| 1 |
C $Header: /u/gcmpack/MITgcm_contrib/darwin2/pkg/monod/monod_forcing.F,v 1.19 2016/01/04 17:06:57 jahn Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "CPP_OPTIONS.h" |
| 5 |
#include "PTRACERS_OPTIONS.h" |
| 6 |
#include "DARWIN_OPTIONS.h" |
| 7 |
|
| 8 |
#ifdef ALLOW_PTRACERS |
| 9 |
#ifdef ALLOW_MONOD |
| 10 |
|
| 11 |
c============================================================= |
| 12 |
c subroutine MONOD_forcing |
| 13 |
c step forward bio-chemical tracers in time |
| 14 |
C============================================================== |
| 15 |
SUBROUTINE MONOD_FORCING( |
| 16 |
U Ptr, |
| 17 |
I bi,bj,imin,imax,jmin,jmax, |
| 18 |
I myTime,myIter,myThid) |
| 19 |
#include "SIZE.h" |
| 20 |
#include "EEPARAMS.h" |
| 21 |
#include "PARAMS.h" |
| 22 |
#include "GRID.h" |
| 23 |
#include "DYNVARS.h" |
| 24 |
c for Qsw and/or surfaceForcingT |
| 25 |
c choice which field to take pCO2 from for pCO2limit |
| 26 |
c this assumes we use Ttendency from offline |
| 27 |
#include "FFIELDS.h" |
| 28 |
#ifdef ALLOW_LONGSTEP |
| 29 |
#include "LONGSTEP.h" |
| 30 |
#endif |
| 31 |
#include "PTRACERS_SIZE.h" |
| 32 |
#include "PTRACERS_PARAMS.h" |
| 33 |
#include "GCHEM.h" |
| 34 |
#include "MONOD_SIZE.h" |
| 35 |
#include "MONOD.h" |
| 36 |
#include "DARWIN_IO.h" |
| 37 |
#include "DARWIN_FLUX.h" |
| 38 |
#include "MONOD_FIELDS.h" |
| 39 |
|
| 40 |
c ANNA include wavebands_params.h |
| 41 |
#ifdef WAVEBANDS |
| 42 |
#include "SPECTRAL_SIZE.h" |
| 43 |
#include "SPECTRAL.h" |
| 44 |
#include "WAVEBANDS_PARAMS.h" |
| 45 |
#endif |
| 46 |
|
| 47 |
|
| 48 |
C === Global variables === |
| 49 |
c tracers |
| 50 |
_RL Ptr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy,nDarwin) |
| 51 |
INTEGER bi,bj,imin,imax,jmin,jmax |
| 52 |
INTEGER myIter |
| 53 |
_RL myTime |
| 54 |
INTEGER myThid |
| 55 |
|
| 56 |
C !FUNCTIONS: |
| 57 |
C == Functions == |
| 58 |
#ifdef ALLOW_PAR_DAY |
| 59 |
LOGICAL DIFF_PHASE_MULTIPLE |
| 60 |
EXTERNAL DIFF_PHASE_MULTIPLE |
| 61 |
#endif |
| 62 |
|
| 63 |
C============== Local variables ============================================ |
| 64 |
c plankton arrays |
| 65 |
_RL ZooP(nzmax) |
| 66 |
_RL ZooN(nzmax) |
| 67 |
_RL ZooFe(nzmax) |
| 68 |
_RL ZooSi(nzmax) |
| 69 |
_RL Phy(npmax) |
| 70 |
_RL Phy_k(npmax,Nr) |
| 71 |
_RL Phyup(npmax) |
| 72 |
_RL part_k(Nr) |
| 73 |
#ifdef ALLOW_CDOM |
| 74 |
_RL cdom_k(Nr) |
| 75 |
#endif |
| 76 |
c iron partitioning |
| 77 |
_RL freefe(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 78 |
c some working variables |
| 79 |
_RL sumpy |
| 80 |
_RL sumpyup |
| 81 |
c light variables |
| 82 |
_RL PAR(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 83 |
_RL sfac(1-OLy:sNy+OLy) |
| 84 |
_RL atten,lite |
| 85 |
_RL newtime ! for sub-timestepping |
| 86 |
_RL runtim ! time from tracer initialization |
| 87 |
|
| 88 |
|
| 89 |
c ANNA define variables for wavebands |
| 90 |
#ifdef WAVEBANDS |
| 91 |
integer ilam |
| 92 |
_RL PARw_k(tlam,Nr) |
| 93 |
_RL PARwup(tlam) |
| 94 |
_RL acdom_k(Nr,tlam) |
| 95 |
_RL Ek_nll(npmax,tlam) |
| 96 |
_RL EkoverE_nll(npmax,tlam) |
| 97 |
#ifdef DAR_RADTRANS |
| 98 |
integer iday,iyr,imon,isec,lp,wd,mydate(4) |
| 99 |
_RL Edwsf(tlam),Eswsf(tlam) |
| 100 |
_RL Edz(tlam,Nr),Esz(tlam,Nr),Euz(tlam,Nr) |
| 101 |
_RL Estop(tlam,Nr),Eutop(tlam,Nr) |
| 102 |
_RL tirrq(nr) |
| 103 |
_RL tirrwq(tlam,nr) |
| 104 |
_RL amp1(tlam,nr), amp2(tlam,nr) |
| 105 |
_RL solz |
| 106 |
_RL rmud |
| 107 |
_RL actot,bctot,bbctot |
| 108 |
_RL apart_k(Nr,tlam),bpart_k(Nr,tlam),bbpart_k(Nr,tlam) |
| 109 |
_RL bt_k(Nr,tlam), bb_k(Nr,tlam) |
| 110 |
_RL discEs, discEu |
| 111 |
INTEGER idiscEs,jdiscEs,kdiscEs,ldiscEs |
| 112 |
INTEGER idiscEu,jdiscEu,kdiscEu,ldiscEu |
| 113 |
#else |
| 114 |
_RL PARwdn(tlam) |
| 115 |
#endif |
| 116 |
C always need for diagnostics |
| 117 |
_RL a_k(Nr,tlam) |
| 118 |
#endif /* WAVEBANDS */ |
| 119 |
|
| 120 |
|
| 121 |
#ifdef DAR_DIAG_DIVER |
| 122 |
_RL Diver1(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 123 |
_RL Diver2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 124 |
_RL Diver3(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 125 |
_RL Diver4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 126 |
_RL Shannon(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 127 |
_RL Simpson(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 128 |
|
| 129 |
_RL tmpphy(npmax) |
| 130 |
_RL totphy, biotot, maxphy, phymax |
| 131 |
#endif |
| 132 |
|
| 133 |
#ifdef GEIDER |
| 134 |
_RL phychl(npmax) |
| 135 |
_RL phychl_k(npmax,Nr) |
| 136 |
_RL Ekl(npmax) |
| 137 |
_RL EkoverEl(npmax) |
| 138 |
_RL chl2cl(npmax) |
| 139 |
#ifdef DYNAMIC_CHL |
| 140 |
_RL dphychl(npmax) |
| 141 |
_RL chlup(npmax) |
| 142 |
_RL accliml(npmax) |
| 143 |
#endif |
| 144 |
#endif |
| 145 |
#ifdef ALLOW_CDOM |
| 146 |
_RL cdoml |
| 147 |
_RL dcdoml |
| 148 |
#endif |
| 149 |
|
| 150 |
#ifdef ALLOW_DIAGNOSTICS |
| 151 |
COJ for diagnostics |
| 152 |
_RL PParr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 153 |
_RL Nfixarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 154 |
c ANNA_TAVE |
| 155 |
#ifdef WAVES_DIAG_PCHL |
| 156 |
_RL Pchlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax) |
| 157 |
#endif |
| 158 |
c ANNA end TAVE |
| 159 |
#ifdef DAR_DIAG_RSTAR |
| 160 |
_RL Rstararr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax) |
| 161 |
#endif |
| 162 |
#ifdef ALLOW_DIAZ |
| 163 |
#ifdef DAR_DIAG_NFIXP |
| 164 |
_RL NfixParr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,npmax) |
| 165 |
#endif |
| 166 |
#endif |
| 167 |
#endif |
| 168 |
|
| 169 |
|
| 170 |
_RL totphyC |
| 171 |
#ifdef ALLOW_PAR_DAY |
| 172 |
LOGICAL itistime |
| 173 |
INTEGER PARiprev, PARiaccum, iperiod, nav |
| 174 |
_RL phase |
| 175 |
_RL dtsubtime |
| 176 |
#endif |
| 177 |
#ifdef DAR_DIAG_CHL |
| 178 |
_RL ChlGeiderlocal, ChlDoneylocal, ChlCloernlocal |
| 179 |
#ifdef ALLOW_DIAGNOSTICS |
| 180 |
_RL GeiderChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 181 |
_RL GeiderChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 182 |
_RL DoneyChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 183 |
_RL DoneyChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 184 |
_RL CloernChlarr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 185 |
_RL CloernChl2Carr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 186 |
#endif |
| 187 |
#endif |
| 188 |
c |
| 189 |
_RL freefu |
| 190 |
_RL inputFel |
| 191 |
|
| 192 |
c some local variables |
| 193 |
_RL PO4l |
| 194 |
_RL NO3l |
| 195 |
_RL FeTl |
| 196 |
_RL Sil |
| 197 |
_RL DOPl |
| 198 |
_RL DONl |
| 199 |
_RL DOFel |
| 200 |
_RL POPl |
| 201 |
_RL PONl |
| 202 |
_RL POFel |
| 203 |
_RL PSil |
| 204 |
_RL POPupl |
| 205 |
_RL PONupl |
| 206 |
_RL POFeupl |
| 207 |
_RL PSiupl |
| 208 |
_RL Tlocal |
| 209 |
_RL Slocal |
| 210 |
_RL pCO2local |
| 211 |
_RL Qswlocal |
| 212 |
_RL NH4l |
| 213 |
_RL NO2l |
| 214 |
_RL PARl |
| 215 |
_RL dzlocal |
| 216 |
_RL dz_k(Nr) |
| 217 |
_RL dtplankton |
| 218 |
_RL bottom |
| 219 |
_RL PP |
| 220 |
_RL Nfix |
| 221 |
_RL denit |
| 222 |
_RL Chl |
| 223 |
_RL Rstarl(npmax) |
| 224 |
_RL RNstarl(npmax) |
| 225 |
#ifdef DAR_DIAG_GROW |
| 226 |
_RL Growl(npmax) |
| 227 |
_RL Growsql(npmax) |
| 228 |
#endif |
| 229 |
#ifdef ALLOW_DIAZ |
| 230 |
#ifdef DAR_DIAG_NFIXP |
| 231 |
_RL NfixPl(npmax) |
| 232 |
#endif |
| 233 |
#endif |
| 234 |
|
| 235 |
c local tendencies |
| 236 |
_RL dphy(npmax) |
| 237 |
_RL dzoop(nzmax) |
| 238 |
_RL dzoon(nzmax) |
| 239 |
_RL dzoofe(nzmax) |
| 240 |
_RL dzoosi(nzmax) |
| 241 |
_RL dPO4l |
| 242 |
_RL dNO3l |
| 243 |
_RL dFeTl |
| 244 |
_RL dSil |
| 245 |
_RL dDOPl |
| 246 |
_RL dDONl |
| 247 |
_RL dDOFel |
| 248 |
_RL dPOPl |
| 249 |
_RL dPONl |
| 250 |
_RL dPOFel |
| 251 |
_RL dPSil |
| 252 |
_RL dNH4l |
| 253 |
_RL dNO2l |
| 254 |
|
| 255 |
#ifdef ALLOW_CARBON |
| 256 |
_RL dicl |
| 257 |
_RL docl |
| 258 |
_RL pocl |
| 259 |
_RL picl |
| 260 |
_RL alkl |
| 261 |
_RL o2l |
| 262 |
_RL ZooCl(nzmax) |
| 263 |
_RL pocupl |
| 264 |
_RL picupl |
| 265 |
c tendencies |
| 266 |
_RL ddicl |
| 267 |
_RL ddocl |
| 268 |
_RL dpocl |
| 269 |
_RL dpicl |
| 270 |
_RL dalkl |
| 271 |
_RL do2l |
| 272 |
_RL dZooCl(nzmax) |
| 273 |
c air-sea fluxes |
| 274 |
_RL flxCO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 275 |
_RL flxALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 276 |
_RL flxO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 277 |
#endif |
| 278 |
|
| 279 |
_RL tot_Nfix |
| 280 |
|
| 281 |
_RL tmp |
| 282 |
|
| 283 |
_RL phytmp, chltmp |
| 284 |
|
| 285 |
INTEGER i,j,k,it, ktmp |
| 286 |
INTEGER np, nz, np2, npsave |
| 287 |
INTEGER debug |
| 288 |
CHARACTER*8 diagname |
| 289 |
|
| 290 |
c |
| 291 |
c |
| 292 |
c |
| 293 |
DO j=1-OLy,sNy+OLy |
| 294 |
DO i=1-OLx,sNx+OLx |
| 295 |
do k=1,Nr |
| 296 |
freefe(i,j,k)=0. _d 0 |
| 297 |
PAR(i,j,k) = 0. _d 0 |
| 298 |
#ifdef DAR_DIAG_DIVER |
| 299 |
Diver1(i,j,k)=0. _d 0 |
| 300 |
Diver2(i,j,k)=0. _d 0 |
| 301 |
Diver3(i,j,k)=0. _d 0 |
| 302 |
Diver4(i,j,k)=0. _d 0 |
| 303 |
Shannon(i,j,k)=0. _d 0 |
| 304 |
Simpson(i,j,k)=1. _d 0 |
| 305 |
#endif |
| 306 |
|
| 307 |
#ifdef ALLOW_DIAGNOSTICS |
| 308 |
COJ for diagnostics |
| 309 |
PParr(i,j,k) = 0. _d 0 |
| 310 |
Nfixarr(i,j,k) = 0. _d 0 |
| 311 |
#ifdef DAR_DIAG_CHL |
| 312 |
GeiderChlarr(i,j,k) = 0. _d 0 |
| 313 |
GeiderChl2Carr(i,j,k) = 0. _d 0 |
| 314 |
DoneyChlarr(i,j,k) = 0. _d 0 |
| 315 |
DoneyChl2Carr(i,j,k) = 0. _d 0 |
| 316 |
CloernChlarr(i,j,k) = 0. _d 0 |
| 317 |
CloernChl2Carr(i,j,k) = 0. _d 0 |
| 318 |
#endif |
| 319 |
c ANNA_TAVE |
| 320 |
#ifdef WAVES_DIAG_PCHL |
| 321 |
DO np=1,npmax |
| 322 |
Pchlarr(i,j,k,np) = 0. _d 0 |
| 323 |
ENDDO |
| 324 |
#endif |
| 325 |
c ANNA end TAVE |
| 326 |
#ifdef DAR_DIAG_RSTAR |
| 327 |
DO np=1,npmax |
| 328 |
Rstararr(i,j,k,np) = 0. _d 0 |
| 329 |
ENDDO |
| 330 |
#endif |
| 331 |
COJ |
| 332 |
#ifdef ALLOW_DIAZ |
| 333 |
#ifdef DAR_DIAG_NFIXP |
| 334 |
DO np=1,npmax |
| 335 |
NfixParr(i,j,k,np) = 0. _d 0 |
| 336 |
ENDDO |
| 337 |
#endif |
| 338 |
#endif |
| 339 |
#endif |
| 340 |
enddo |
| 341 |
ENDDO |
| 342 |
ENDDO |
| 343 |
|
| 344 |
#ifdef DAR_RADTRANS |
| 345 |
idiscEs = 0 |
| 346 |
jdiscEs = 0 |
| 347 |
kdiscEs = 0 |
| 348 |
ldiscEs = 0 |
| 349 |
idiscEu = 0 |
| 350 |
jdiscEu = 0 |
| 351 |
kdiscEu = 0 |
| 352 |
ldiscEu = 0 |
| 353 |
discEs = 0. |
| 354 |
discEu = 0. |
| 355 |
#endif |
| 356 |
c |
| 357 |
c bio-chemical time loop |
| 358 |
c-------------------------------------------------- |
| 359 |
DO it=1,nsubtime |
| 360 |
c ------------------------------------------------- |
| 361 |
tot_Nfix=0. _d 0 |
| 362 |
COJ cannot use dfloat because of adjoint |
| 363 |
COJ division will be double precision anyway because of dTtracerLev |
| 364 |
newtime=myTime-dTtracerLev(1)+ |
| 365 |
& float(it)*dTtracerLev(1)/float(nsubtime) |
| 366 |
c print*,'it ',it,newtime,nsubtime,myTime |
| 367 |
runtim=myTime-float(PTRACERS_Iter0)*dTtracerLev(1) |
| 368 |
|
| 369 |
c determine iron partitioning - solve for free iron |
| 370 |
c --------------------------- |
| 371 |
call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax, |
| 372 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe, |
| 373 |
& myIter, mythid) |
| 374 |
c -------------------------- |
| 375 |
#ifdef ALLOW_CARBON |
| 376 |
c air-sea flux and dilution of CO2 |
| 377 |
call dic_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iDIC), |
| 378 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iALK), |
| 379 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iPO4), |
| 380 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iSi), |
| 381 |
& flxCO2, |
| 382 |
& bi,bj,imin,imax,jmin,jmax, |
| 383 |
& myIter,myTime,myThid) |
| 384 |
c air-sea flux of O2 |
| 385 |
call dic_o2_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iO2), |
| 386 |
& flxO2, |
| 387 |
& bi,bj,imin,imax,jmin,jmax, |
| 388 |
& myIter,myTime,myThid) |
| 389 |
c dilusion of alkalinity |
| 390 |
call dic_alk_surfforcing(Ptr(1-OLx,1-OLy,1,bi,bj,iALK), |
| 391 |
& flxALK, |
| 392 |
& bi,bj,imin,imax,jmin,jmax, |
| 393 |
& myIter,myTime,myThid) |
| 394 |
#endif |
| 395 |
|
| 396 |
|
| 397 |
c find light in each grid cell |
| 398 |
c --------------------------- |
| 399 |
c determine incident light |
| 400 |
#ifndef READ_PAR |
| 401 |
#ifndef USE_QSW |
| 402 |
DO j=1-OLy,sNy+OLy |
| 403 |
sfac(j)=0. _d 0 |
| 404 |
ENDDO |
| 405 |
call darwin_insol(newTime,sfac,bj) |
| 406 |
#endif /* not USE_QSW */ |
| 407 |
#endif /* not READ_PAR */ |
| 408 |
|
| 409 |
#ifdef ALLOW_PAR_DAY |
| 410 |
C find out which slot of PARday has previous day's average |
| 411 |
dtsubtime = dTtracerLev(1)/float(nsubtime) |
| 412 |
C running index of averaging period |
| 413 |
C myTime has already been incremented in this iteration, |
| 414 |
C go back half a substep to avoid roundoff problems |
| 415 |
iperiod = FLOOR((newtime-0.5 _d 0*dtsubtime) |
| 416 |
& /darwin_PARavPeriod) |
| 417 |
C 0 -> 1, 1->2, 2->0, ... |
| 418 |
PARiprev = MOD(iperiod, 2) + 1 |
| 419 |
|
| 420 |
#ifdef ALLOW_DIAGNOSTICS |
| 421 |
C always fill; this will be the same during PARavPeriod, but this |
| 422 |
C way it won't blow up for weird diagnostics periods. |
| 423 |
C we fill before updating, so the diag is the one used in this time |
| 424 |
C step |
| 425 |
IF ( useDiagnostics ) THEN |
| 426 |
CALL DIAGNOSTICS_FILL( |
| 427 |
& PARday(1-Olx,1-Oly,1,bi,bj,PARiprev),'PARday ', |
| 428 |
& 0,Nr,2,bi,bj,myThid ) |
| 429 |
ENDIF |
| 430 |
#endif |
| 431 |
#endif /* ALLOW_PAR_DAY */ |
| 432 |
|
| 433 |
#ifdef DAR_RADTRANS |
| 434 |
#ifndef DAR_RADTRANS_USE_MODEL_CALENDAR |
| 435 |
#ifdef ALLOW_CAL |
| 436 |
C get current date and time of day: iyr/imon/iday+isec |
| 437 |
CALL CAL_GETDATE( myIter, newtime, mydate, mythid ) |
| 438 |
CALL CAL_CONVDATE( mydate,iyr,imon,iday,isec,lp,wd,mythid ) |
| 439 |
#else |
| 440 |
STOP 'need cal package or DAR_RADTRANS_USE_MODEL_CALENDAR' |
| 441 |
#endif |
| 442 |
#endif |
| 443 |
#endif |
| 444 |
|
| 445 |
C................................................................. |
| 446 |
C................................................................. |
| 447 |
|
| 448 |
|
| 449 |
C ========================== i,j loops ================================= |
| 450 |
DO j=1,sNy |
| 451 |
DO i=1,sNx |
| 452 |
|
| 453 |
c ------------ these are convenient ------------------------------------ |
| 454 |
DO k=1,Nr |
| 455 |
part_k(k) = max(Ptr(i,j,k,bi,bj,iPOP),0. _d 0) |
| 456 |
#ifdef ALLOW_CDOM |
| 457 |
cdom_k(k) = max(Ptr(i,j,k,bi,bj,iCDOM),0. _d 0) |
| 458 |
#endif |
| 459 |
DO np = 1,npmax |
| 460 |
Phy_k(np,k) = max(Ptr(i,j,k,bi,bj,iPhy+np-1),0. _d 0) |
| 461 |
#ifdef GEIDER |
| 462 |
#ifdef DYNAMIC_CHL |
| 463 |
phychl_k(np,k) = max(Ptr(i,j,k,bi,bj,iChl+np-1),0. _d 0) |
| 464 |
#else |
| 465 |
phychl_k(np,k) = max(Chl_phy(i,j,k,bi,bj,np), 0. _d 0) |
| 466 |
#endif |
| 467 |
#endif |
| 468 |
ENDDO |
| 469 |
ENDDO |
| 470 |
|
| 471 |
c ------------ GET CDOM_k FOR WAVEBANDS_3D and RADTRANS ---------------- |
| 472 |
#ifdef WAVEBANDS |
| 473 |
#if defined(DAR_CALC_ACDOM) || defined(DAR_RADTRANS) |
| 474 |
#ifdef ALLOW_CDOM |
| 475 |
call MONOD_ACDOM(cdom_k, |
| 476 |
O acdom_k, |
| 477 |
I myThid) |
| 478 |
#else |
| 479 |
call MONOD_ACDOM(phychl_k,aphy_chl,aw, |
| 480 |
O acdom_k, |
| 481 |
I myThid) |
| 482 |
#endif |
| 483 |
#else |
| 484 |
DO k=1,Nr |
| 485 |
DO ilam = 1,tlam |
| 486 |
acdom_k(k,ilam) = acdom(ilam) |
| 487 |
ENDDO |
| 488 |
ENDDO |
| 489 |
#endif /* DAR_CALC_ACDOM or DAR_RADTRANS */ |
| 490 |
#endif /* WAVEBANDS */ |
| 491 |
|
| 492 |
c ------------ GET INCIDENT NON-SPECTRAL LIGHT ------------------------- |
| 493 |
#if !(defined(WAVEBANDS) && defined(OASIM)) |
| 494 |
#ifdef READ_PAR |
| 495 |
|
| 496 |
lite = sur_par(i,j,bi,bj) |
| 497 |
|
| 498 |
#else /* not READ_PAR */ |
| 499 |
#ifdef USE_QSW |
| 500 |
|
| 501 |
#ifdef ALLOW_LONGSTEP |
| 502 |
Qswlocal=LS_Qsw(i,j,bi,bj) |
| 503 |
#else |
| 504 |
Qswlocal=Qsw(i,j,bi,bj) |
| 505 |
#endif |
| 506 |
lite = -parfrac*Qswlocal*parconv*maskC(i,j,1,bi,bj) |
| 507 |
|
| 508 |
#else /* not USE_QSW */ |
| 509 |
|
| 510 |
C convert W/m2 to uEin/s/m2 |
| 511 |
lite = sfac(j)*parconv*maskC(i,j,1,bi,bj) |
| 512 |
|
| 513 |
#endif /* not USE_QSW */ |
| 514 |
#endif /* not READ_PAR */ |
| 515 |
|
| 516 |
c take ice coverage into account |
| 517 |
c unless already done in seaice package |
| 518 |
#if !(defined (ALLOW_SEAICE) && defined (USE_QSW)) |
| 519 |
lite = lite*(1. _d 0-fice(i,j,bi,bj)) |
| 520 |
#endif |
| 521 |
#endif /* not(WAVEBANDS and OASIM) */ |
| 522 |
|
| 523 |
c ------------ LIGHT ATTENUATION: -------------------------------------- |
| 524 |
#ifndef WAVEBANDS |
| 525 |
c ------------ SINGLE-BAND ATTENUATION --------------------------------- |
| 526 |
atten=0. _d 0 |
| 527 |
do k=1,Nr |
| 528 |
if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then |
| 529 |
sumpyup = sumpy |
| 530 |
sumpy = 0. _d 0 |
| 531 |
do np=1,npmax |
| 532 |
#ifdef GEIDER |
| 533 |
sumpy = sumpy + phychl_k(np,k) |
| 534 |
#else |
| 535 |
sumpy = sumpy + Phy_k(np,k) |
| 536 |
#endif |
| 537 |
enddo |
| 538 |
atten= atten + (k0 + kc*sumpy)*5. _d -1*drF(k) |
| 539 |
if (k.gt.1)then |
| 540 |
atten = atten + (k0+kc*sumpyup)*5. _d -1*drF(k-1) |
| 541 |
endif |
| 542 |
PAR(i,j,k) = lite*exp(-atten) |
| 543 |
endif |
| 544 |
enddo |
| 545 |
|
| 546 |
#else /* WAVEBANDS */ |
| 547 |
#ifndef DAR_RADTRANS |
| 548 |
c ------------ WAVEBANDS W/O RADTRANS ---------------------------------- |
| 549 |
do ilam = 1,tlam |
| 550 |
#ifdef OASIM |
| 551 |
c add direct and diffuse, convert to uEin/m2/s/nm |
| 552 |
PARwup(ilam) = WtouEins(ilam)*(oasim_ed(i,j,ilam,bi,bj)+ |
| 553 |
& oasim_es(i,j,ilam,bi,bj)) |
| 554 |
c and take ice fraction into account |
| 555 |
c PARwup(ilam) = PARwup(ilam)*(1 _d 0 - fice(i,j,bi,bj)) |
| 556 |
#else |
| 557 |
c sf is per nm; convert to per waveband |
| 558 |
PARwup(ilam) = wb_width(ilam)*sf(ilam)*lite |
| 559 |
#endif |
| 560 |
enddo |
| 561 |
|
| 562 |
do k=1,Nr |
| 563 |
if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then |
| 564 |
do ilam = 1,tlam |
| 565 |
sumpy = 0. |
| 566 |
do np = 1,npmax |
| 567 |
c get total attenuation (absorption) by phyto at each wavelength |
| 568 |
sumpy = sumpy + (phychl_k(np,k)*aphy_chl(np,ilam)) |
| 569 |
enddo |
| 570 |
c for diagnostic |
| 571 |
a_k(k,ilam) = aw(ilam) + sumpy + acdom_k(k,ilam) |
| 572 |
atten = a_k(k,ilam)*drF(k) |
| 573 |
PARwdn(ilam) = PARwup(ilam)*exp(-atten) |
| 574 |
enddo |
| 575 |
|
| 576 |
c find for the midpoint of the gridcell (gridcell mean) |
| 577 |
do ilam = 1,tlam |
| 578 |
C PARw_k(ilam,k)=exp((log(PARwup(ilam))+log(PARwdn(ilam)))*0.5) |
| 579 |
PARw_k(ilam,k)=sqrt(PARwup(ilam)*PARwdn(ilam)) |
| 580 |
enddo |
| 581 |
|
| 582 |
c cycle |
| 583 |
do ilam=1,tlam |
| 584 |
PARwup(ilam) = PARwdn(ilam) |
| 585 |
enddo |
| 586 |
else |
| 587 |
do ilam=1,tlam |
| 588 |
PARw_k(ilam,k) = 0. _d 0 |
| 589 |
enddo |
| 590 |
endif |
| 591 |
|
| 592 |
c sum wavebands for total PAR at the mid point of the gridcell (PARl) |
| 593 |
PAR(i,j,k) = 0. |
| 594 |
do ilam = 1,tlam |
| 595 |
PAR(i,j,k) = PAR(i,j,k) + PARw_k(ilam,k) |
| 596 |
enddo |
| 597 |
enddo |
| 598 |
|
| 599 |
#else /* DAR_RADTRANS */ |
| 600 |
c ------------ FULL RADIATIVE TRANSFER CODE ---------------------------- |
| 601 |
do ilam = 1,tlam |
| 602 |
Edwsf(ilam)=oasim_ed(i,j,ilam,bi,bj)*(1 _d 0-fice(i,j,bi,bj)) |
| 603 |
Eswsf(ilam)=oasim_es(i,j,ilam,bi,bj)*(1 _d 0-fice(i,j,bi,bj)) |
| 604 |
enddo |
| 605 |
|
| 606 |
#ifdef DAR_RADTRANS_USE_MODEL_CALENDAR |
| 607 |
C simplified solar zenith angle for 360-day year and daily averaged light |
| 608 |
C cos(solz) is average over daylight period |
| 609 |
call darwin_solz360(newtime, YC(i,j,bi,bj), |
| 610 |
O solz) |
| 611 |
|
| 612 |
#else /* not DAR_RADTRANS_USE_MODEL_CALENDAR */ |
| 613 |
C Use calendar date for full solar zenith angle computation. |
| 614 |
C Use local noon zenith angle to avoid problems with zero cosine and |
| 615 |
C non-zero light. One should really use a zenith angle compatible with |
| 616 |
C the light fields, in particular averaged over the same time period. |
| 617 |
isec = MOD(36.*3600. - 240.*XC(i,j,bi,bj), 86400.) |
| 618 |
call radtrans_sfcsolz(rad,iyr,imon,iday,isec, |
| 619 |
I XC(i,j,bi,bj),YC(i,j,bi,bj), |
| 620 |
O solz) |
| 621 |
#endif /* not DAR_RADTRANS_USE_MODEL_CALENDAR */ |
| 622 |
|
| 623 |
c have Ed,Es below surface - no need for this adjustment on Ed Es for surface affects |
| 624 |
c do ilam=1,tlam |
| 625 |
c rod(ilam) = 0.0 _d 0 |
| 626 |
c ros(ilam) = 0.0 _d 0 |
| 627 |
c enddo |
| 628 |
|
| 629 |
c compute 1/cos(zenith) for direct light below surface |
| 630 |
call radtrans_sfcrmud(rad,solz, |
| 631 |
O rmud) |
| 632 |
|
| 633 |
C compute absorption/scattering coefficients for radtrans |
| 634 |
DO k=1,Nr |
| 635 |
dz_k(k) = drF(k)*HFacC(i,j,k,bi,bj) |
| 636 |
DO ilam = 1,tlam |
| 637 |
c absorption by phyto |
| 638 |
actot = 0.0 |
| 639 |
bctot = 0.0 |
| 640 |
bbctot = 0.0 |
| 641 |
DO np = 1,npmax |
| 642 |
actot = actot + phychl_k(np,k)*aphy_chl(np,ilam) |
| 643 |
bctot = bctot + phychl_k(np,k)*bphy_chl(np,ilam) |
| 644 |
bbctot = bbctot + phychl_k(np,k)*bbphy_chl(np,ilam) |
| 645 |
ENDDO |
| 646 |
c particulate |
| 647 |
apart_k(k,ilam) = part_k(k)*apart_P(ilam) |
| 648 |
bpart_k(k,ilam) = part_k(k)*bpart_P(ilam) |
| 649 |
bbpart_k(k,ilam) = part_k(k)*bbpart_P(ilam) |
| 650 |
c add water and CDOM |
| 651 |
a_k(k,ilam) = aw(ilam)+acdom_k(k,ilam)+actot+apart_k(k,ilam) |
| 652 |
bt_k(k,ilam) = bw(ilam) + bctot + bpart_k(k,ilam) |
| 653 |
bb_k(k,ilam) = darwin_bbw*bw(ilam)+bbctot+bbpart_k(k,ilam) |
| 654 |
bb_k(k,ilam) = MAX(darwin_bbmin, bb_k(k,ilam)) |
| 655 |
c initialize output variables |
| 656 |
Edz(ilam,k) = 0.0 |
| 657 |
Esz(ilam,k) = 0.0 |
| 658 |
Euz(ilam,k) = 0.0 |
| 659 |
Estop(ilam,k) = 0.0 |
| 660 |
Eutop(ilam,k) = 0.0 |
| 661 |
amp1(ilam,k) = 0.0 |
| 662 |
amp2(ilam,k) = 0.0 |
| 663 |
ENDDO |
| 664 |
ENDDO |
| 665 |
|
| 666 |
IF (darwin_radtrans_niter.GE.0) THEN |
| 667 |
call MONOD_RADTRANS_ITER( |
| 668 |
I dz_k,rmud,Edwsf,Eswsf,a_k,bt_k,bb_k, |
| 669 |
I darwin_radtrans_kmax,darwin_radtrans_niter, |
| 670 |
O Edz,Esz,Euz,Eutop, |
| 671 |
O tirrq,tirrwq, |
| 672 |
O amp1,amp2, |
| 673 |
I myThid) |
| 674 |
ELSEIF (darwin_radtrans_niter.EQ.-1) THEN |
| 675 |
c dzlocal ????? |
| 676 |
call MONOD_RADTRANS( |
| 677 |
I drF,rmud,Edwsf,Eswsf,a_k,bt_k,bb_k, |
| 678 |
O Edz,Esz,Euz,Eutop, |
| 679 |
O tirrq,tirrwq, |
| 680 |
I myThid) |
| 681 |
ELSE |
| 682 |
call MONOD_RADTRANS_DIRECT( |
| 683 |
I dz_k,rmud,Edwsf,Eswsf,a_k,bt_k,bb_k, |
| 684 |
I darwin_radtrans_kmax, |
| 685 |
O Edz,Esz,Euz,Estop,Eutop, |
| 686 |
O tirrq,tirrwq, |
| 687 |
O amp1,amp2, |
| 688 |
I myThid) |
| 689 |
#ifdef DAR_CHECK_IRR_CONT |
| 690 |
IF( dz_k(1) .GT. 0.0 )THEN |
| 691 |
DO ilam = 1,tlam |
| 692 |
IF(Eswsf(ilam).GE.darwin_radmodThresh .OR. |
| 693 |
& Edwsf(ilam).GE.darwin_radmodThresh ) THEN |
| 694 |
IF(ABS(Estop(ilam,1)-Eswsf(ilam)) .GT. discEs )THEN |
| 695 |
discEs = ABS(Estop(ilam,1)-Eswsf(ilam)) |
| 696 |
idiscEs = i |
| 697 |
jdiscEs = j |
| 698 |
kdiscEs = 1 |
| 699 |
ldiscEs = ilam |
| 700 |
ENDIF |
| 701 |
DO k=1,darwin_radtrans_kmax-1 |
| 702 |
IF(ABS(Estop(ilam,k+1)-Esz(ilam,k)) .GT. discEs)THEN |
| 703 |
discEs = ABS(Estop(ilam,k+1)-Esz(ilam,k)) |
| 704 |
idiscEs = i |
| 705 |
jdiscEs = j |
| 706 |
kdiscEs = k+1 |
| 707 |
ldiscEs = ilam |
| 708 |
ENDIF |
| 709 |
IF(ABS(Eutop(ilam,k+1)-Euz(ilam,k)) .GT. discEu)THEN |
| 710 |
discEu = ABS(Eutop(ilam,k+1)-Euz(ilam,k)) |
| 711 |
idiscEu = i |
| 712 |
jdiscEu = j |
| 713 |
kdiscEu = k+1 |
| 714 |
ldiscEu = ilam |
| 715 |
ENDIF |
| 716 |
ENDDO |
| 717 |
ENDIF |
| 718 |
ENDDO |
| 719 |
ENDIF |
| 720 |
#endif |
| 721 |
ENDIF |
| 722 |
c |
| 723 |
c uses chl from prev timestep (as wavebands does) |
| 724 |
c keep like this in case need to consider upwelling irradiance as affecting the grid box above |
| 725 |
c will pass to plankton: PARw only, but will be for this timestep for RT and prev timestep for WAVBANDS |
| 726 |
c |
| 727 |
c now copy |
| 728 |
DO k=1,Nr |
| 729 |
PAR(i,j,k) = tirrq(k) |
| 730 |
DO ilam = 1,tlam |
| 731 |
PARw_k(ilam,k) = tirrwq(ilam,k) |
| 732 |
ENDDO |
| 733 |
ENDDO |
| 734 |
#endif /* DAR_RADTRANS */ |
| 735 |
|
| 736 |
c oj: ??? |
| 737 |
c so PARw and PARwup from WAVEBANDS_1D are from previous timestep (attenuation done in plankton) |
| 738 |
c but PARw and PARwup from WAVEBANDS_3D and RADTRANS are for the current timestep |
| 739 |
|
| 740 |
#endif /* WAVEBANDS */ |
| 741 |
|
| 742 |
C ============================ k loop ================================== |
| 743 |
c for each layer ... |
| 744 |
do k= 1, NR |
| 745 |
if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then |
| 746 |
|
| 747 |
c make sure we only deal with positive definite numbers |
| 748 |
c brute force... |
| 749 |
po4l = max(Ptr(i,j,k,bi,bj,iPO4 ),0. _d 0) |
| 750 |
no3l = max(Ptr(i,j,k,bi,bj,iNO3 ),0. _d 0) |
| 751 |
fetl = max(Ptr(i,j,k,bi,bj,iFeT ),0. _d 0) |
| 752 |
sil = max(Ptr(i,j,k,bi,bj,iSi ),0. _d 0) |
| 753 |
dopl = max(Ptr(i,j,k,bi,bj,iDOP ),0. _d 0) |
| 754 |
donl = max(Ptr(i,j,k,bi,bj,iDON ),0. _d 0) |
| 755 |
dofel = max(Ptr(i,j,k,bi,bj,iDOFe ),0. _d 0) |
| 756 |
DO nz = 1,nzmax |
| 757 |
ZooP(nz) = max(Ptr(i,j,k,bi,bj,iZooP (nz)),0. _d 0) |
| 758 |
ZooN(nz) = max(Ptr(i,j,k,bi,bj,iZooN (nz)),0. _d 0) |
| 759 |
ZooFe(nz) = max(Ptr(i,j,k,bi,bj,iZooFe(nz)),0. _d 0) |
| 760 |
ZooSi(nz) = max(Ptr(i,j,k,bi,bj,iZooSi(nz)),0. _d 0) |
| 761 |
ENDDO |
| 762 |
popl = max(Ptr(i,j,k,bi,bj,iPOP ),0. _d 0) |
| 763 |
ponl = max(Ptr(i,j,k,bi,bj,iPON ),0. _d 0) |
| 764 |
pofel = max(Ptr(i,j,k,bi,bj,iPOFe ),0. _d 0) |
| 765 |
psil = max(Ptr(i,j,k,bi,bj,iPOSi ),0. _d 0) |
| 766 |
NH4l = max(Ptr(i,j,k,bi,bj,iNH4 ),0. _d 0) |
| 767 |
NO2l = max(Ptr(i,j,k,bi,bj,iNO2 ),0. _d 0) |
| 768 |
#ifdef ALLOW_CDOM |
| 769 |
cdoml = max(Ptr(i,j,k,bi,bj,iCDOM ),0. _d 0) |
| 770 |
#endif |
| 771 |
#ifdef ALLOW_CARBON |
| 772 |
dicl = max(Ptr(i,j,k,bi,bj,iDIC ),0. _d 0) |
| 773 |
docl = max(Ptr(i,j,k,bi,bj,iDOC ),0. _d 0) |
| 774 |
pocl = max(Ptr(i,j,k,bi,bj,iPOC ),0. _d 0) |
| 775 |
picl = max(Ptr(i,j,k,bi,bj,iPIC ),0. _d 0) |
| 776 |
alkl = max(Ptr(i,j,k,bi,bj,iALK ),0. _d 0) |
| 777 |
o2l = max(Ptr(i,j,k,bi,bj,iO2 ),0. _d 0) |
| 778 |
DO nz = 1,nzmax |
| 779 |
ZooCl(nz) = max(Ptr(i,j,k,bi,bj,iZooC (nz)),0. _d 0) |
| 780 |
ENDDO |
| 781 |
#endif |
| 782 |
|
| 783 |
totphyC = 0. _d 0 |
| 784 |
DO np=1,npmax |
| 785 |
totphyC = totphyC + R_PC(np)*Ptr(i,j,k,bi,bj,iPhy+np-1) |
| 786 |
ENDDO |
| 787 |
|
| 788 |
DO np = 1,npmax |
| 789 |
Phy(np) = Phy_k(np,k) |
| 790 |
#ifdef GEIDER |
| 791 |
phychl(np) = phychl_k(np,k) |
| 792 |
#endif |
| 793 |
ENDDO |
| 794 |
|
| 795 |
#ifdef DAR_DIAG_DIVER |
| 796 |
Diver1(i,j,k)=0. _d 0 |
| 797 |
Diver2(i,j,k)=0. _d 0 |
| 798 |
Diver3(i,j,k)=0. _d 0 |
| 799 |
Diver4(i,j,k)=0. _d 0 |
| 800 |
totphy=0. _d 0 |
| 801 |
do np=1,npmax |
| 802 |
totphy=totphy + Phy(np) |
| 803 |
tmpphy(np)=Phy(np) |
| 804 |
enddo |
| 805 |
if (totphy.gt.diver_thresh0) then |
| 806 |
do np=1,npmax |
| 807 |
c simple threshhold |
| 808 |
if (Phy(np).gt.diver_thresh1) then |
| 809 |
Diver1(i,j,k)=Diver1(i,j,k)+1. _d 0 |
| 810 |
endif |
| 811 |
c proportion of total biomass |
| 812 |
if (Phy(np)/totphy.gt.diver_thresh2) then |
| 813 |
Diver2(i,j,k)=Diver2(i,j,k)+1. _d 0 |
| 814 |
endif |
| 815 |
enddo |
| 816 |
c majority of biomass by finding rank order |
| 817 |
biotot=0. _d 0 |
| 818 |
do np2=1,npmax |
| 819 |
phymax=0. _d 0 |
| 820 |
do np=1,npmax |
| 821 |
if (tmpphy(np).gt.phymax) then |
| 822 |
phymax=tmpphy(np) |
| 823 |
npsave=np |
| 824 |
endif |
| 825 |
enddo |
| 826 |
if (biotot.lt.totphy*diver_thresh3) then |
| 827 |
Diver3(i,j,k)=Diver3(i,j,k)+1. _d 0 |
| 828 |
endif |
| 829 |
biotot=biotot+tmpphy(npsave) |
| 830 |
tmpphy(npsave)=0. _d 0 |
| 831 |
if (np2.eq.1) then |
| 832 |
maxphy=phymax |
| 833 |
endif |
| 834 |
enddo |
| 835 |
c ratio of maximum species |
| 836 |
do np=1,npmax |
| 837 |
if (Phy(np).gt.diver_thresh4*maxphy) then |
| 838 |
Diver4(i,j,k)=Diver4(i,j,k)+1. _d 0 |
| 839 |
endif |
| 840 |
enddo |
| 841 |
c totphy > thresh0 |
| 842 |
endif |
| 843 |
c Shannon and Simpson indices |
| 844 |
Shannon(i,j,k) = 0. _d 0 |
| 845 |
c note: minimal valid value is 1, but we set to zero below threshold |
| 846 |
Simpson(i,j,k) = 0. _d 0 |
| 847 |
if (totphy.gt.shannon_thresh) then |
| 848 |
do np=1,npmax |
| 849 |
if (Phy(np) .gt. 0. _d 0) then |
| 850 |
tmpphy(np) = Phy(np)/totphy |
| 851 |
Shannon(i,j,k)=Shannon(i,j,k)+tmpphy(np)*LOG(tmpphy(np)) |
| 852 |
Simpson(i,j,k)=Simpson(i,j,k)+tmpphy(np)*tmpphy(np) |
| 853 |
endif |
| 854 |
enddo |
| 855 |
Shannon(i,j,k) = -Shannon(i,j,k) |
| 856 |
Simpson(i,j,k) = 1./Simpson(i,j,k) |
| 857 |
endif |
| 858 |
#endif |
| 859 |
|
| 860 |
c.......................................................... |
| 861 |
c find local light |
| 862 |
c.......................................................... |
| 863 |
|
| 864 |
PARl = PAR(i,j,k) |
| 865 |
c.......................................................... |
| 866 |
|
| 867 |
c for explicit sinking of particulate matter and phytoplankton |
| 868 |
if (k.eq.1) then |
| 869 |
popupl =0. _d 0 |
| 870 |
ponupl =0. _d 0 |
| 871 |
pofeupl = 0. _d 0 |
| 872 |
psiupl = 0. _d 0 |
| 873 |
do np=1,npmax |
| 874 |
Phyup(np)=0. _d 0 |
| 875 |
#ifdef DYNAMIC_CHL |
| 876 |
chlup(np)=0. _d 0 |
| 877 |
#endif |
| 878 |
enddo |
| 879 |
#ifdef ALLOW_CARBON |
| 880 |
pocupl = 0. _d 0 |
| 881 |
picupl = 0. _d 0 |
| 882 |
#endif |
| 883 |
endif |
| 884 |
|
| 885 |
#ifdef ALLOW_LONGSTEP |
| 886 |
Tlocal = LS_theta(i,j,k,bi,bj) |
| 887 |
Slocal = LS_salt(i,j,k,bi,bj) |
| 888 |
#else |
| 889 |
Tlocal = theta(i,j,k,bi,bj) |
| 890 |
Slocal = salt(i,j,k,bi,bj) |
| 891 |
#endif |
| 892 |
|
| 893 |
c choice where to get pCO2 from |
| 894 |
c taking from igsm dic run - fed through Tflux array |
| 895 |
c pCO2local=surfaceForcingT(i,j,bi,bj) |
| 896 |
c or from darwin carbon module |
| 897 |
#ifdef ALLOW_CARBON |
| 898 |
#ifdef pH_3D |
| 899 |
pCO2local=pCO2(i,j,k,bi,bj) |
| 900 |
#else |
| 901 |
pCO2local=pCO2(i,j,bi,bj) |
| 902 |
#endif |
| 903 |
#else |
| 904 |
pCO2local=280. _d -6 |
| 905 |
#endif |
| 906 |
|
| 907 |
freefu = max(freefe(i,j,k),0. _d 0) |
| 908 |
if (k.eq.1) then |
| 909 |
inputFel = inputFe(i,j,bi,bj) |
| 910 |
else |
| 911 |
inputFel = 0. _d 0 |
| 912 |
endif |
| 913 |
|
| 914 |
dzlocal = drF(k)*HFacC(i,j,k,bi,bj) |
| 915 |
c set bottom=1.0 if the layer below is not ocean |
| 916 |
ktmp=min(nR,k+1) |
| 917 |
if(hFacC(i,j,ktmp,bi,bj).eq.0. _d 0.or.k.eq.Nr) then |
| 918 |
bottom = 1.0 _d 0 |
| 919 |
else |
| 920 |
bottom = 0.0 _d 0 |
| 921 |
endif |
| 922 |
|
| 923 |
c set tendencies to 0 |
| 924 |
do np=1,npmax |
| 925 |
dphy(np)=0. _d 0 |
| 926 |
enddo |
| 927 |
do nz=1,nzmax |
| 928 |
dzoop(nz)=0. _d 0 |
| 929 |
dzoon(nz)=0. _d 0 |
| 930 |
dzoofe(nz)=0. _d 0 |
| 931 |
dzoosi(nz)=0. _d 0 |
| 932 |
enddo |
| 933 |
dPO4l=0. _d 0 |
| 934 |
dNO3l=0. _d 0 |
| 935 |
dFeTl=0. _d 0 |
| 936 |
dSil=0. _d 0 |
| 937 |
dDOPl=0. _d 0 |
| 938 |
dDONl=0. _d 0 |
| 939 |
dDOFel=0. _d 0 |
| 940 |
dPOPl=0. _d 0 |
| 941 |
dPONl=0. _d 0 |
| 942 |
dPOFel=0. _d 0 |
| 943 |
dPSil=0. _d 0 |
| 944 |
dNH4l=0. _d 0 |
| 945 |
dNO2l=0. _d 0 |
| 946 |
#ifdef DYNAMIC_CHL |
| 947 |
do np=1,npmax |
| 948 |
dphychl(np)=0. _d 0 |
| 949 |
enddo |
| 950 |
#endif |
| 951 |
#ifdef ALLOW_CDOM |
| 952 |
dcdoml=0. _d 0 |
| 953 |
#endif |
| 954 |
#ifdef ALLOW_CARBON |
| 955 |
ddicl=0. _d 0 |
| 956 |
ddocl=0. _d 0 |
| 957 |
dpocl=0. _d 0 |
| 958 |
dpicl=0. _d 0 |
| 959 |
dalkl=0. _d 0 |
| 960 |
do2l=0. _d 0 |
| 961 |
do nz=1,nzmax |
| 962 |
dzoocl(nz)=0. _d 0 |
| 963 |
enddo |
| 964 |
#endif |
| 965 |
c set other arguments to zero |
| 966 |
PP=0. _d 0 |
| 967 |
Nfix=0. _d 0 |
| 968 |
denit=0. _d 0 |
| 969 |
do np=1,npmax |
| 970 |
Rstarl(np)=0. _d 0 |
| 971 |
RNstarl(np)=0. _d 0 |
| 972 |
#ifdef DAR_DIAG_GROW |
| 973 |
Growl(np)=0. _d 0 |
| 974 |
Growsql(np)=0. _d 0 |
| 975 |
#endif |
| 976 |
#ifdef ALLOW_DIAZ |
| 977 |
#ifdef DAR_DIAG_NFIXP |
| 978 |
NfixPl(np)=0. _d 0 |
| 979 |
#endif |
| 980 |
#endif |
| 981 |
#ifdef DAR_DIAG_PARW |
| 982 |
chl2cl(np)=0. _d 0 |
| 983 |
#endif |
| 984 |
#ifdef DAR_DIAG_EK |
| 985 |
Ekl(np)=0. _d 0 |
| 986 |
EkoverEl(np)=0. _d 0 |
| 987 |
do ilam=1,tlam |
| 988 |
Ek_nll(np,ilam)=0. _d 0 |
| 989 |
EkoverE_nll(np,ilam)=0. _d 0 |
| 990 |
enddo |
| 991 |
#endif |
| 992 |
enddo |
| 993 |
|
| 994 |
|
| 995 |
debug=0 |
| 996 |
c if (i.eq.20.and.j.eq.20.and.k.eq.1) debug=8 |
| 997 |
c if (i.eq.10.and.j.eq.10.and.k.eq.1) debug=100 |
| 998 |
c if (i.eq.1.and.j.eq.10.and.k.eq.1) debug=10 |
| 999 |
c if (i.eq.1.and.j.eq.1.and.k.eq.10) debug=14 |
| 1000 |
|
| 1001 |
if (debug.eq.7) print*,'PO4, DOP, POP, ZooP', |
| 1002 |
& PO4l, DOPl, POPl, zooP |
| 1003 |
if (debug.eq.7) print*,'NO3, NO2, NH4, DON, PON, ZooN', |
| 1004 |
& NO3l,NO2l,NH4l, DONl, PONl, ZooN |
| 1005 |
if (debug.eq.7) print*,'FeT, DOFe, POFe, Zoofe', |
| 1006 |
& FeTl, DOFel, POFel, zooFe |
| 1007 |
if (debug.eq.7) print*,'Si, Psi, zooSi', |
| 1008 |
& Sil, PSil, zooSi |
| 1009 |
if (debug.eq.7) print*,'Total Phy', sumpy, PARl, lite |
| 1010 |
if (debug.eq.7) print*,'Phy', Phy |
| 1011 |
|
| 1012 |
if (debug.eq.8) print*,'k, PARl, inputFel, dzlocal', |
| 1013 |
& PARl, inputFel, dzlocal |
| 1014 |
|
| 1015 |
c if (NO3l.eq.0. _d 0.or.NO2l.eq.0. _d 0 |
| 1016 |
c & .or.NH4l.eq.0. _d 0) then |
| 1017 |
c print*,'QQ N zeros',i,j,k,NO3l,NO2l,NH4l |
| 1018 |
c endif |
| 1019 |
|
| 1020 |
|
| 1021 |
c ANNA pass extra variables if WAVEBANDS |
| 1022 |
CALL MONOD_PLANKTON( |
| 1023 |
U Phy, |
| 1024 |
I zooP, zooN, zooFe, zooSi, |
| 1025 |
O PP, Chl, Nfix, denit, |
| 1026 |
I PO4l, NO3l, FeTl, Sil, |
| 1027 |
I NO2l, NH4l, |
| 1028 |
I DOPl, DONl, DOFel, |
| 1029 |
I POPl, PONl, POFel, PSil, |
| 1030 |
I phyup, popupl, ponupl, |
| 1031 |
I pofeupl, psiupl, |
| 1032 |
I PARl, |
| 1033 |
I Tlocal, Slocal, |
| 1034 |
I pCO2local, |
| 1035 |
I freefu, inputFel, |
| 1036 |
I bottom, dzlocal, |
| 1037 |
O Rstarl, RNstarl, |
| 1038 |
#ifdef DAR_DIAG_GROW |
| 1039 |
O Growl, Growsql, |
| 1040 |
#endif |
| 1041 |
#ifdef ALLOW_DIAZ |
| 1042 |
#ifdef DAR_DIAG_NFIXP |
| 1043 |
O NfixPl, |
| 1044 |
#endif |
| 1045 |
#endif |
| 1046 |
O dphy, dzooP, dzooN, dzooFe, |
| 1047 |
O dzooSi, |
| 1048 |
O dPO4l, dNO3l, dFeTl, dSil, |
| 1049 |
O dNH4l, dNO2l, |
| 1050 |
O dDOPl, dDONl, dDOFel, |
| 1051 |
O dPOPl, dPONl, dPOFel, dPSil, |
| 1052 |
#ifdef ALLOW_CARBON |
| 1053 |
I dicl, docl, pocl, picl, |
| 1054 |
I alkl, o2l, zoocl, |
| 1055 |
I pocupl, picupl, |
| 1056 |
O ddicl, ddocl, dpocl, dpicl, |
| 1057 |
O dalkl, do2l, dzoocl, |
| 1058 |
#endif |
| 1059 |
#ifdef GEIDER |
| 1060 |
O phychl, |
| 1061 |
#ifdef DAR_DIAG_EK |
| 1062 |
I Ekl, EkoverEl, |
| 1063 |
#endif |
| 1064 |
#ifdef DAR_DIAG_PARW |
| 1065 |
I chl2cl, |
| 1066 |
#endif |
| 1067 |
#ifdef DYNAMIC_CHL |
| 1068 |
I dphychl, |
| 1069 |
I chlup, |
| 1070 |
#ifdef DAR_DIAG_EK |
| 1071 |
O accliml, |
| 1072 |
#endif |
| 1073 |
#endif |
| 1074 |
#ifdef ALLOW_CDOM |
| 1075 |
O dcdoml, |
| 1076 |
I cdoml, |
| 1077 |
#endif |
| 1078 |
#ifdef WAVEBANDS |
| 1079 |
I PARw_k(1,k), |
| 1080 |
#ifdef DAR_DIAG_EK |
| 1081 |
I Ek_nll, EkoverE_nll, |
| 1082 |
#endif |
| 1083 |
#endif |
| 1084 |
#endif |
| 1085 |
#ifdef ALLOW_PAR_DAY |
| 1086 |
I PARday(i,j,k,bi,bj,PARiprev), |
| 1087 |
#endif |
| 1088 |
#ifdef DAR_DIAG_CHL |
| 1089 |
O ChlGeiderlocal, ChlDoneylocal, |
| 1090 |
O ChlCloernlocal, |
| 1091 |
#endif |
| 1092 |
I debug, |
| 1093 |
I runtim, |
| 1094 |
I MyThid) |
| 1095 |
|
| 1096 |
c |
| 1097 |
c if (i.eq.1.and.k.eq.1.and.j.eq.5) then |
| 1098 |
c print*,i,j,k |
| 1099 |
c print*,'NO3,No2,NH4', NO3l, NO2l, NH4l |
| 1100 |
c print*,'dNO3 etc',dNO3l,dNH4l, dNO2l |
| 1101 |
c print*,'PO4',PO4l,dPO4l |
| 1102 |
c endif |
| 1103 |
c |
| 1104 |
#ifdef IRON_SED_SOURCE |
| 1105 |
c only above minimum depth (continental shelf) |
| 1106 |
if (rF(k).gt.-depthfesed) then |
| 1107 |
c only if bottom layer |
| 1108 |
if (bottom.eq.1.0 _d 0) then |
| 1109 |
#ifdef IRON_SED_SOURCE_VARIABLE |
| 1110 |
c calculate sink of POP into bottom layer |
| 1111 |
tmp=(wp_sink*POPupl)/(dzlocal) |
| 1112 |
c convert to dPOCl |
| 1113 |
dFetl=dFetl+fesedflux_pcm*(tmp*106. _d 0) |
| 1114 |
#else |
| 1115 |
dFetl=dFetl+fesedflux/ |
| 1116 |
& (drF(k)*hFacC(i,j,k,bi,bj)) |
| 1117 |
#endif |
| 1118 |
endif |
| 1119 |
endif |
| 1120 |
#endif |
| 1121 |
|
| 1122 |
|
| 1123 |
popupl = POPl |
| 1124 |
ponupl = PONl |
| 1125 |
pofeupl = POFel |
| 1126 |
psiupl = PSil |
| 1127 |
do np=1,npmax |
| 1128 |
Phyup(np) = Phy(np) |
| 1129 |
#ifdef DYNAMIC_CHL |
| 1130 |
chlup(np) = phychl(np) |
| 1131 |
#endif |
| 1132 |
enddo |
| 1133 |
|
| 1134 |
|
| 1135 |
c |
| 1136 |
#ifdef ALLOW_CARBON |
| 1137 |
pocupl = POCl |
| 1138 |
picupl = PICl |
| 1139 |
c include surface forcing |
| 1140 |
if (k.eq.1) then |
| 1141 |
ddicl = ddicl + flxCO2(i,j) |
| 1142 |
dalkl = dalkl + flxALK(i,j) |
| 1143 |
do2l = do2l + flxO2(i,j) |
| 1144 |
endif |
| 1145 |
#endif |
| 1146 |
c |
| 1147 |
#ifdef CONS_SUPP |
| 1148 |
c only works for two layer model |
| 1149 |
if (k.eq.2) then |
| 1150 |
dpo4l=0. _d 0 |
| 1151 |
dno3l=0. _d 0 |
| 1152 |
dfetl=0. _d 0 |
| 1153 |
dsil=0. _d 0 |
| 1154 |
endif |
| 1155 |
#endif |
| 1156 |
#ifdef RELAX_NUTS |
| 1157 |
#ifdef DENIT_RELAX |
| 1158 |
if (rF(k).lt.-depthdenit) then |
| 1159 |
if (darwin_relaxscale.gt.0. _d 0) then |
| 1160 |
IF ( darwin_NO3_RelaxFile .NE. ' ' ) THEN |
| 1161 |
c Fanny's formulation |
| 1162 |
tmp=(Ptr(i,j,k,bi,bj,iNO3 )-no3_obs(i,j,k,bi,bj)) |
| 1163 |
if (tmp.gt.0. _d 0) then |
| 1164 |
dno3l=dno3l-(tmp/ |
| 1165 |
& darwin_relaxscale) |
| 1166 |
denit=tmp/ |
| 1167 |
& darwin_relaxscale |
| 1168 |
else |
| 1169 |
denit=0. _d 0 |
| 1170 |
endif |
| 1171 |
c --- end fanny's formulation |
| 1172 |
ENDIF |
| 1173 |
c steph's alternative |
| 1174 |
c tmp=(Ptr(i,j,k,bi,bj,iNO3 )- |
| 1175 |
c & 16. _d 0 * Ptr(i,j,k,bi,bj,iPO4 )) |
| 1176 |
c if (tmp.gt.0. _d 0) then |
| 1177 |
c dno3l=dno3l-(tmp/ |
| 1178 |
c & darwin_relaxscale) |
| 1179 |
c denit=tmp/ |
| 1180 |
c & darwin_relaxscale |
| 1181 |
c else |
| 1182 |
c denit=0. _d 0 |
| 1183 |
c endif |
| 1184 |
c ---- end steph's alternative |
| 1185 |
endif |
| 1186 |
endif |
| 1187 |
#else |
| 1188 |
if (darwin_relaxscale.gt.0. _d 0) then |
| 1189 |
IF ( darwin_PO4_RelaxFile .NE. ' ' ) THEN |
| 1190 |
tmp=(Ptr(i,j,k,bi,bj,iPO4 )-po4_obs(i,j,k,bi,bj)) |
| 1191 |
if (tmp.lt.0. _d 0) then |
| 1192 |
dpo4l=dpo4l-(tmp/ |
| 1193 |
& darwin_relaxscale) |
| 1194 |
endif |
| 1195 |
ENDIF |
| 1196 |
IF ( darwin_NO3_RelaxFile .NE. ' ' ) THEN |
| 1197 |
tmp=(Ptr(i,j,k,bi,bj,iNO3 )-no3_obs(i,j,k,bi,bj)) |
| 1198 |
if (tmp.lt.0. _d 0) then |
| 1199 |
dno3l=dno3l-(tmp/ |
| 1200 |
& darwin_relaxscale) |
| 1201 |
endif |
| 1202 |
ENDIF |
| 1203 |
IF ( darwin_Fet_RelaxFile .NE. ' ' ) THEN |
| 1204 |
tmp=(Ptr(i,j,k,bi,bj,iFeT )-fet_obs(i,j,k,bi,bj)) |
| 1205 |
if (tmp.lt.0. _d 0) then |
| 1206 |
dfetl=dfetl-(tmp/ |
| 1207 |
& darwin_relaxscale) |
| 1208 |
endif |
| 1209 |
ENDIF |
| 1210 |
IF ( darwin_Si_RelaxFile .NE. ' ' ) THEN |
| 1211 |
tmp=( Ptr(i,j,k,bi,bj,iSi )-si_obs(i,j,k,bi,bj)) |
| 1212 |
if (tmp.lt.0. _d 0) then |
| 1213 |
dsil=dsil-(tmp/ |
| 1214 |
& darwin_relaxscale) |
| 1215 |
endif |
| 1216 |
ENDIF |
| 1217 |
endif |
| 1218 |
#endif |
| 1219 |
#endif |
| 1220 |
#ifdef FLUX_NUTS |
| 1221 |
dpo4l=dpo4l+po4_flx(i,j,k,bi,bj) |
| 1222 |
dno3l=dno3l+no3_flx(i,j,k,bi,bj) |
| 1223 |
dfetl=dfetl+fet_flx(i,j,k,bi,bj) |
| 1224 |
dsil=dsil+si_flx(i,j,k,bi,bj) |
| 1225 |
#endif |
| 1226 |
|
| 1227 |
#ifdef ALLOW_OBCS |
| 1228 |
IF (useOBCS) THEN |
| 1229 |
dpo4l = dpo4l *maskInC(i,j,bi,bj) |
| 1230 |
dno3l = dno3l *maskInC(i,j,bi,bj) |
| 1231 |
dfetl = dfetl *maskInC(i,j,bi,bj) |
| 1232 |
dsil = dsil *maskInC(i,j,bi,bj) |
| 1233 |
ddopl = ddopl *maskInC(i,j,bi,bj) |
| 1234 |
ddonl = ddonl *maskInC(i,j,bi,bj) |
| 1235 |
ddofel = ddofel*maskInC(i,j,bi,bj) |
| 1236 |
dpopl = dpopl *maskInC(i,j,bi,bj) |
| 1237 |
dponl = dponl *maskInC(i,j,bi,bj) |
| 1238 |
dpofel = dpofel*maskInC(i,j,bi,bj) |
| 1239 |
dpsil = dpsil *maskInC(i,j,bi,bj) |
| 1240 |
dnh4l = dnh4l *maskInC(i,j,bi,bj) |
| 1241 |
dno2l = dno2l *maskInC(i,j,bi,bj) |
| 1242 |
DO nz = 1,nzmax |
| 1243 |
dzoop (nz) = dzoop (nz)*maskInC(i,j,bi,bj) |
| 1244 |
dzoon (nz) = dzoon (nz)*maskInC(i,j,bi,bj) |
| 1245 |
dzoofe(nz) = dzoofe(nz)*maskInC(i,j,bi,bj) |
| 1246 |
dzoosi(nz) = dzoosi(nz)*maskInC(i,j,bi,bj) |
| 1247 |
ENDDO |
| 1248 |
DO np = 1,npmax |
| 1249 |
dPhy(np) = dPhy(np)*maskInC(i,j,bi,bj) |
| 1250 |
#ifdef GEIDER |
| 1251 |
#ifdef DYNAMIC_CHL |
| 1252 |
dphychl(np) = dphychl(np)*maskInC(i,j,bi,bj) |
| 1253 |
#endif |
| 1254 |
#endif |
| 1255 |
ENDDO |
| 1256 |
#ifdef ALLOW_CDOM |
| 1257 |
dcdoml = dcdoml*maskInC(i,j,bi,bj) |
| 1258 |
#endif |
| 1259 |
#ifdef ALLOW_CARBON |
| 1260 |
ddicl = ddicl*maskInC(i,j,bi,bj) |
| 1261 |
ddocl = ddocl*maskInC(i,j,bi,bj) |
| 1262 |
dpocl = dpocl*maskInC(i,j,bi,bj) |
| 1263 |
dpicl = dpicl*maskInC(i,j,bi,bj) |
| 1264 |
dalkl = dalkl*maskInC(i,j,bi,bj) |
| 1265 |
do2l = do2l *maskInC(i,j,bi,bj) |
| 1266 |
DO nz = 1,nzmax |
| 1267 |
dzoocl(nz) = dzoocl(nz)*maskInC(i,j,bi,bj) |
| 1268 |
ENDDO |
| 1269 |
#endif |
| 1270 |
ENDIF |
| 1271 |
#endif |
| 1272 |
|
| 1273 |
c now update main tracer arrays |
| 1274 |
dtplankton = PTRACERS_dTLev(k)/float(nsubtime) |
| 1275 |
Ptr(i,j,k,bi,bj,iPO4 ) = Ptr(i,j,k,bi,bj,iPO4) + |
| 1276 |
& dtplankton*dpo4l |
| 1277 |
Ptr(i,j,k,bi,bj,iNO3 ) = Ptr(i,j,k,bi,bj,iNO3) + |
| 1278 |
& dtplankton*dno3l |
| 1279 |
Ptr(i,j,k,bi,bj,iFeT ) = Ptr(i,j,k,bi,bj,iFeT) + |
| 1280 |
& dtplankton*dfetl |
| 1281 |
Ptr(i,j,k,bi,bj,iSi ) = Ptr(i,j,k,bi,bj,iSi ) + |
| 1282 |
& dtplankton*dsil |
| 1283 |
Ptr(i,j,k,bi,bj,iDOP ) = Ptr(i,j,k,bi,bj,iDOP) + |
| 1284 |
& dtplankton*ddopl |
| 1285 |
Ptr(i,j,k,bi,bj,iDON ) = Ptr(i,j,k,bi,bj,iDON) + |
| 1286 |
& dtplankton*ddonl |
| 1287 |
Ptr(i,j,k,bi,bj,iDOFe) = Ptr(i,j,k,bi,bj,iDOFe) + |
| 1288 |
& dtplankton*ddofel |
| 1289 |
Ptr(i,j,k,bi,bj,iPOP ) = Ptr(i,j,k,bi,bj,iPOP ) + |
| 1290 |
& dtplankton*dpopl |
| 1291 |
Ptr(i,j,k,bi,bj,iPON ) = Ptr(i,j,k,bi,bj,iPON ) + |
| 1292 |
& dtplankton*dponl |
| 1293 |
Ptr(i,j,k,bi,bj,iPOFe) = Ptr(i,j,k,bi,bj,iPOFe) + |
| 1294 |
& dtplankton*dpofel |
| 1295 |
Ptr(i,j,k,bi,bj,iPOSi) = Ptr(i,j,k,bi,bj,iPOSi) + |
| 1296 |
& dtplankton*dpsil |
| 1297 |
Ptr(i,j,k,bi,bj,iNH4 ) = Ptr(i,j,k,bi,bj,iNH4 ) + |
| 1298 |
& dtplankton*dnh4l |
| 1299 |
Ptr(i,j,k,bi,bj,iNO2 ) = Ptr(i,j,k,bi,bj,iNO2 ) + |
| 1300 |
& dtplankton*dno2l |
| 1301 |
DO nz = 1,nzmax |
| 1302 |
Ptr(i,j,k,bi,bj,iZooP (nz)) = Ptr(i,j,k,bi,bj,iZooP (nz)) + |
| 1303 |
& dtplankton*dzoop (nz) |
| 1304 |
Ptr(i,j,k,bi,bj,iZooN (nz)) = Ptr(i,j,k,bi,bj,iZooN (nz)) + |
| 1305 |
& dtplankton*dzoon (nz) |
| 1306 |
Ptr(i,j,k,bi,bj,iZooFe(nz)) = Ptr(i,j,k,bi,bj,iZooFe(nz)) + |
| 1307 |
& dtplankton*dzoofe(nz) |
| 1308 |
Ptr(i,j,k,bi,bj,iZooSi(nz)) = Ptr(i,j,k,bi,bj,iZooSi(nz)) + |
| 1309 |
& dtplankton*dzoosi(nz) |
| 1310 |
ENDDO |
| 1311 |
DO np = 1,npmax |
| 1312 |
Ptr(i,j,k,bi,bj,iPhy+np-1) = Ptr(i,j,k,bi,bj,iPhy+np-1) + |
| 1313 |
& dtplankton*dPhy(np) |
| 1314 |
#ifdef GEIDER |
| 1315 |
#ifdef DYNAMIC_CHL |
| 1316 |
if (np.eq.1) Chl=0. _d 0 |
| 1317 |
Ptr(i,j,k,bi,bj,iChl+np-1) = Ptr(i,j,k,bi,bj,iChl+np-1) + |
| 1318 |
& dtplankton*dphychl(np) |
| 1319 |
c chltmp=Ptr(i,j,k,bi,bj,iChl+np-1) |
| 1320 |
c phytmp=Ptr(i,j,k,bi,bj,iPhy+np-1) |
| 1321 |
c Ptr(i,j,k,bi,bj,iChl+np-1)= |
| 1322 |
c & max(chltmp,phytmp*R_PC(np)*chl2cmin(np)) |
| 1323 |
c if (np.eq.1.and.i.eq.1.and.j.eq.1.and.k.eq.1) |
| 1324 |
c & print*,chltmp,phytmp,phytmp*R_PC(np)*chl2cmin(np), |
| 1325 |
c & phytmp*R_PC(np)*chl2cmax(np) |
| 1326 |
c in darwin_plankton this is stored for previous timestep. Reset here. |
| 1327 |
Chl=Chl+Ptr(i,j,k,bi,bj,iChl+np-1) |
| 1328 |
#else |
| 1329 |
Chl_phy(i,j,k,bi,bj,np)=phychl(np) |
| 1330 |
#endif |
| 1331 |
#endif |
| 1332 |
ENDDO |
| 1333 |
#ifdef ALLOW_CDOM |
| 1334 |
Ptr(i,j,k,bi,bj,iCDOM ) = Ptr(i,j,k,bi,bj,iCDOM ) + |
| 1335 |
& dtplankton*dcdoml |
| 1336 |
#endif |
| 1337 |
#ifdef ALLOW_CARBON |
| 1338 |
Ptr(i,j,k,bi,bj,iDIC ) = Ptr(i,j,k,bi,bj,iDIC ) + |
| 1339 |
& dtplankton*ddicl |
| 1340 |
Ptr(i,j,k,bi,bj,iDOC ) = Ptr(i,j,k,bi,bj,iDOC ) + |
| 1341 |
& dtplankton*ddocl |
| 1342 |
Ptr(i,j,k,bi,bj,iPOC ) = Ptr(i,j,k,bi,bj,iPOC ) + |
| 1343 |
& dtplankton*dpocl |
| 1344 |
Ptr(i,j,k,bi,bj,iPIC ) = Ptr(i,j,k,bi,bj,iPIC ) + |
| 1345 |
& dtplankton*dpicl |
| 1346 |
Ptr(i,j,k,bi,bj,iALK ) = Ptr(i,j,k,bi,bj,iALK ) + |
| 1347 |
& dtplankton*dalkl |
| 1348 |
Ptr(i,j,k,bi,bj,iO2 ) = Ptr(i,j,k,bi,bj,iO2 ) + |
| 1349 |
& dtplankton*do2l |
| 1350 |
DO nz = 1,nzmax |
| 1351 |
Ptr(i,j,k,bi,bj,iZooC (nz)) = Ptr(i,j,k,bi,bj,iZooC (nz)) + |
| 1352 |
& dtplankton*dzoocl (nz) |
| 1353 |
ENDDO |
| 1354 |
#endif |
| 1355 |
c |
| 1356 |
#ifdef ALLOW_MUTANTS |
| 1357 |
cQQQQTEST |
| 1358 |
if (debug.eq.11) then |
| 1359 |
if (k.lt.8) then |
| 1360 |
do np=1,60 |
| 1361 |
if(mod(np,4).eq. 1. _d 0)then |
| 1362 |
np2=np+1 |
| 1363 |
np4=np+3 |
| 1364 |
|
| 1365 |
Coj: couldn't test this part after change Phynp -> Ptr(...,iPhy+np-1) |
| 1366 |
Coj: used to be many copies of this: |
| 1367 |
C if (dPhy(2).gt.dPhy(4).and.dPhy(4).gt.0. _d 0) then |
| 1368 |
C print*,'QQQ dphy2 > dphy4',i,j,k,Phy2(i,j,k), |
| 1369 |
C & Phy4(i,j,k), dPhy(2), dPhy(4) |
| 1370 |
C endif |
| 1371 |
C if (Phy2(i,j,k).gt.Phy4(i,j,k).and. |
| 1372 |
C & Phy4(i,j,k).gt.0. _d 0) then |
| 1373 |
C print*,'QQ phy02 > phy04',i,j,k,Phy2(i,j,k), |
| 1374 |
C & Phy4(i,j,k), dPhy(2), dPhy(4) |
| 1375 |
C endif |
| 1376 |
|
| 1377 |
if (dPhy(np2).gt.dPhy(np4).and.dPhy(np4).gt.0. _d 0) then |
| 1378 |
print*,'QQQ dphy',np2,' > dphy',np4,i,j,k,Phy2(i,j,k), |
| 1379 |
& Ptr(i,j,k,bi,bj,iPhy+np4-1), dPhy(2), dPhy(4) |
| 1380 |
endif |
| 1381 |
if (Ptr(i,j,k,bi,bj,iphy+np2-1).gt.Ptr(i,j,k,bi,bj,iPhy+np4-1) |
| 1382 |
& .and. Ptr(i,j,k,bi,bj,iPhy+np4-1).gt.0. _d 0) then |
| 1383 |
print*,'QQ phy',np2,' > ',np4,i,j,k, |
| 1384 |
& Ptr(i,j,k,bi,bj,iPhy+np2-1), |
| 1385 |
& Ptr(i,j,k,bi,bj,iPhy+np4-1), dPhy(2), dPhy(4) |
| 1386 |
endif |
| 1387 |
|
| 1388 |
endif |
| 1389 |
enddo ! np |
| 1390 |
endif ! k |
| 1391 |
endif |
| 1392 |
#endif |
| 1393 |
|
| 1394 |
#ifdef ALLOW_DIAGNOSTICS |
| 1395 |
COJ for diagnostics |
| 1396 |
PParr(i,j,k) = PP |
| 1397 |
Nfixarr(i,j,k) = Nfix |
| 1398 |
c ANNA_TAVE |
| 1399 |
#ifdef WAVES_DIAG_PCHL |
| 1400 |
DO np = 1,npmax |
| 1401 |
Pchlarr(i,j,k,np) = phychl(np) |
| 1402 |
ENDDO |
| 1403 |
#endif |
| 1404 |
c ANNA end TAVE |
| 1405 |
#ifdef DAR_DIAG_RSTAR |
| 1406 |
DO np = 1,npmax |
| 1407 |
Rstararr(i,j,k,np) = Rstarl(np) |
| 1408 |
ENDDO |
| 1409 |
#endif |
| 1410 |
#ifdef ALLOW_DIAZ |
| 1411 |
#ifdef DAR_DIAG_NFIXP |
| 1412 |
DO np = 1,npmax |
| 1413 |
NfixParr(i,j,k,np) = NfixPl(np) |
| 1414 |
ENDDO |
| 1415 |
#endif |
| 1416 |
#endif |
| 1417 |
#ifdef DAR_DIAG_CHL |
| 1418 |
GeiderChlarr(i,j,k) = ChlGeiderlocal |
| 1419 |
DoneyChlarr(i,j,k) = ChlDoneylocal |
| 1420 |
CloernChlarr(i,j,k) = ChlCloernlocal |
| 1421 |
IF (totphyC .NE. 0. _d 0) THEN |
| 1422 |
GeiderChl2Carr(i,j,k) = ChlGeiderlocal/totphyC |
| 1423 |
DoneyChl2Carr(i,j,k) = ChlDoneylocal/totphyC |
| 1424 |
CloernChl2Carr(i,j,k) = ChlCloernlocal/totphyC |
| 1425 |
ELSE |
| 1426 |
GeiderChl2Carr(i,j,k) = 0. _d 0 |
| 1427 |
DoneyChl2Carr(i,j,k) = 0. _d 0 |
| 1428 |
CloernChl2Carr(i,j,k) = 0. _d 0 |
| 1429 |
ENDIF |
| 1430 |
#endif |
| 1431 |
COJ |
| 1432 |
#endif /* ALLOW_DIAGNOSTICS */ |
| 1433 |
|
| 1434 |
c total fixation (NOTE - STILL NEEDS GLOB SUM) |
| 1435 |
tot_Nfix=tot_Nfix+ |
| 1436 |
& Nfix*rA(i,j,bi,bj)*rF(k)*hFacC(i,j,k,bi,bj) |
| 1437 |
|
| 1438 |
#ifdef ALLOW_TIMEAVE |
| 1439 |
c save averages |
| 1440 |
c Phygrow1ave(i,j,k,bi,bj)=Phygrow1ave(i,j,k,bi,bj)+ |
| 1441 |
c & mu1*py1*deltaTclock |
| 1442 |
c & /float(nsubtime) |
| 1443 |
c Phygrow2ave(i,j,k,bi,bj)=Phygrow2ave(i,j,k,bi,bj)+ |
| 1444 |
c & mu2*py2*deltaTclock |
| 1445 |
c & /float(nsubtime) |
| 1446 |
c Zoograzave(i,j,k,bi,bj)=Zoograzave(i,j,k,bi,bj)+ |
| 1447 |
c & (gampn1*graz1*zo +gampn2*graz2*zo)* |
| 1448 |
c & deltaTclock/float(nsubtime) |
| 1449 |
#ifdef GEIDER |
| 1450 |
Chlave(i,j,k,bi,bj)=Chlave(i,j,k,bi,bj)+ |
| 1451 |
& Chl*dtplankton |
| 1452 |
#endif |
| 1453 |
PARave(i,j,k,bi,bj)=PARave(i,j,k,bi,bj)+ |
| 1454 |
& PARl*dtplankton |
| 1455 |
PPave(i,j,k,bi,bj)=PPave(i,j,k,bi,bj)+ |
| 1456 |
& PP*dtplankton |
| 1457 |
Nfixave(i,j,k,bi,bj)=Nfixave(i,j,k,bi,bj)+ |
| 1458 |
& Nfix*dtplankton |
| 1459 |
Denitave(i,j,k,bi,bj)=Denitave(i,j,k,bi,bj)+ |
| 1460 |
& denit*dtplankton |
| 1461 |
#ifdef WAVES_DIAG_PCHL |
| 1462 |
do np=1,npmax |
| 1463 |
Pchlave(i,j,k,bi,bj,np)=Pchlave(i,j,k,bi,bj,np)+ |
| 1464 |
& phychl(np)*dtplankton |
| 1465 |
enddo |
| 1466 |
#endif |
| 1467 |
#ifdef DAR_DIAG_PARW |
| 1468 |
do ilam=1,tlam |
| 1469 |
PARwave(i,j,k,bi,bj,ilam)=PARwave(i,j,k,bi,bj,ilam)+ |
| 1470 |
& PARw_k(ilam,k)*dtplankton |
| 1471 |
enddo |
| 1472 |
do np=1,npmax |
| 1473 |
chl2cave(i,j,k,bi,bj,np)=chl2cave(i,j,k,bi,bj,np)+ |
| 1474 |
& chl2cl(np)*dtplankton |
| 1475 |
enddo |
| 1476 |
#endif |
| 1477 |
#ifdef DAR_DIAG_ACDOM |
| 1478 |
c print*,'acdom',k,acdom_k(k,darwin_diag_acdom_ilam) |
| 1479 |
aCDOMave(i,j,k,bi,bj)=aCDOMave(i,j,k,bi,bj)+ |
| 1480 |
& acdom_k(k,darwin_diag_acdom_ilam)*dtplankton |
| 1481 |
#endif |
| 1482 |
#ifdef DAR_DIAG_IRR |
| 1483 |
do ilam = 1,tlam |
| 1484 |
if (k.EQ.1) then |
| 1485 |
Edave(i,j,k,bi,bj,ilam)=Edave(i,j,k,bi,bj,ilam)+ |
| 1486 |
& Edwsf(ilam)*dtplankton |
| 1487 |
Esave(i,j,k,bi,bj,ilam)=Esave(i,j,k,bi,bj,ilam)+ |
| 1488 |
& Eswsf(ilam)*dtplankton |
| 1489 |
Coj no Eu at surface (yet) |
| 1490 |
else |
| 1491 |
Edave(i,j,k,bi,bj,ilam)=Edave(i,j,k,bi,bj,ilam)+ |
| 1492 |
& Edz(ilam,k-1)*dtplankton |
| 1493 |
Esave(i,j,k,bi,bj,ilam)=Esave(i,j,k,bi,bj,ilam)+ |
| 1494 |
& Esz(ilam,k-1)*dtplankton |
| 1495 |
Euave(i,j,k,bi,bj,ilam)=Euave(i,j,k,bi,bj,ilam)+ |
| 1496 |
& Euz(ilam,k-1)*dtplankton |
| 1497 |
endif |
| 1498 |
Estave(i,j,k,bi,bj,ilam)=Estave(i,j,k,bi,bj,ilam)+ |
| 1499 |
& Estop(ilam,k)*dtplankton |
| 1500 |
Eutave(i,j,k,bi,bj,ilam)=Eutave(i,j,k,bi,bj,ilam)+ |
| 1501 |
& Eutop(ilam,k)*dtplankton |
| 1502 |
enddo |
| 1503 |
#endif |
| 1504 |
#ifdef DAR_DIAG_IRR_AMPS |
| 1505 |
do ilam = 1,tlam |
| 1506 |
amp1ave(i,j,k,bi,bj,ilam)=amp1ave(i,j,k,bi,bj,ilam)+ |
| 1507 |
& amp1(ilam,k)*dtplankton |
| 1508 |
amp2ave(i,j,k,bi,bj,ilam)=amp2ave(i,j,k,bi,bj,ilam)+ |
| 1509 |
& amp2(ilam,k)*dtplankton |
| 1510 |
enddo |
| 1511 |
#endif |
| 1512 |
#ifdef DAR_DIAG_ABSORP |
| 1513 |
do ilam = 1,tlam |
| 1514 |
aave(i,j,k,bi,bj,ilam)=aave(i,j,k,bi,bj,ilam)+ |
| 1515 |
& a_k(k,ilam)*dtplankton |
| 1516 |
enddo |
| 1517 |
#endif |
| 1518 |
#ifdef DAR_DIAG_SCATTER |
| 1519 |
do ilam = 1,tlam |
| 1520 |
btave(i,j,k,bi,bj,ilam)=btave(i,j,k,bi,bj,ilam)+ |
| 1521 |
& bt_k(k,ilam)*dtplankton |
| 1522 |
bbave(i,j,k,bi,bj,ilam)=bbave(i,j,k,bi,bj,ilam)+ |
| 1523 |
& bb_k(k,ilam)*dtplankton |
| 1524 |
enddo |
| 1525 |
#endif |
| 1526 |
#ifdef DAR_DIAG_PART_SCATTER |
| 1527 |
do ilam = 1,tlam |
| 1528 |
apartave(i,j,k,bi,bj,ilam)=apartave(i,j,k,bi,bj,ilam)+ |
| 1529 |
& apart_k(k,ilam)*dtplankton |
| 1530 |
btpartave(i,j,k,bi,bj,ilam)=btpartave(i,j,k,bi,bj,ilam)+ |
| 1531 |
& bpart_k(k,ilam)*dtplankton |
| 1532 |
bbpartave(i,j,k,bi,bj,ilam)=bbpartave(i,j,k,bi,bj,ilam)+ |
| 1533 |
& bbpart_k(k,ilam)*dtplankton |
| 1534 |
enddo |
| 1535 |
#endif |
| 1536 |
#ifdef DAR_RADTRANS |
| 1537 |
if (k.eq.1) then |
| 1538 |
rmudave(i,j,bi,bj)=rmudave(i,j,bi,bj)+ |
| 1539 |
& rmud*dtplankton |
| 1540 |
endif |
| 1541 |
#endif |
| 1542 |
#ifdef DAR_DIAG_EK |
| 1543 |
do np=1,npmax |
| 1544 |
Ekave(i,j,k,bi,bj,np)=Ekave(i,j,k,bi,bj,np)+ |
| 1545 |
& Ekl(np)*dtplankton |
| 1546 |
EkoverEave(i,j,k,bi,bj,np)=EkoverEave(i,j,k,bi,bj,np)+ |
| 1547 |
& EkoverEl(np)*dtplankton |
| 1548 |
acclimave(i,j,k,bi,bj,np)=acclimave(i,j,k,bi,bj,np)+ |
| 1549 |
& accliml(np)*dtplankton |
| 1550 |
do ilam=1,tlam |
| 1551 |
Ek_nlave(i,j,k,bi,bj,np,ilam)= |
| 1552 |
& Ek_nlave(i,j,k,bi,bj,np,ilam)+ |
| 1553 |
& Ek_nll(np,ilam)*dtplankton |
| 1554 |
EkoverE_nlave(i,j,k,bi,bj,np,ilam)= |
| 1555 |
& EkoverE_nlave(i,j,k,bi,bj,np,ilam)+ |
| 1556 |
& EkoverE_nll(np,ilam)*dtplankton |
| 1557 |
enddo |
| 1558 |
enddo |
| 1559 |
#endif |
| 1560 |
#ifdef DAR_DIAG_RSTAR |
| 1561 |
do np=1,npmax |
| 1562 |
Rstarave(i,j,k,bi,bj,np)=Rstarave(i,j,k,bi,bj,np)+ |
| 1563 |
& Rstarl(np)*dtplankton |
| 1564 |
RNstarave(i,j,k,bi,bj,np)=RNstarave(i,j,k,bi,bj,np)+ |
| 1565 |
& RNstarl(np)*dtplankton |
| 1566 |
enddo |
| 1567 |
#endif |
| 1568 |
#ifdef DAR_DIAG_DIVER |
| 1569 |
Diver1ave(i,j,k,bi,bj)=Diver1ave(i,j,k,bi,bj)+ |
| 1570 |
& Diver1(i,j,k)*dtplankton |
| 1571 |
Diver2ave(i,j,k,bi,bj)=Diver2ave(i,j,k,bi,bj)+ |
| 1572 |
& Diver2(i,j,k)*dtplankton |
| 1573 |
Diver3ave(i,j,k,bi,bj)=Diver3ave(i,j,k,bi,bj)+ |
| 1574 |
& Diver3(i,j,k)*dtplankton |
| 1575 |
Diver4ave(i,j,k,bi,bj)=Diver4ave(i,j,k,bi,bj)+ |
| 1576 |
& Diver4(i,j,k)*dtplankton |
| 1577 |
#endif |
| 1578 |
#ifdef DAR_DIAG_GROW |
| 1579 |
do np=1,npmax |
| 1580 |
Growave(i,j,k,bi,bj,np)=Growave(i,j,k,bi,bj,np)+ |
| 1581 |
& Growl(np)*dtplankton |
| 1582 |
Growsqave(i,j,k,bi,bj,np)=Growsqave(i,j,k,bi,bj,np)+ |
| 1583 |
& Growsql(np)*dtplankton |
| 1584 |
enddo |
| 1585 |
#endif |
| 1586 |
|
| 1587 |
#ifdef ALLOW_DIAZ |
| 1588 |
#ifdef DAR_DIAG_NFIXP |
| 1589 |
do np=1,npmax |
| 1590 |
NfixPave(i,j,k,bi,bj,np)=NfixPave(i,j,k,bi,bj,np)+ |
| 1591 |
& NfixPl(np)*dtplankton |
| 1592 |
enddo |
| 1593 |
#endif |
| 1594 |
#endif |
| 1595 |
#endif |
| 1596 |
|
| 1597 |
#ifdef ALLOW_CARBON |
| 1598 |
if (k.eq.1) then |
| 1599 |
SURave(i,j,bi,bj) =SURave(i,j,bi,bj)+ |
| 1600 |
& flxCO2(i,j)*dtplankton |
| 1601 |
SURCave(i,j,bi,bj) =SURCave(i,j,bi,bj)+ |
| 1602 |
& FluxCO2(i,j,bi,bj)*dtplankton |
| 1603 |
SUROave(i,j,bi,bj) =SUROave(i,j,bi,bj)+ |
| 1604 |
& flxO2(i,j)*dtplankton |
| 1605 |
endif |
| 1606 |
#ifdef pH_3D |
| 1607 |
pCO2ave(i,j,k,bi,bj) =pCO2ave(i,j,k,bi,bj)+ |
| 1608 |
& pCO2(i,j,k,bi,bj)*dtplankton |
| 1609 |
pHave(i,j,k,bi,bj) =pHave(i,j,k,bi,bj)+ |
| 1610 |
& pH(i,j,k,bi,bj)*dtplankton |
| 1611 |
#else |
| 1612 |
if (k.eq.1) then |
| 1613 |
pCO2ave(i,j,bi,bj) =pCO2ave(i,j,bi,bj)+ |
| 1614 |
& pCO2(i,j,bi,bj)*dtplankton |
| 1615 |
pHave(i,j,bi,bj) =pHave(i,j,bi,bj)+ |
| 1616 |
& pH(i,j,bi,bj)*dtplankton |
| 1617 |
endif |
| 1618 |
#endif |
| 1619 |
#endif |
| 1620 |
endif |
| 1621 |
c end if hFac>0 |
| 1622 |
|
| 1623 |
enddo ! k |
| 1624 |
c end layer loop |
| 1625 |
c |
| 1626 |
|
| 1627 |
ENDDO ! i |
| 1628 |
ENDDO ! j |
| 1629 |
|
| 1630 |
#ifdef ALLOW_PAR_DAY |
| 1631 |
C 1 <-> 2 |
| 1632 |
PARiaccum = 3 - PARiprev |
| 1633 |
|
| 1634 |
DO k=1,nR |
| 1635 |
DO j=1,sNy |
| 1636 |
DO i=1,sNx |
| 1637 |
PARday(i,j,k,bi,bj,PARiaccum) = |
| 1638 |
& PARday(i,j,k,bi,bj,PARiaccum) + PAR(i,j,k) |
| 1639 |
ENDDO |
| 1640 |
ENDDO |
| 1641 |
ENDDO |
| 1642 |
|
| 1643 |
phase = 0. _d 0 |
| 1644 |
itistime = DIFF_PHASE_MULTIPLE( phase, darwin_PARavPeriod, |
| 1645 |
& newtime, dtsubtime) |
| 1646 |
|
| 1647 |
IF ( itistime ) THEN |
| 1648 |
C compute average |
| 1649 |
nav = darwin_PARnav |
| 1650 |
IF (newtime - baseTime .LT. darwin_PARavPeriod) THEN |
| 1651 |
C incomplete period at beginning of run |
| 1652 |
nav = NINT((newtime-baseTime)/dtsubtime) |
| 1653 |
ENDIF |
| 1654 |
DO k=1,nR |
| 1655 |
DO j=1,sNy |
| 1656 |
DO i=1,sNx |
| 1657 |
PARday(i,j,k,bi,bj,PARiaccum) = |
| 1658 |
& PARday(i,j,k,bi,bj,PARiaccum) / nav |
| 1659 |
ENDDO |
| 1660 |
ENDDO |
| 1661 |
ENDDO |
| 1662 |
C reset the other slot for averaging |
| 1663 |
DO k=1,nR |
| 1664 |
DO j=1,sNy |
| 1665 |
DO i=1,sNx |
| 1666 |
PARday(i,j,k,bi,bj,PARiprev) = 0. _d 0 |
| 1667 |
ENDDO |
| 1668 |
ENDDO |
| 1669 |
ENDDO |
| 1670 |
ENDIF |
| 1671 |
C itistime |
| 1672 |
#endif |
| 1673 |
|
| 1674 |
#ifdef DAR_CHECK_IRR_CONT |
| 1675 |
i = myXGlobalLo-1+(bi-1)*sNx+idiscEs |
| 1676 |
j = myYGlobalLo-1+(bj-1)*sNy+jdiscEs |
| 1677 |
write(6,'(I4.4,X,A,4(X,I4),1PE24.16)')myProcId,'max Es disc', |
| 1678 |
& i,j,kdiscEs,ldiscEs,discEs |
| 1679 |
i = myXGlobalLo-1+(bi-1)*sNx+idiscEu |
| 1680 |
j = myYGlobalLo-1+(bj-1)*sNy+jdiscEu |
| 1681 |
write(6,'(I4.4,X,A,4(X,I4),1PE24.16)')myProcId,'max Eu disc', |
| 1682 |
& i,j,kdiscEu,ldiscEu,discEu |
| 1683 |
#endif |
| 1684 |
|
| 1685 |
COJ fill diagnostics |
| 1686 |
#ifdef ALLOW_DIAGNOSTICS |
| 1687 |
IF ( useDiagnostics ) THEN |
| 1688 |
diagname = ' ' |
| 1689 |
WRITE(diagname,'(A8)') 'PAR ' |
| 1690 |
CALL DIAGNOSTICS_FILL( PAR(1-Olx,1-Oly,1), diagname, |
| 1691 |
& 0,Nr,2,bi,bj,myThid ) |
| 1692 |
WRITE(diagname,'(A8)') 'PP ' |
| 1693 |
CALL DIAGNOSTICS_FILL( PParr(1-Olx,1-Oly,1), diagname, |
| 1694 |
& 0,Nr,2,bi,bj,myThid ) |
| 1695 |
WRITE(diagname,'(A8)') 'Nfix ' |
| 1696 |
CALL DIAGNOSTICS_FILL( Nfixarr(1-Olx,1-Oly,1), diagname, |
| 1697 |
& 0,Nr,2,bi,bj,myThid ) |
| 1698 |
c ANNA_TAVE |
| 1699 |
#ifdef WAVES_DIAG_PCHL |
| 1700 |
DO np=1,MIN(99,npmax) |
| 1701 |
WRITE(diagname,'(A5,I2.2,A1)') 'Pchl',np,' ' |
| 1702 |
CALL DIAGNOSTICS_FILL( Pchlarr(1-Olx,1-Oly,1,np), diagname, |
| 1703 |
& 0,Nr,2,bi,bj,myThid ) |
| 1704 |
ENDDO |
| 1705 |
#endif |
| 1706 |
c ANNA end TAVE |
| 1707 |
#ifdef DAR_DIAG_RSTAR |
| 1708 |
DO np=1,MIN(99,npmax) |
| 1709 |
WRITE(diagname,'(A5,I2.2,A1)') 'Rstar',np,' ' |
| 1710 |
CALL DIAGNOSTICS_FILL( Rstararr(1-Olx,1-Oly,1,np), diagname, |
| 1711 |
& 0,Nr,2,bi,bj,myThid ) |
| 1712 |
ENDDO |
| 1713 |
#endif |
| 1714 |
#ifdef DAR_DIAG_DIVER |
| 1715 |
WRITE(diagname,'(A8)') 'Diver1 ' |
| 1716 |
CALL DIAGNOSTICS_FILL( Diver1(1-Olx,1-Oly,1), diagname, |
| 1717 |
& 0,Nr,2,bi,bj,myThid ) |
| 1718 |
WRITE(diagname,'(A8)') 'Diver2 ' |
| 1719 |
CALL DIAGNOSTICS_FILL( Diver2(1-Olx,1-Oly,1), diagname, |
| 1720 |
& 0,Nr,2,bi,bj,myThid ) |
| 1721 |
WRITE(diagname,'(A8)') 'Diver3 ' |
| 1722 |
CALL DIAGNOSTICS_FILL( Diver3(1-Olx,1-Oly,1), diagname, |
| 1723 |
& 0,Nr,2,bi,bj,myThid ) |
| 1724 |
WRITE(diagname,'(A8)') 'Diver4 ' |
| 1725 |
CALL DIAGNOSTICS_FILL( Diver4(1-Olx,1-Oly,1), diagname, |
| 1726 |
& 0,Nr,2,bi,bj,myThid ) |
| 1727 |
WRITE(diagname,'(A8)') 'Shannon ' |
| 1728 |
CALL DIAGNOSTICS_FILL( Shannon(1-Olx,1-Oly,1), diagname, |
| 1729 |
& 0,Nr,2,bi,bj,myThid ) |
| 1730 |
WRITE(diagname,'(A8)') 'Simpson ' |
| 1731 |
CALL DIAGNOSTICS_FILL( Simpson(1-Olx,1-Oly,1), diagname, |
| 1732 |
& 0,Nr,2,bi,bj,myThid ) |
| 1733 |
#endif |
| 1734 |
#ifdef ALLOW_DIAZ |
| 1735 |
#ifdef DAR_DIAG_NFIXP |
| 1736 |
DO np=1,MIN(99,npmax) |
| 1737 |
WRITE(diagname,'(A5,I2.2,A1)') 'NfixP',np,' ' |
| 1738 |
CALL DIAGNOSTICS_FILL( NfixParr(1-Olx,1-Oly,1,np), diagname, |
| 1739 |
& 0,Nr,2,bi,bj,myThid ) |
| 1740 |
ENDDO |
| 1741 |
#endif |
| 1742 |
#endif |
| 1743 |
#ifdef DAR_DIAG_CHL |
| 1744 |
CALL DIAGNOSTICS_FILL( GeiderChlarr(1-Olx,1-Oly,1), 'ChlGeide', |
| 1745 |
& 0,Nr,2,bi,bj,myThid ) |
| 1746 |
CALL DIAGNOSTICS_FILL( GeiderChl2Carr(1-Olx,1-Oly,1),'Chl2CGei', |
| 1747 |
& 0,Nr,2,bi,bj,myThid ) |
| 1748 |
CALL DIAGNOSTICS_FILL( DoneyChlarr(1-Olx,1-Oly,1), 'ChlDoney', |
| 1749 |
& 0,Nr,2,bi,bj,myThid ) |
| 1750 |
CALL DIAGNOSTICS_FILL( DoneyChl2Carr(1-Olx,1-Oly,1), 'Chl2CDon', |
| 1751 |
& 0,Nr,2,bi,bj,myThid ) |
| 1752 |
CALL DIAGNOSTICS_FILL( CloernChlarr(1-Olx,1-Oly,1), 'ChlCloer', |
| 1753 |
& 0,Nr,2,bi,bj,myThid ) |
| 1754 |
CALL DIAGNOSTICS_FILL( CloernChl2Carr(1-Olx,1-Oly,1),'Chl2CClo', |
| 1755 |
& 0,Nr,2,bi,bj,myThid ) |
| 1756 |
#endif |
| 1757 |
#ifdef ALLOW_CARBON |
| 1758 |
CALL DIAGNOSTICS_FILL( flxCO2(1-Olx,1-Oly), 'DICTFLX ', |
| 1759 |
& 0,1,2,bi,bj,myThid ) |
| 1760 |
CALL DIAGNOSTICS_FILL( FluxCO2(1-Olx,1-Oly,bi,bj), 'DICCFLX ', |
| 1761 |
& 0,1,2,bi,bj,myThid ) |
| 1762 |
CALL DIAGNOSTICS_FILL( flxO2(1-Olx,1-Oly), 'DICOFLX ', |
| 1763 |
& 0,1,2,bi,bj,myThid ) |
| 1764 |
#ifdef pH_3D |
| 1765 |
CALL DIAGNOSTICS_FILL( pCO2(1-Olx,1-Oly,1,bi,bj), 'DICPCO2 ', |
| 1766 |
& 0,Nr,2,bi,bj,myThid ) |
| 1767 |
CALL DIAGNOSTICS_FILL( pH(1-Olx,1-Oly,1,bi,bj), 'DICPHAV ', |
| 1768 |
& 0,Nr,2,bi,bj,myThid ) |
| 1769 |
#else |
| 1770 |
CALL DIAGNOSTICS_FILL( pCO2(1-Olx,1-Oly,bi,bj), 'DICPCO2 ', |
| 1771 |
& 0,1,2,bi,bj,myThid ) |
| 1772 |
CALL DIAGNOSTICS_FILL( pH(1-Olx,1-Oly,bi,bj), 'DICPHAV ', |
| 1773 |
& 0,1,2,bi,bj,myThid ) |
| 1774 |
#endif |
| 1775 |
#endif /* ALLOW_CARBON */ |
| 1776 |
ENDIF |
| 1777 |
#endif /* ALLOW_DIAGNOSTICS */ |
| 1778 |
COJ |
| 1779 |
|
| 1780 |
c determine iron partitioning - solve for free iron |
| 1781 |
call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax, |
| 1782 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe, |
| 1783 |
& myIter, mythid) |
| 1784 |
c |
| 1785 |
#ifdef ALLOW_TIMEAVE |
| 1786 |
c save averages |
| 1787 |
dar_timeave(bi,bj) = dar_timeave(bi,bj) + dtplankton |
| 1788 |
#ifdef ALLOW_CARBON |
| 1789 |
dic_timeave(bi,bj) = dic_timeave(bi,bj) + dtplankton |
| 1790 |
#endif |
| 1791 |
#endif |
| 1792 |
c |
| 1793 |
c ----------------------------------------------------- |
| 1794 |
ENDDO ! it |
| 1795 |
c ----------------------------------------------------- |
| 1796 |
c end of bio-chemical time loop |
| 1797 |
c |
| 1798 |
RETURN |
| 1799 |
END |
| 1800 |
#endif /*MONOD*/ |
| 1801 |
#endif /*ALLOW_PTRACERS*/ |
| 1802 |
|
| 1803 |
C============================================================================ |