c snow will be melted, leaving a nonzero F_ia_net to melt |
821 |
c some ice. |
822 |
F_ia_net_before_snow(I,J) = F_ia_net(I,J) |
823 |
|
824 |
c Only continue if there is snow and ice in the cell |
825 |
IF (AREApreTH(I,J) .LE. ZERO) THEN |
826 |
IceGrowthRateUnderExistingIce(I,J) = 0. _d 0 |
827 |
IceGrowthRateFromSurface(I,J) = 0. _d 0 |
828 |
NetExistingIceGrowthRate(I,J) = 0. _d 0 |
829 |
ELSE |
830 |
c The growth rate (m/s) beneath existing ice is given by the upward |
831 |
c ocean-ice conductive flux, F_io_net, and QI. |
832 |
IceGrowthRateUnderExistingIce(I,J) = F_io_net(I,J)*QI |
833 |
|
834 |
c The rate at which snow is melted (m/s) because of surface |
835 |
c heat flux convergence. Note, during snow melt, F_ia_net must |
836 |
c be negative (implying convergence) to make PSMRFW is positive |
837 |
PotSnowMeltRateFromSurf(I,J) = - F_ia_net(I,J)*QS |
838 |
|
839 |
c This is the depth of snow (m) that would be melted in one dt |
840 |
PotSnowMeltFromSurf(I,J) = |
841 |
& PotSnowMeltRateFromSurf(I,J) * SEAICE_deltaTtherm |
842 |
|
843 |
c If we can melt MORE than is actually there, then the melt |
844 |
c rate is reduced so that only that which is there |
845 |
c is melted during the time step. In this case, not all of the |
846 |
c heat flux convergence at the surface is used to melt snow. |
847 |
c Any remaining energy will melt ice. |
848 |
|
849 |
c SurfHeatFluxConvergToSnowMelt is the part of the total heat |
850 |
c flux convergence which melts snow. |
851 |
|
852 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
853 |
CCHECK: HSNOW ACTUAL SHOULDNT BE REGULARIZED FOR THIS |
854 |
IF (PotSnowMeltFromSurf(I,J) .GE. hsnowActual(I,J)) THEN |
855 |
|
856 |
c Snow melt and melt rate [m] (actual snow thickness) |
857 |
SnowMeltFromSurface(I,J) = hsnowActual(I,J) |
858 |
|
859 |
SnowMeltRateFromSurface(I,J) = |
860 |
& SnowMeltFromSurface(I,J) / SEAICE_deltaTtherm |
861 |
|
862 |
SurfHeatFluxConvergToSnowMelt(I,J) = |
863 |
& - hsnowActual(I,J)/QS/SEAICE_deltaTtherm |
864 |
ELSE |
865 |
c In this case there will be snow remaining after melting. |
866 |
c All of the surface heat convergence will be redirected to |
867 |
c this effort. |
868 |
SnowMeltFromSurface(I,J) = PotSnowMeltFromSurf(I,J) |
869 |
|
870 |
SnowMeltRateFromSurface(I,J) =PotSnowMeltRateFromSurf(I,J) |
871 |
|
872 |
SurfHeatFluxConvergToSnowMelt(I,J) = F_ia_net(I,J) |
873 |
|
874 |
ENDIF |
875 |
|
876 |
c Reduce the heat flux convergence available to melt surface |
877 |
c ice by the amount used to melt snow |
878 |
F_ia_net(I,J) = F_ia_net(I,J) - |
879 |
& SurfHeatFluxConvergToSnowMelt(I,J) |
880 |
|
881 |
IceGrowthRateFromSurface(I,J) = F_ia_net(I,J) * QI |
882 |
|
883 |
c The total growth rate (m/s) of the existing ice - the rate of |
884 |
c new ice accretion at the base less the rate due to surface melt |
885 |
NetExistingIceGrowthRate(I,J) = |
886 |
& IceGrowthRateUnderExistingIce(I,J) + |
887 |
& IceGrowthRateFromSurface(I,J) |
888 |
ENDIF |
889 |
|
890 |
ENDDO |
891 |
ENDDO |
892 |
|
893 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
894 |
#ifdef ALLOW_AUTODIFF_TAMC |
895 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
896 |
CADJ STORE SnowMeltRateFromSurface = comlev1_bibj, |
897 |
CADJ & key = iicekey, byte = isbyte |
898 |
CADJ STORE IceGrowthRateUnderExistingIce = comlev1_bibj, |
899 |
CADJ & key = iicekey, byte = isbyte |
900 |
CADJ STORE IceGrowthRateFromSurface = comlev1_bibj, |
901 |
CADJ & key = iicekey, byte = isbyte |
902 |
CADJ STORE NetExistingIceGrowthRate = comlev1_bibj, |
903 |
CADJ & key = iicekey, byte = isbyte |
904 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
905 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
906 |
|
907 |
|
908 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
909 |
#ifdef ALLOW_AUTODIFF_TAMC |
910 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
911 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
912 |
CADJ & key = iicekey, byte = isbyte |
913 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
914 |
CADJ & key = iicekey, byte = isbyte |
915 |
#endif |
916 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
917 |
|
918 |
C Calcuate the heat fluxes from the ocean to the sea ice |
919 |
DO J=1,sNy |
920 |
DO I=1,sNx |
921 |
c |
922 |
c Bound the ocean temperature to be at or above the freezing point. |
923 |
tempFrz = SEAICE_tempFrz0 + |
924 |
& SEAICE_dTempFrz_dS * salt(I,J,kSurface,bi,bj) |
925 |
|
926 |
surf_theta = max(theta(I,J,kSurface,bi,bj), tempFrz) |
927 |
|
928 |
c inflection point |
929 |
tmpscal0 = 0.4 _d 0 |
930 |
|
931 |
c steepness |
932 |
tmpscal1 = 7.0 _d 0 |
933 |
|
934 |
MLTF(I,J) = ONE + (12.5 - ONE) * |
935 |
& (ONE + EXP( (AREApreTH(I,J) - tmpscal0) |
936 |
& * tmpscal1/tmpscal0))**(-ONE) |
937 |
|
938 |
c IF (AREApreTH(I,J) .GT. ZERO) THEN |
939 |
c |
940 |
c If ice is present, MixedLayerTurbulenceFactor = 1.0, else 12.50 |
941 |
c MLTF = ONE |
942 |
c ELSE |
943 |
c MLTF = 12.5 _d 0 |
944 |
c ENDIF |
945 |
|
946 |
F_mi(I,J) = -STANTON_NUMBER * USTAR_BASE * RHOSW * |
947 |
& HeatCapacity_Cp * (surf_theta - tempFrz) * MLTF(I,J) |
948 |
|
949 |
IceGrowthRateMixedLayer (I,J) = F_mi(I,J) * QI |
950 |
|
951 |
ENDDO |
952 |
ENDDO |
953 |
|
954 |
|
955 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
956 |
#ifdef ALLOW_AUTODIFF_TAMC |
957 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
958 |
CADJ STORE F_mi = comlev1_bibj, key = iicekey, byte = isbyte |
959 |
CADJ STORE IceGrowthRateMixedLayer = |
960 |
CADJ & comlev1_bibj,key = iicekey, byte = isbyte |
961 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
962 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
963 |
|
964 |
C CALCULATE THICKNESS DERIVATIVES of ice (dhdt) and snow (dhsdt) |
965 |
DO J=1,sNy |
966 |
DO I=1,sNx |
967 |
|
968 |
S_h(I,J) = |
969 |
& NetExistingIceGrowthRate(I,J) * AREApreTH(I,J) |
970 |
& + IceGrowthRateOpenWater(I,J) * (ONE - AREApreTH(I,J)) |
971 |
& + IceGrowthRateMixedLayer(I,J) |
972 |
|
973 |
c Both the accumulation and melt rates are in terms |
974 |
c of actual snow thickness. As with ice, multiplying |
975 |
c with area converts to mean snow thickness. |
976 |
c S_hsnow(I,J) = AREApreTH(I,J) * |
977 |
c & ( SnowAccRateOverIce(I,J) - SnowMeltRateFromSurface(I,J)) |
978 |
|
979 |
c the only snow tendency term is the surface melting term since |
980 |
c the surface accumulation is taken care of in step 2 |
981 |
S_hsnow(I,J) = AREApreTH(I,J) * |
982 |
& ( - SnowMeltRateFromSurface(I,J)) |
983 |
|
984 |
ENDDO |
985 |
ENDDO |
986 |
|
987 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
988 |
#ifdef ALLOW_AUTODIFF_TAMC |
989 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
990 |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
991 |
CADJ STORE S_a = comlev1_bibj, key = iicekey, byte = isbyte |
992 |
CADJ STORE S_h = comlev1_bibj, key = iicekey, byte = isbyte |
993 |
CADJ STORE S_hsnow = comlev1_bibj, key = iicekey, byte = isbyte |
994 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
995 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
996 |
|
997 |
c Caculate dA/dt (S_a) |
998 |
DO J=1,sNy |
999 |
DO I=1,sNx |
1000 |
|
1001 |
S_a(I,J) = 0. _d 0 |
1002 |
|
1003 |
c Caculate the ice area growth rate from the open water fluxes. |
1004 |
c First, determine whether the open water growth rate is positive or |
1005 |
c negative. If positive, make sure that ice is present or that the |
1006 |
c net ice thickness growth rate is positive before extending ice cover |
1007 |
|
1008 |
c this is the geometric term: Area/(2*Heff), |
1009 |
c with Area/Heff regularized as Area/(Heff^2 + epsilon^2) |
1010 |
c Area/(Heff^2 + ep^2) = recip_hiceActual |
1011 |
c epsilon = SEAICE_hice_reg |
1012 |
|
1013 |
tmpscal0 = recip_hiceActual(I,J) / 2.0 _d 0 |
1014 |
|
1015 |
C -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= |
1016 |
C /* IceGrowthRateOpenWater */ |
1017 |
|
1018 |
S_a_IGROW(I,J) = ZERO |
1019 |
|
1020 |
c Expand ice cover if the open water growth rate is positive |
1021 |
IF ( IceGrowthRateOpenWater(I,J) .GT. ZERO) THEN |
1022 |
IF ((AREApreTH(I,J) .GT. ZERO) .OR. |
1023 |
& (S_h(I,J) .GT. ZERO)) THEN |
1024 |
c Determine which hemisphere for hemisphere-dependent |
1025 |
c "lead closing variable", HO |
1026 |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
1027 |
S_a_IGROW(I,J) = (ONE - AREApreTH(I,J)) * |
1028 |
& IceGrowthRateOpenWater(I,J)/HO_south |
1029 |
ELSE |
1030 |
S_a_IGROW(I,J) = (ONE - AREApreTH(I,J)) * |
1031 |
& IceGrowthRateOpenWater(I,J)/HO |
1032 |
ENDIF |
1033 |
ENDIF |
1034 |
|
1035 |
C -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= |
1036 |
c Contract ice cover if the open water growth rate is negative |
1037 |
ELSE |
1038 |
S_a_IGROW(I,J) = tmpscal0 * |
1039 |
& IceGrowthRateOpenWater(I,J) * (ONE - AREApreTH(I,J)) |
1040 |
ENDIF |
1041 |
|
1042 |
S_a(I,J) = S_a(I,J) + S_a_IGROW(I,J) |
1043 |
|
1044 |
|
1045 |
C -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= |
1046 |
c /* IceGrowthRateMixedLayer */ |
1047 |
C Contract ice if the IceGrowthRateMixedLayer is negative |
1048 |
S_a_IGRML(I,J) = ZERO |
1049 |
|
1050 |
IF ( IceGrowthRateMixedLayer(I,J) .LE. ZERO) THEN |
1051 |
S_a_IGRML(I,J) = tmpscal0 * IceGrowthRateMixedLayer(I,J) |
1052 |
ENDIF |
1053 |
|
1054 |
S_a(I,J) = S_a(I,J) + S_a_IGRML(I,J) |
1055 |
|
1056 |
c |
1057 |
C -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= |
1058 |
C Contract ice if the NetExistingIceGrowthRate is negative |
1059 |
C /* NetExistingIceGrowthRate */ |
1060 |
S_a_IGRNE(I,J) = ZERO |
1061 |
IF ( (NetExistingIceGrowthRate(I,J) .LE. ZERO) .AND. |
1062 |
& (HEFFpreTH(I,J) .GT. ZERO) ) THEN |
1063 |
|
1064 |
S_a_IGRNE(I,J) = |
1065 |
& tmpscal0 * NetExistingIceGrowthRate(I,J) * AREApreTH(I,J) |
1066 |
|
1067 |
ENDIF |
1068 |
|
1069 |
S_a(I,J) = S_a(I,J) + S_a_IGRNE(I,J) |
1070 |
|
1071 |
ENDDO /* I,J */ |
1072 |
ENDDO /* I,J */ |
1073 |
|
1074 |
|
1075 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
1076 |
#ifdef ALLOW_AUTODIFF_TAMC |
1077 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1078 |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1079 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1080 |
CADJ STORE S_a = comlev1_bibj, key = iicekey, byte = isbyte |
1081 |
CADJ STORE S_h = comlev1_bibj, key = iicekey, byte = isbyte |
1082 |
CADJ STORE S_hsnow = comlev1_bibj, key = iicekey, byte = isbyte |
1083 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1084 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
1085 |
|
1086 |
C Update the area, heff, and hsnow |
1087 |
DO J=1,sNy |
1088 |
DO I=1,sNx |
1089 |
HEFF(I,J,bi,bj) = HEFFpreTH(I,J) + |
1090 |
& SEAICE_deltaTtherm * S_h(I,J) |
1091 |
|
1092 |
AREA(I,J,bi,bj) = AREApreTH(I,J) + |
1093 |
& SEAICE_deltaTtherm * S_a(I,J) |
1094 |
|
1095 |
HSNOW(I,J,bi,bj) = HSNWpreTH(I,J) + |
1096 |
& SEAICE_deltaTtherm * S_hsnow(I,J) |
1097 |
ENDDO |
1098 |
ENDDO |
1099 |
|
1100 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
1101 |
#ifdef ALLOW_AUTODIFF_TAMC |
1102 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1103 |
CADJ STORE HEFFpreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1104 |
CADJ STORE HSNWpreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1105 |
CADJ STORE AREA (:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1106 |
CADJ STORE HEFF (:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1107 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1108 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1109 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
1110 |
|
1111 |
|
1112 |
DO J=1,sNy |
1113 |
DO I=1,sNx |
1114 |
c Bound area, heff, and hsnow |
1115 |
AREA(I,J,bi,bj) = MIN(AREA(I,J,bi,bj), SEAICE_area_max) |
1116 |
AREA(I,J,bi,bj) = MAX(ZERO, AREA(I,J,bi,bj)) |
1117 |
HEFF(I,J,bi,bj) = MAX(ZERO, HEFF(I,J,bi,bj)) |
1118 |
HSNOW(I,J,bi,bj) = MAX(ZERO, HSNOW(I,J,bi,bj)) |
1119 |
|
1120 |
c Sanity checks |
1121 |
IF (HEFF(I,J,bi,bj) .LE. ZERO .OR. |
1122 |
& AREA(I,J,bi,bj) .LE. ZERO) THEN |
1123 |
|
1124 |
AREA(I,J,bi,bj) = 0. _d 0 |
1125 |
HEFF(I,J,bi,bj) = 0. _d 0 |
1126 |
hiceActual(I,J) = 0. _d 0 |
1127 |
HSNOW(I,J,bi,bj) = 0. _d 0 |
1128 |
hsnowActual(I,J) = 0. _d 0 |
1129 |
|
1130 |
ELSE |
1131 |
c recalcuate the actual ice and snow thicknesses |
1132 |
hiceActual(I,J) = HEFF(I,J,bi,bj)/AREA(I,J,bi,bj) |
1133 |
hsnowActual(I,J) = HSNOW(I,J,bi,bj)/AREA(I,J,bi,bj) |
1134 |
ENDIF |
1135 |
|
1136 |
ENDDO |
1137 |
ENDDO |
1138 |
|
1139 |
|
1140 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
1141 |
#ifdef ALLOW_AUTODIFF_TAMC |
1142 |
CADJ STORE AREA (:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1143 |
CADJ STORE HEFF (:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1144 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1145 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1146 |
CADJ & key = iicekey, byte = isbyte |
1147 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1148 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
1149 |
|
1150 |
DO J=1,sNy |
1151 |
DO I=1,sNx |
1152 |
|
1153 |
c THE EFFECTIVE SHORTWAVE HEATING RATE |
1154 |
#ifdef SHORTWAVE_HEATING |
1155 |
QSW(I,J,bi,bj) = |
1156 |
& QSWI(I,J) * ( AREApreTH(I,J)) + |
1157 |
& QSWO(I,J) * (ONE - AREApreTH(I,J)) |
1158 |
#else |
1159 |
QSW(I,J,bi,bj) = 0. _d 0 |
1160 |
#endif |
1161 |
|
1162 |
c The actual ice volume change over the time step |
1163 |
ActualNewTotalVolumeChange(I,J) = |
1164 |
& HEFF(I,J,bi,bj) - HEFFpreTH(I,J) |
1165 |
|
1166 |
c The net average snow thickness melt that is actually realized. e.g. |
1167 |
c hsnow_orig = 0.25 m (e.g. 1 m of ice over a cell 1/4 covered in snow) |
1168 |
c hsnow_new = 0.20 m |
1169 |
c snow accum = 0.05 m |
1170 |
c melt = 0.25 + 0.05 - 0.2 = 0.1 m |
1171 |
|
1172 |
c snow has been accumulated in HSNWpreTH, so HSNOW can only |
1173 |
c be .LE. HSNWpreTH at this point |
1174 |
ActualNewTotalSnowMelt(I,J) = |
1175 |
& HSNWpreTH(I,J) - |
1176 |
& HSNOW(I,J,bi,bj) |
1177 |
c & SnowAccOverIce(I,J) - |
1178 |
|
1179 |
c The energy required to melt or form the new ice volume |
1180 |
EnergyInNewTotalIceVolume(I,J) = |
1181 |
& ActualNewTotalVolumeChange(I,J)/QI |
1182 |
|
1183 |
c This is the net energy flux out of the ice+ocean system |
1184 |
c Remember ----- |
1185 |
c F_ia_net : Under ice/snow surface freezing conditions, |
1186 |
c vertical conductive heat flux convergence (F_c < 0) balances |
1187 |
c heat flux divergence to atmosphere (F_ia > 0) |
1188 |
c Otherwise, F_ia_net = F_ia (pos) |
1189 |
c |
1190 |
c F_io_net : Under ice/snow surface freezing conditions, F_c < 0. |
1191 |
c Under ice surface melting conditions, F_c = 0 (no energy flux |
1192 |
c from the ice to ocean) |
1193 |
c |
1194 |
c So if we are freezing, F_io_net = the conductive flux and there |
1195 |
c is energy balance at ice surface, F_ia_net =0. If we are melting, |
1196 |
c there is a convergence of energy into the ice from above |
1197 |
NetEnergyFluxOutOfOcean(I,J) = SEAICE_deltaTtherm * |
1198 |
& ( AREApreTH(I,J) * |
1199 |
& (F_ia_net(I,J) + F_io_net(I,J) + QSWI(I,J)) |
1200 |
& + ( ONE - AREApreTH(I,J)) * F_ao(I,J)) |
1201 |
|
1202 |
c THE QUANTITY OF HEAT WHICH IS THE RESIDUAL TO THE QUANTITY OF |
1203 |
c ML temperature. If the net energy flux is exactly balanced by the |
1204 |
c latent energy of fusion in the new ice created then we will not |
1205 |
c change the ML temperature at all. |
1206 |
|
1207 |
ResidualEnergyOutOfOcean(I,J) = |
1208 |
& NetEnergyFluxOutOfOcean(I,J) - |
1209 |
& EnergyInNewTotalIceVolume(I,J) |
1210 |
|
1211 |
C NOW FORMULATE QNET |
1212 |
C THIS QNET DETERMINES THE TEMPERATURE CHANGE |
1213 |
C QNET IS A DEPTH AVERAGED HEAT FLUX FOR THE OCEAN COLUMN |
1214 |
|
1215 |
QNET(I,J,bi,bj) = |
1216 |
& ResidualEnergyOutOfOcean(I,J) / SEAICE_deltaTtherm |
1217 |
|
1218 |
|
1219 |
c Like snow melt, if there is melting, this quantity is positive. |
1220 |
c The change of freshwater content is per unit area over the entire |
1221 |
c cell, not just over the ice covered bits. This term is only used |
1222 |
c to calculate freshwater fluxes for the purpose of changing the |
1223 |
c salinity of the liquid cell. In the case of non-zero ice salinity, |
1224 |
c the amount of freshwater is reduced by the ratio of ice salinity |
1225 |
c to water cell salinity. |
1226 |
IF (salt(I,J,kSurface,bi,bj) .GE. SEAICE_salt0 .AND. |
1227 |
& salt(I,J,kSurface,bi,bj) .GT. 0. _d 0) THEN |
1228 |
|
1229 |
FreshwaterContribFromIce(I,J) = |
1230 |
& - ActualNewTotalVolumeChange(I,J) * |
1231 |
& SEAICE_rhoICE/rhoConstFresh * |
1232 |
& (ONE - SEAICE_salt0/salt(I,J,kSurface,bi,bj)) |
1233 |
|
1234 |
ELSE |
1235 |
C If the liquid cell has a lower salinity than the specified |
1236 |
c salinity of sea ice then assume the sea ice is completely fresh |
1237 |
FreshwaterContribFromIce(I,J) = |
1238 |
& -ActualNewTotalVolumeChange(I,J) * |
1239 |
& SEAICE_rhoIce/rhoConstFresh |
1240 |
ENDIF |
1241 |
|
1242 |
|
1243 |
c The freshwater contribution from snow comes only in the form of melt |
1244 |
c unlike ice, which takes freshwater upon growth and yields freshwater |
1245 |
c upon melt. This is why the the actual new average snow melt was determined. |
1246 |
c In m/m^2 over the entire cell. |
1247 |
FreshwaterContribFromSnowMelt(I,J) = |
1248 |
& ActualNewTotalSnowMelt(I,J)*SEAICE_rhoSnow/rhoConstFresh |
1249 |
|
1250 |
c This seems to be in m/s, original time level 2 for area |
1251 |
c Only the precip and evap need to be area weighted. The runoff |
1252 |
c and freshwater contribs from ice and snow melt are already mean |
1253 |
c weighted |
1254 |
EmPmR(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
1255 |
& ( EVAP(I,J,bi,bj) - PRECIP(I,J,bi,bj) ) |
1256 |
& * ( ONE - AREApreTH(I,J) ) |
1257 |
& - PrecipRateOverIceSurfaceToSea(I,J)*AREApreTH(I,J) |
1258 |
#ifdef ALLOW_RUNOFF |
1259 |
& - RUNOFF(I,J,bi,bj) |
1260 |
#endif |
1261 |
& - (FreshwaterContribFromIce(I,J) + |
1262 |
& FreshwaterContribFromSnowMelt(I,J)) / |
1263 |
& SEAICE_deltaTtherm ) * rhoConstFresh |
1264 |
|
1265 |
ENDDO |
1266 |
ENDDO |
1267 |
|
1268 |
|
1269 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
1270 |
#ifdef ALLOW_AUTODIFF_TAMC |
1271 |
CADJ STORE hiceActual = comlev1_bibj,key=iicekey,byte=isbyte |
1272 |
CADJ STORE hsnowActual = comlev1_bibj,key=iicekey,byte=isbyte |
1273 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1274 |
CADJ STORE HEFF(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1275 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1276 |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1277 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1278 |
CADJ & key = iicekey, byte = isbyte |
1279 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1280 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
1281 |
|
1282 |
#ifdef ALLOW_SEAICE_FLOODING |
1283 |
IF(SEAICEuseFlooding) THEN |
1284 |
|
1285 |
DO J = 1,sNy |
1286 |
DO I = 1,sNx |
1287 |
tmpscal0 = FL_C2*( hsnowActual(I,J) - |
1288 |
& hiceActual(I,J)*FL_C3 ) |
1289 |
|
1290 |
IF (tmpscal0 .GT. ZERO) THEN |
1291 |
tmpscal1 = FL_C4*tmpscal0 |
1292 |
|
1293 |
hiceActual(I,J) = hiceActual(I,J) |
1294 |
& + tmpscal1 |
1295 |
|
1296 |
hsnowActual(I,J) = hsnowActual(I,J) |
1297 |
& - tmpscal0 |
1298 |
|
1299 |
HEFF(I,J,bi,bj)= hiceActual(I,J) * |
1300 |
& AREA(I,J,bi,bj) |
1301 |
|
1302 |
HSNOW(I,J,bi,bj) = hsnowActual(I,J)* |
1303 |
& AREA(I,J,bi,bj) |
1304 |
|
1305 |
ENDIF /* flooding */ |
1306 |
ENDDO |
1307 |
ENDDO |
1308 |
c SEAICEuseFlooding |
1309 |
ENDIF |
1310 |
c ALLOW_SEAICE_FLOODING |
1311 |
#endif |
1312 |
|
1313 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
1314 |
#ifdef ALLOW_AUTODIFF_TAMC |
1315 |
CADJ STORE hiceActual = comlev1_bibj,key=iicekey,byte=isbyte |
1316 |
CADJ STORE hsnowActual = comlev1_bibj,key=iicekey,byte=isbyte |
1317 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1318 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1319 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1320 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
1321 |
|
1322 |
C Sea Ice Load on the sea surface. |
1323 |
C ================================= |
1324 |
IF ( useRealFreshWaterFlux ) THEN |
1325 |
DO J=1,sNy |
1326 |
DO I=1,sNx |
1327 |
#ifdef SEAICE_CAP_ICELOAD |
1328 |
tmpscal1 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
1329 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1330 |
tmpscal2 = MIN(tmpscal1,heffTooHeavy*rhoConst) |
1331 |
#else |
1332 |
tmpscal2 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
1333 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1334 |
#endif |
1335 |
sIceLoad(i,j,bi,bj) = tmpscal2 |
1336 |
ENDDO |
1337 |
ENDDO |
1338 |
ENDIF |
1339 |
|
1340 |
|
1341 |
#ifdef SEAICE_DEBUG |
1342 |
DO j=1,sNy |
1343 |
DO i=1,sNx |
1344 |
|
1345 |
IF ( (i .EQ. SEAICE_debugPointI) .and. |
1346 |
& (j .EQ. SEAICE_debugPointJ) ) THEN |
1347 |
|
1348 |
print *,'ifice: myTime,myIter:',myTime,myIter |
1349 |
|
1350 |
print '(A,2i4,2(1x,1P3E15.4))', |
1351 |
& 'ifice i j -------------- ',i,j |
1352 |
|
1353 |
print '(A,2i4,2(1x,1P3E15.4))', |
1354 |
& 'ifice i j F(mi ao), rHIA ', |
1355 |
& i,j, F_mi(i,j), F_ao(i,j), |
1356 |
& recip_hiceActual(i,j) |
1357 |
|
1358 |
print '(A,2i4,2(1x,1P3E15.4))', |
1359 |
& 'ifice i j Fi(a,ant2/1 ont)', |
1360 |
& i,j, F_ia(i,j), |
1361 |
& F_ia_net_before_snow(i,j), |
1362 |
& F_ia_net(i,j), |
1363 |
& F_io_net(i,j) |
1364 |
|
1365 |
print '(A,2i4,2(1x,1P3E15.4))', |
1366 |
& 'ifice i j AREA2/1 HEFF2/1 ',i,j, |
1367 |
& AREApreTH(I,J), |
1368 |
& AREA(i,j,bi,bj), |
1369 |
& HEFFpreTH(I,J), |
1370 |
& HEFF(i,j,bi,bj) |
1371 |
|
1372 |
print '(A,2i4,2(1x,1P3E15.4))', |
1373 |
& 'ifice i j HSNOW2/1 TMX ',i,j, |
1374 |
& HSNWpreTH(I,J), |
1375 |
& HSNOW(I,J,bi,bj), |
1376 |
& theta(I,J,kSurface,bi,bj) |
1377 |
|
1378 |
print '(A,2i4,2(1x,1P3E15.4))', |
1379 |
& 'ifice i j TI ATP LWD ',i,j, |
1380 |
& TICES(i,j,1, bi,bj) - celsius2k, |
1381 |
& ATEMP(i,j,bi,bj) - celsius2k, |
1382 |
& LWDOWN(i,j,bi,bj) |
1383 |
|
1384 |
print '(A,2i4,2(1x,1P3E15.4))', |
1385 |
& 'ifice i j S_a(tot,OW,ML,NE',i,j, |
1386 |
& S_a(i,j), |
1387 |
& S_a_IGROW(I,J), |
1388 |
& S_a_IGRML(I,J), |
1389 |
& S_a_IGRNE(I,J) |
1390 |
|
1391 |
print '(A,2i4,2(1x,1P3E15.4))', |
1392 |
& 'ifice i j S_a S_h S_hsnow ',i,j, |
1393 |
& S_a(i,j), |
1394 |
& S_h(i,j), |
1395 |
& S_hsnow(i,j) |
1396 |
|
1397 |
print '(A,2i4,2(1x,1P3E15.4))', |
1398 |
& 'ifice i j IGR(ML OW ICE) ',i,j, |
1399 |
& IceGrowthRateMixedLayer(i,j), |
1400 |
& IceGrowthRateOpenWater(i,j), |
1401 |
& NetExistingIceGrowthRate(i,j) |
1402 |
|
1403 |
|
1404 |
print '(A,2i4,2(1x,1P3E15.4))', |
1405 |
& 'ifice i j THETA/TFRZ/SALT ',i,j, |
1406 |
& theta(I,J,kSurface,bi,bj), |
1407 |
& tmpFrz, |
1408 |
& salt(I,J,kSurface,bi,bj) |
1409 |
|
1410 |
print '(A,2i4,2(1x,1P3E15.4))', |
1411 |
& 'ifice i j IVC(A ENIN) ',i,j, |
1412 |
& ActualNewTotalVolumeChange(i,j), |
1413 |
& EnergyInNewTotalIceVolume(i,j) |
1414 |
c & ExpectedIceVolumeChange(i,j), |
1415 |
|
1416 |
print '(A,2i4,2(1x,1P3E15.4))', |
1417 |
& 'ifice i j EF(NOS RE) QNET ',i,j, |
1418 |
& NetEnergyFluxOutOfOcean(i,j), |
1419 |
& ResidualEnergyOutOfOcean(i,j), |
1420 |
& QNET(I,J,bi,bj) |
1421 |
|
1422 |
print '(A,2i4,3(1x,1P3E15.4))', |
1423 |
& 'ifice i j QSW QSWO QSWI ',i,j, |
1424 |
& QSW(i,j,bi,bj), |
1425 |
& QSWO(i,j), |
1426 |
& QSWI(i,j) |
1427 |
|
1428 |
c print '(A,2i4,3(1x,1P3E15.4))', |
1429 |
c & 'ifice i j SW(BML IML SW) ',i,j, |
1430 |
c & QSW_absorb_below_first_layer(i,j), |
1431 |
c & QSW_absorb_in_first_layer(i,j), |
1432 |
c & SWFRACB |
1433 |
|
1434 |
c print '(A,2i4,3(1x,1P3E15.4))', |
1435 |
c & 'ifice i j ptc(to, qsw, oa)',i,j, |
1436 |
c & PredTempChange(i,j), |
1437 |
c & PredTempChangeFromQSW (i,j), |
1438 |
c & PredTempChangeFromOA_MQNET(i,j) |
1439 |
|
1440 |
|
1441 |
c print '(A,2i4,3(1x,1P3E15.4))', |
1442 |
c & 'ifice i j ptc(fion,ian,ia)',i,j, |
1443 |
c & PredTempChangeFromF_IO_NET(i,j), |
1444 |
c & PredTempChangeFromF_IA_NET(i,j), |
1445 |
c & PredTempChangeFromFIA(i,j) |
1446 |
|
1447 |
c print '(A,2i4,3(1x,1P3E15.4))', |
1448 |
c & 'ifice i j ptc(niv) ',i,j, |
1449 |
c & PredTempChangeFromNewIceVol(i,j) |
1450 |
|
1451 |
|
1452 |
print '(A,2i4,3(1x,1P3E15.4))', |
1453 |
& 'ifice i j EmPmR EVP PRE RU',i,j, |
1454 |
& EmPmR(I,J,bi,bj), |
1455 |
& EVAP(I,J,bi,bj), |
1456 |
& PRECIP(I,J,bi,bj), |
1457 |
& RUNOFF(I,J,bi,bj) |
1458 |
|
1459 |
print '(A,2i4,3(1x,1P3E15.4))', |
1460 |
& 'ifice i j PRROIS,SAOI(R .)',i,j, |
1461 |
& PrecipRateOverIceSurfaceToSea(I,J), |
1462 |
& SnowAccRateOverIce(I,J), |
1463 |
& SnowAccOverIce(I,J) |
1464 |
|
1465 |
print '(A,2i4,4(1x,1P3E15.4))', |
1466 |
& 'ifice i j SM(PM PMR . .R) ',i,j, |
1467 |
& PotSnowMeltFromSurf(I,J), |
1468 |
& PotSnowMeltRateFromSurf(I,J), |
1469 |
& SnowMeltFromSurface(I,J), |
1470 |
& SnowMeltRateFromSurface(I,J) |
1471 |
|
1472 |
print '(A,2i4,4(1x,1P3E15.4))', |
1473 |
& 'ifice i j TotSnwMlt ',i,j, |
1474 |
& ActualNewTotalSnowMelt(I,J) |
1475 |
c & ExpectedSnowVolumeChange(I,J) |
1476 |
|
1477 |
print '(A,2i4,4(1x,1P3E15.4))', |
1478 |
& 'ifice i j fw(CFICE, CFSM) ',i,j, |
1479 |
& FreshwaterContribFromIce(I,J), |
1480 |
& FreshwaterContribFromSnowMelt(I,J) |
1481 |
|
1482 |
print '(A,2i4,2(1x,1P3E15.4))', |
1483 |
& 'ifice i j -------------- ',i,j |
1484 |
|
1485 |
ENDIF |
1486 |
|
1487 |
ENDDO |
1488 |
ENDDO |
1489 |
#endif /* SEAICE_DEBUG */ |
1490 |
|
1491 |
|
1492 |
C close bi,bj loops |
1493 |
ENDDO |
1494 |
ENDDO |
1495 |
|
1496 |
#else /* ALLOW_EXF and ALLOW_ATM_TEMP */ |
1497 |
STOP 'SEAICE_GROWTH not compiled without EXF and ALLOW_ATM_TEMP' |
1498 |
#endif /* ALLOW_EXF and ALLOW_ATM_TEMP */ |
1499 |
|
1500 |
RETURN |
1501 |
END |