1 |
cnh |
1.1 |
function csg_obj=load_cs_grid(nr,nb,ng,gdir) |
2 |
|
|
% |
3 |
|
|
% Plot cube sphere grid lines |
4 |
|
|
% e.g. load_cs_grid( 32, 32, 32,'float64'); |
5 |
|
|
% e.g. load_cs_grid(510,510,510,'float64'); |
6 |
|
|
% |
7 |
|
|
|
8 |
|
|
% Set cartesian/unstructure list toplogy size |
9 |
|
|
csg_obj.nx=0; |
10 |
|
|
csg_obj.ny=0; |
11 |
|
|
|
12 |
|
|
% Set cube topology size. |
13 |
|
|
csg_obj.nr=nr; |
14 |
|
|
csg_obj.nb=nb; |
15 |
|
|
csg_obj.ng=ng; |
16 |
|
|
|
17 |
|
|
% Set format used to read grid variables |
18 |
|
|
% Input if 64-bit floats. The store in memory as 32-bit floats option below |
19 |
|
|
% can be used to save memory when working with large grids. |
20 |
|
|
gvfmt='float64'; |
21 |
|
|
gvprec='double'; |
22 |
|
|
gvfmt='float64=>float32'; |
23 |
|
|
gvprec='single'; |
24 |
|
|
|
25 |
|
|
% Calculate cube face sizes |
26 |
|
|
csg_obj.fx=zeros(6,1); |
27 |
|
|
csg_obj.fy=zeros(6,1); |
28 |
|
|
for i=1:6 |
29 |
|
|
if i == 1 |
30 |
|
|
csg_obj.fx(i)=nb; csg_obj.fy(i)=ng; |
31 |
|
|
end |
32 |
|
|
if i == 2 |
33 |
|
|
csg_obj.fx(i)=nr; csg_obj.fy(i)=ng; |
34 |
|
|
end |
35 |
|
|
if i == 3 |
36 |
|
|
csg_obj.fx(i)=nr; csg_obj.fy(i)=nb; |
37 |
|
|
end |
38 |
|
|
if i == 4 |
39 |
|
|
csg_obj.fx(i)=ng; csg_obj.fy(i)=nb; |
40 |
|
|
end |
41 |
|
|
if i == 5 |
42 |
|
|
csg_obj.fx(i)=ng; csg_obj.fy(i)=nr; |
43 |
|
|
end |
44 |
|
|
if i == 6 |
45 |
|
|
csg_obj.fx(i)=nb; csg_obj.fy(i)=nr; |
46 |
|
|
end |
47 |
|
|
end |
48 |
|
|
|
49 |
|
|
% Read in physical grid information |
50 |
|
|
% This comes from the 6 tile files which hold |
51 |
|
|
% sixteen terms |
52 |
|
|
% XC , YC , DXF, DYF, RA , XG , YG , DXV, |
53 |
|
|
% DYU, RAZ, DXC, DYC, RAW, RAS, DXG, DYG |
54 |
|
|
% that define the grid as follows: |
55 |
|
|
% XC - Cell center longitude |
56 |
|
|
% YC - Cell center latitude |
57 |
|
|
% DXF - Cell face spacing in local X direction in meters and |
58 |
|
|
% passing through the cell center. |
59 |
|
|
% DYF - |
60 |
|
|
xcpos=1; ycpos=2; dxfpos=3; dyfpos=4; |
61 |
|
|
rapos=5; xgpos=6; ygpos=7; dxvpos=8; |
62 |
|
|
dyupos=9; razpos=10; dxcpos=11; dycpos=12; |
63 |
|
|
rawpos=13; raspos=14; dxgpos=15; dygpos=16; |
64 |
|
|
csg_obj.xcpos = xcpos; |
65 |
|
|
csg_obj.ycpos = ycpos; |
66 |
|
|
csg_obj.dxfpos = dxfpos; |
67 |
|
|
csg_obj.dyfpos = dyfpos; |
68 |
|
|
csg_obj.rapos = rapos; |
69 |
|
|
csg_obj.xgpos = xgpos; |
70 |
|
|
csg_obj.ygpos = ygpos; |
71 |
|
|
csg_obj.dxvpos = dxvpos; |
72 |
|
|
csg_obj.dyupos = dyupos; |
73 |
|
|
csg_obj.razpos = razpos; |
74 |
|
|
csg_obj.dxcpos = dxcpos; |
75 |
|
|
csg_obj.dycpos = dycpos; |
76 |
|
|
csg_obj.rawpos = rawpos; |
77 |
|
|
csg_obj.raspos = raspos; |
78 |
|
|
csg_obj.dxgpos = dxgpos; |
79 |
|
|
csg_obj.dygpos = dygpos; |
80 |
|
|
|
81 |
|
|
% Each term is a set grid terms for each cube face for a |
82 |
|
|
% total of |
83 |
|
|
% (nb+1)*(ng+1)*2+(nr+1)*(ng+1)*2+(nr+1)*(nb+1)*2 |
84 |
|
|
% points |
85 |
|
|
% 1 - create a dummy 2d array to hold the terms |
86 |
|
|
nxd=nb+1+nr+1+ng+1+nb+1; |
87 |
|
|
nyd=ng+1+nb+1+nr+1; |
88 |
|
|
csg_obj.gridarr=cast(ones(nxd,nyd,16)*12345.6789,gvprec); |
89 |
|
|
mask_val=csg_obj.gridarr(1,1,1); |
90 |
|
|
% 1- Read tile*.mitgrid |
91 |
|
|
% holds terms for cube face 1, size (nb+1)*(ng+1) |
92 |
|
|
for i= 1:6 |
93 |
|
|
fx=csg_obj.fx(i); |
94 |
|
|
fy=csg_obj.fy(i); |
95 |
|
|
if i == 1 |
96 |
|
|
csg_obj.ilog(1)=1;csg_obj.jlog(1)=1; |
97 |
|
|
end |
98 |
|
|
if i == 2 |
99 |
|
|
csg_obj.ilog(2)=csg_obj.ilog(1)+fx+1; |
100 |
|
|
csg_obj.jlog(2)=1; |
101 |
|
|
end |
102 |
|
|
if i == 3 |
103 |
|
|
csg_obj.ilog(3)=csg_obj.ilog(1)+fx+1; |
104 |
|
|
csg_obj.jlog(3)=csg_obj.jlog(1)+fy+1; |
105 |
|
|
end |
106 |
|
|
if i == 4 |
107 |
|
|
csg_obj.ilog(4)=csg_obj.ilog(3)+fx+1; |
108 |
|
|
csg_obj.jlog(4)=csg_obj.jlog(1)+fy+1; |
109 |
|
|
end |
110 |
|
|
if i == 5 |
111 |
|
|
csg_obj.ilog(5)=csg_obj.ilog(3)+fx+1; |
112 |
|
|
csg_obj.jlog(5)=csg_obj.jlog(4)+fy+1; |
113 |
|
|
end |
114 |
|
|
if i == 6 |
115 |
|
|
csg_obj.ilog(6)=csg_obj.ilog(5)+fx+1; |
116 |
|
|
csg_obj.jlog(6)=csg_obj.jlog(4)+fx+1; |
117 |
|
|
end |
118 |
|
|
ilog=csg_obj.ilog(i); |
119 |
|
|
jlog=csg_obj.jlog(i); |
120 |
|
|
ihi=ilog+fx;jhi=jlog+fy; |
121 |
|
|
fnam=sprintf('%s/tile%3.3d.mitgrid',gdir,i); |
122 |
|
|
fid=fopen(fnam,'r','ieee-be'); |
123 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
124 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,xcpos )=reshape(tmp,[(fx+1) (fy+1)]); |
125 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
126 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,ycpos )=reshape(tmp,[(fx+1) (fy+1)]); |
127 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
128 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,dxfpos)=reshape(tmp,[(fx+1) (fy+1)]); |
129 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
130 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,dyfpos)=reshape(tmp,[(fx+1) (fy+1)]); |
131 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
132 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,rapos )=reshape(tmp,[(fx+1) (fy+1)]); |
133 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
134 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,xgpos )=reshape(tmp,[(fx+1) (fy+1)]); |
135 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
136 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,ygpos )=reshape(tmp,[(fx+1) (fy+1)]); |
137 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
138 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,dxvpos)=reshape(tmp,[(fx+1) (fy+1)]); |
139 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
140 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,dyupos)=reshape(tmp,[(fx+1) (fy+1)]); |
141 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
142 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,razpos)=reshape(tmp,[(fx+1) (fy+1)]); |
143 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
144 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,dxcpos)=reshape(tmp,[(fx+1) (fy+1)]); |
145 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
146 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,dycpos)=reshape(tmp,[(fx+1) (fy+1)]); |
147 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
148 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,rawpos)=reshape(tmp,[(fx+1) (fy+1)]); |
149 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
150 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,raspos)=reshape(tmp,[(fx+1) (fy+1)]); |
151 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
152 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,dxgpos)=reshape(tmp,[(fx+1) (fy+1)]); |
153 |
|
|
tmp=fread(fid,(fx+1)*(fy+1),gvfmt); |
154 |
|
|
csg_obj.gridarr(ilog:ihi,jlog:jhi,dygpos)=reshape(tmp,[(fx+1) (fy+1)]); |
155 |
|
|
fclose(fid); |
156 |
|
|
csg_obj.index_i_center(ilog:ihi,jlog:jhi)=cast(repmat([ilog:ihi]',1,jhi-jlog+1),'int32'); |
157 |
|
|
csg_obj.index_j_center(ilog:ihi,jlog:jhi)=cast(repmat([jlog:jhi] ,ihi-ilog+1,1),'int32'); |
158 |
|
|
csg_obj.face_center(ilog:ihi,jlog:jhi)=cast(i,'int32'); |
159 |
|
|
end |
160 |
|
|
csg_obj.gridarr(csg_obj.gridarr==mask_val)=NaN; |
161 |
|
|
csg_obj.active_mask=csg_obj.gridarr(:,:,1)*0.+1; |
162 |
|
|
|
163 |
|
|
return |