1 |
benw |
1.4 |
C $Header: /u/gcmpack/MITgcm_contrib/darwin2/pkg/quota/quota_forcing.F,v 1.3 2013/12/27 17:29:00 jahn Exp $ |
2 |
jahn |
1.1 |
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "CPP_OPTIONS.h" |
5 |
|
|
#include "PTRACERS_OPTIONS.h" |
6 |
|
|
#include "DARWIN_OPTIONS.h" |
7 |
|
|
|
8 |
|
|
#ifdef ALLOW_PTRACERS |
9 |
|
|
#ifdef ALLOW_DARWIN |
10 |
|
|
#ifdef ALLOW_QUOTA |
11 |
|
|
|
12 |
|
|
c============================================================= |
13 |
|
|
c subroutine quota_forcing |
14 |
|
|
c step forward bio-chemical tracers in time |
15 |
|
|
C============================================================== |
16 |
|
|
SUBROUTINE QUOTA_FORCING( |
17 |
|
|
U Ptr, |
18 |
|
|
I bi,bj,imin,imax,jmin,jmax, |
19 |
|
|
I myTime,myIter,myThid) |
20 |
|
|
#include "SIZE.h" |
21 |
|
|
#include "EEPARAMS.h" |
22 |
|
|
#include "PARAMS.h" |
23 |
|
|
#include "GRID.h" |
24 |
|
|
#include "PTRACERS_SIZE.h" |
25 |
|
|
#include "PTRACERS_PARAMS.h" |
26 |
|
|
#include "GCHEM.h" |
27 |
|
|
#include "QUOTA_SIZE.h" |
28 |
|
|
#include "QUOTA.h" |
29 |
|
|
#include "DARWIN_IO.h" |
30 |
|
|
#include "DYNVARS.h" |
31 |
|
|
#ifdef USE_QSW |
32 |
|
|
#include "FFIELDS.h" |
33 |
|
|
#endif |
34 |
|
|
|
35 |
|
|
C === Global variables === |
36 |
|
|
c tracers |
37 |
|
|
_RL Ptr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy,nDarwin) |
38 |
|
|
INTEGER bi,bj,imin,imax,jmin,jmax |
39 |
|
|
_RL myTime |
40 |
|
|
INTEGER myIter |
41 |
|
|
INTEGER myThid |
42 |
|
|
|
43 |
|
|
C============== Local variables ============================================ |
44 |
|
|
c biomodel tracer arrays |
45 |
|
|
_RL nutrient(iimax) |
46 |
|
|
_RL biomass(iomax,npmax) |
47 |
|
|
_RL orgmat(iomax-iChl,komax) |
48 |
|
|
#ifdef FQUOTA |
49 |
|
|
c iron partitioning |
50 |
|
|
_RL freefe(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
51 |
|
|
_RL freefu |
52 |
|
|
_RL inputFel |
53 |
|
|
#endif |
54 |
benw |
1.4 |
c upstream arrays for sinking |
55 |
jahn |
1.1 |
_RL bioabove(iomax,npmax) |
56 |
|
|
_RL orgabove(iomax-iChl,komax) |
57 |
|
|
c some working variables |
58 |
|
|
_RL sumpy |
59 |
|
|
_RL sumpyup |
60 |
|
|
c light variables |
61 |
|
|
_RL PAR(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
62 |
|
|
_RL sfac(1-OLy:sNy+OLy) |
63 |
|
|
_RL atten,lite |
64 |
|
|
_RL newtime ! for sub-timestepping |
65 |
|
|
_RL runtim ! time from tracer initialization |
66 |
benw |
1.2 |
c |
67 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
68 |
|
|
COJ for diagnostics |
69 |
|
|
_RL PParr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
70 |
|
|
#endif |
71 |
|
|
#ifdef ALLOW_TIMEAVE |
72 |
|
|
#ifdef QUOTA_DIAG_LIMIT |
73 |
benw |
1.4 |
_RL Rlim(iomax-iChl-1,npmax) |
74 |
benw |
1.2 |
_RL Ilim(npmax) |
75 |
|
|
_RL Tlim |
76 |
benw |
1.4 |
_RL AP(iomax,npmax) |
77 |
|
|
_RL HP(iomax,npmax) |
78 |
benw |
1.2 |
#endif |
79 |
jahn |
1.1 |
#endif |
80 |
|
|
c |
81 |
|
|
|
82 |
|
|
c some local variables |
83 |
|
|
_RL Tlocal |
84 |
|
|
_RL Slocal |
85 |
|
|
_RL PARlocal |
86 |
|
|
_RL dzlocal |
87 |
|
|
_RL dtplankton |
88 |
|
|
_RL PP |
89 |
|
|
c local tendencies |
90 |
|
|
_RL dbiomass(iomax,npmax) |
91 |
|
|
_RL dorgmat(iomax-iChl,komax) |
92 |
|
|
_RL dnutrient(iimax) |
93 |
|
|
_RL tmp |
94 |
|
|
|
95 |
|
|
INTEGER bottom |
96 |
|
|
INTEGER surface |
97 |
benw |
1.4 |
INTEGER i,j,k,it,ktmp |
98 |
|
|
INTEGER ii,io,jp,ko |
99 |
jahn |
1.1 |
INTEGER place |
100 |
|
|
INTEGER debug |
101 |
benw |
1.4 |
#ifdef ALLOW_DIAGNOSTICS |
102 |
jahn |
1.1 |
CHARACTER*8 diagname |
103 |
benw |
1.4 |
#endif |
104 |
jahn |
1.1 |
|
105 |
|
|
c |
106 |
|
|
c-------------------------------------------------- |
107 |
benw |
1.2 |
c initialise variables |
108 |
jahn |
1.1 |
DO j=1-OLy,sNy+OLy |
109 |
|
|
DO i=1-OLx,sNx+OLx |
110 |
|
|
do k=1,Nr |
111 |
|
|
#ifdef FQUOTA |
112 |
|
|
freefe(i,j,k) = 0.0 _d 0 |
113 |
|
|
# endif |
114 |
|
|
PAR(i,j,k) = 0.0 _d 0 |
115 |
benw |
1.2 |
#ifdef ALLOW_DIAGNOSTICS |
116 |
|
|
COJ for diagnostics |
117 |
|
|
PParr(i,j,k) = 0. _d 0 |
118 |
jahn |
1.1 |
#endif |
119 |
|
|
enddo !k |
120 |
|
|
ENDDO !i |
121 |
|
|
ENDDO !j |
122 |
|
|
c |
123 |
|
|
c bio-chemical time loop |
124 |
|
|
c-------------------------------------------------- |
125 |
|
|
DO it=1,nsubtime |
126 |
|
|
c ------------------------------------------------- |
127 |
|
|
COJ cannot use dfloat because of adjoint |
128 |
|
|
COJ division will be double precision anyway because of dTtracerLev |
129 |
|
|
newtime=myTime-dTtracerLev(1)+ |
130 |
|
|
& float(it)*dTtracerLev(1)/float(nsubtime) |
131 |
|
|
c print*,'it ',it,newtime,nsubtime,myTime |
132 |
|
|
runtim=myTime-float(PTRACERS_Iter0)*dTtracerLev(1) |
133 |
|
|
|
134 |
|
|
#ifdef FQUOTA |
135 |
|
|
c determine iron partitioning - solve for free iron |
136 |
|
|
call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax, |
137 |
|
|
& Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe, |
138 |
|
|
& myIter, mythid) |
139 |
|
|
#endif |
140 |
|
|
|
141 |
|
|
c find light in each grid cell |
142 |
|
|
c --------------------------- |
143 |
|
|
c determine incident light |
144 |
|
|
#ifndef READ_PAR |
145 |
|
|
#ifdef USE_QSW |
146 |
|
|
DO j=1-OLy,sNy+OLy |
147 |
|
|
DO i=1-OLx,sNx+OLx |
148 |
|
|
sur_par(i,j,bi,bj)=-parfrac*Qsw(i,j,bi,bj)* |
149 |
|
|
& parconv*maskC(i,j,1,bi,bj) |
150 |
|
|
ENDDO |
151 |
|
|
ENDDO |
152 |
|
|
#else |
153 |
|
|
DO j=1-OLy,sNy+OLy |
154 |
|
|
sfac(j)=0. _d 0 |
155 |
|
|
ENDDO |
156 |
|
|
call darwin_insol(newTime,sfac,bj) |
157 |
|
|
DO j=1-OLy,sNy+OLy |
158 |
|
|
DO i=1-OLx,sNx+OLx |
159 |
|
|
sur_par(i,j,bi,bj)=sfac(j)*maskC(i,j,1,bi,bj)/86400. _d 6 |
160 |
|
|
c if (i.eq.1.and.j.ge.1.and.j.le.sNy) |
161 |
|
|
c & write(24,*) sur_par(i,j,bi,bj) |
162 |
|
|
ENDDO |
163 |
|
|
ENDDO |
164 |
|
|
#endif |
165 |
|
|
#endif |
166 |
|
|
|
167 |
|
|
C................................................................. |
168 |
|
|
C................................................................. |
169 |
|
|
|
170 |
|
|
|
171 |
|
|
DO j=1,sNy |
172 |
|
|
DO i=1,sNx |
173 |
|
|
c surface PAR |
174 |
|
|
c take ice coverage into account |
175 |
|
|
#if (defined (ALLOW_SEAICE) && defined (USE_QSW)) |
176 |
|
|
COJ ice coverage already taken into account by seaice package |
177 |
|
|
lite=sur_par(i,j,bi,bj) |
178 |
|
|
#else |
179 |
|
|
#if (defined (ALLOW_SEAICE) && defined (USE_QSW)) |
180 |
|
|
c if using Qsw and seaice, then ice fraction is already |
181 |
|
|
c taken into account |
182 |
|
|
lite=sur_par(i,j,bi,bj) |
183 |
|
|
#else |
184 |
|
|
lite=sur_par(i,j,bi,bj)*(1. _d 0-fice(i,j,bi,bj)) |
185 |
|
|
#endif |
186 |
|
|
#endif |
187 |
|
|
atten = 0. _d 0 |
188 |
|
|
sumpy = 0. _d 0 |
189 |
|
|
c |
190 |
|
|
c FOR EACH LAYER ... |
191 |
|
|
do k= 1, NR |
192 |
|
|
if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then |
193 |
|
|
c --------------------------------------------------------------------- |
194 |
|
|
c benw |
195 |
|
|
c |
196 |
|
|
c Fetch biomodel variables from ptr (ptracers) |
197 |
|
|
c (making sure they are .ge. 0 - brute force) |
198 |
|
|
c |
199 |
|
|
c (set biomodel tendencies to zero, at the same time) |
200 |
|
|
c |
201 |
|
|
c ********************************************************************* |
202 |
|
|
place = 0 |
203 |
|
|
c Inorganic Nutrients |
204 |
|
|
do ii=1,iimax |
205 |
|
|
place = place + 1 |
206 |
|
|
c ambient nutrients for each element (1 to iimax) |
207 |
|
|
nutrient(ii) = max(Ptr(i,j,k,bi,bj,place),0. _d 0) |
208 |
|
|
dnutrient(ii) = 0. _d 0 |
209 |
|
|
enddo ! ii |
210 |
|
|
c ********************************************************************* |
211 |
benw |
1.2 |
c Unicellular biomass (including chlorophyll biomass - for non-grazers) |
212 |
jahn |
1.1 |
do io=1,iomax |
213 |
|
|
do jp=1,npmax |
214 |
benw |
1.4 |
if (io.ne.iChlo.or.autotrophy(jp).gt.0. _d 0) then ! no grazer chlorophyll |
215 |
benw |
1.2 |
place = place + 1 |
216 |
|
|
biomass(io,jp) = max(Ptr(i,j,k,bi,bj,place),0. _d 0) |
217 |
jahn |
1.1 |
! biomasses above current layer for sinking |
218 |
benw |
1.2 |
if (k.eq.1) then |
219 |
|
|
bioabove(io,jp)=0. _d 0 |
220 |
|
|
endif |
221 |
|
|
! initialise biomass rate of change |
222 |
|
|
dbiomass(io,jp) = 0. _d 0 |
223 |
|
|
else ! if grazer, fill chl biomass with zeros |
224 |
|
|
biomass(io,jp) = 0. _d 0 |
225 |
jahn |
1.1 |
endif |
226 |
|
|
enddo ! jp |
227 |
|
|
enddo |
228 |
|
|
c ********************************************************************* |
229 |
|
|
c Organic matter |
230 |
|
|
do io=1,iomax-iChl |
231 |
|
|
do ko=1,komax |
232 |
|
|
c mass of element x for all OM classes |
233 |
|
|
place = place + 1 |
234 |
|
|
orgmat(io,ko) = max(Ptr(i,j,k,bi,bj,place),0. _d 0) |
235 |
|
|
! biomasses above current layer for sinking |
236 |
|
|
if (k.eq.1) then |
237 |
|
|
orgabove(io,ko) = 0. _d 0 |
238 |
|
|
endif |
239 |
|
|
#ifdef SQUOTA |
240 |
|
|
if (ko.and.1.and.io.eq.iSili) then |
241 |
|
|
place = place - 1 |
242 |
|
|
orgmat(iSili,1) = 0. _d 0 |
243 |
|
|
orgabove(iSili,1) = 0. _d 0 |
244 |
|
|
endif |
245 |
|
|
#endif |
246 |
|
|
dorgmat(io,ko) = 0. _d 0 |
247 |
|
|
enddo ! ko |
248 |
|
|
enddo ! io |
249 |
|
|
c ********************************************************************* |
250 |
|
|
c |
251 |
|
|
c --------------------------------------------------------------------- |
252 |
|
|
|
253 |
|
|
|
254 |
|
|
c find local light for level k |
255 |
|
|
sumpyup = sumpy |
256 |
|
|
sumpy = 0. _d 0 |
257 |
|
|
do jp=1,npmax |
258 |
|
|
#ifndef GEIDER |
259 |
|
|
! sum nitrogen biomass |
260 |
|
|
sumpy = sumpy + biomass(iNitr,jp) |
261 |
|
|
#else |
262 |
|
|
! sum chlorophyll |
263 |
|
|
sumpy = sumpy + biomass(iChlo,jp) |
264 |
|
|
#endif |
265 |
|
|
enddo |
266 |
|
|
|
267 |
|
|
atten= atten + (k_w + k_chl*sumpy)*5. _d -1*drF(k) |
268 |
|
|
if (k.gt.1)then |
269 |
|
|
atten = atten + (k_w+k_chl*sumpyup)*5. _d -1*drF(k-1) |
270 |
|
|
endif |
271 |
|
|
PAR(i,j,k) = lite*exp(-atten) |
272 |
|
|
c |
273 |
|
|
c Physical variables |
274 |
|
|
PARlocal = PAR(i,j,k) |
275 |
|
|
Tlocal = theta(i,j,k,bi,bj) |
276 |
|
|
Slocal = salt(i,j,k,bi,bj) |
277 |
|
|
c Free Iron |
278 |
|
|
#ifdef FQUOTA |
279 |
|
|
freefu = max(freefe(i,j,k),0. _d 0) |
280 |
|
|
if (k.eq.1) then |
281 |
|
|
inputFel = inputFe(i,j,bi,bj) |
282 |
|
|
else |
283 |
|
|
inputFel = 0. _d 0 |
284 |
|
|
endif |
285 |
|
|
#endif |
286 |
|
|
c Layer thickness |
287 |
|
|
dzlocal = drF(k)*HFacC(i,j,k,bi,bj) |
288 |
|
|
c |
289 |
|
|
c set bottom=1.0 if the layer below is not ocean |
290 |
|
|
ktmp=min(nR,k+1) |
291 |
|
|
if(hFacC(i,j,ktmp,bi,bj).eq.0. _d 0.or.k.eq.Nr) then |
292 |
|
|
bottom = 1 |
293 |
|
|
else |
294 |
|
|
bottom = 0 |
295 |
|
|
endif |
296 |
|
|
if (k.eq.1) then |
297 |
|
|
surface = 1 |
298 |
|
|
else |
299 |
|
|
surface = 0 |
300 |
|
|
endif |
301 |
|
|
|
302 |
|
|
c set other arguments to zero |
303 |
|
|
debug=0 |
304 |
|
|
|
305 |
|
|
if (debug.eq.7) print*,'Inorganic nutrients',nutrient |
306 |
|
|
if (debug.eq.7) print*,'Plankton biomass', biomass |
307 |
|
|
if (debug.eq.7) print*,'Organic nutrients',orgmat |
308 |
|
|
if (debug.eq.8) print*,'k, PARlocal, dzlocal', |
309 |
|
|
& k,PARlocal,dzlocal |
310 |
|
|
c --------------------------------------------------------------------- |
311 |
|
|
CALL QUOTA_PLANKTON( |
312 |
|
|
I biomass, orgmat, nutrient, |
313 |
|
|
O PP, |
314 |
benw |
1.4 |
I bioabove, |
315 |
jahn |
1.1 |
I orgabove, |
316 |
|
|
#ifdef FQUOTA |
317 |
|
|
I freefu, inputFel, |
318 |
|
|
#endif |
319 |
benw |
1.2 |
#ifdef ALLOW_TIMEAVE |
320 |
|
|
#ifdef QUOTA_DIAG_LIMIT |
321 |
benw |
1.4 |
O AP, HP, |
322 |
|
|
O Rlim, Ilim, Tlim, |
323 |
benw |
1.2 |
#endif |
324 |
|
|
#endif |
325 |
jahn |
1.1 |
I PARlocal, Tlocal, Slocal, |
326 |
|
|
I bottom, surface, dzlocal, |
327 |
|
|
O dbiomass, dorgmat, dnutrient, |
328 |
|
|
I debug, |
329 |
|
|
I runtim, |
330 |
|
|
I MyThid) |
331 |
|
|
c --------------------------------------------------------------------- |
332 |
benw |
1.4 |
c |
333 |
|
|
#ifdef RELAX_NUTS |
334 |
|
|
if (darwin_relaxscale.gt.0. _d 0) then |
335 |
|
|
! |
336 |
|
|
IF ( darwin_NO3_relaxFile .NE. ' ' ) THEN |
337 |
|
|
tmp=(Ptr(i,j,k,bi,bj,iNO3 )-no3_obs(i,j,k,bi,bj)) |
338 |
|
|
if (tmp.lt.0. _d 0) then |
339 |
|
|
dnutrient(iNO3)=dnutrient(iNO3) |
340 |
|
|
& -(tmp/darwin_relaxscale) |
341 |
|
|
endif |
342 |
|
|
ENDIF |
343 |
|
|
#ifdef PQUOTA |
344 |
|
|
IF ( darwin_PO4_relaxFile .NE. ' ' ) THEN |
345 |
|
|
tmp=(Ptr(i,j,k,bi,bj,iPO4 )-po4_obs(i,j,k,bi,bj)) |
346 |
|
|
if (tmp.lt.0. _d 0) then |
347 |
|
|
dnutrient(iPO4)=dnutrient(iPO4) |
348 |
|
|
& -(tmp/darwin_relaxscale) |
349 |
|
|
endif |
350 |
|
|
ENDIF |
351 |
|
|
#endif |
352 |
|
|
#ifdef FQOUTA |
353 |
|
|
IF ( darwin_Fet_relaxFile .NE. ' ' ) THEN |
354 |
|
|
tmp=(Ptr(i,j,k,bi,bj,iFeT )-fet_obs(i,j,k,bi,bj)) |
355 |
|
|
if (tmp.lt.0. _d 0) then |
356 |
|
|
dnutrient(iFeT)=dnutrient(iFeT) |
357 |
|
|
& -(tmp/darwin_relaxscale) |
358 |
|
|
endif |
359 |
|
|
ENDIF |
360 |
|
|
#endif |
361 |
|
|
#ifdef SQUOTA |
362 |
|
|
IF ( darwin_Si_relaxFile .NE. ' ' ) THEN |
363 |
|
|
tmp=( Ptr(i,j,k,bi,bj,iSi )-si_obs(i,j,k,bi,bj)) |
364 |
|
|
if (tmp.lt.0. _d 0) then |
365 |
|
|
dnutrient(iSi)=dnutrient(iSi) |
366 |
|
|
& -(tmp/darwin_relaxscale) |
367 |
|
|
endif |
368 |
|
|
ENDIF |
369 |
|
|
#endif |
370 |
|
|
endif |
371 |
|
|
#endif |
372 |
|
|
c |
373 |
benw |
1.2 |
#ifdef FQUOTA |
374 |
|
|
#ifdef IRON_SED_SOURCE |
375 |
|
|
c only above minimum depth (continental shelf) |
376 |
|
|
if (rF(k).lt.depthfesed) then |
377 |
|
|
c only if bottom layer |
378 |
|
|
if (HFacC(i,j,k+1,bi,bj).eq.0. _d 0) then |
379 |
|
|
#ifdef IRON_SED_SOURCE_VARIABLE |
380 |
|
|
c calculate sink of POC into bottom layer |
381 |
|
|
tmp=orgsink(2)*orgabove(iCarb,2)/dzlocal |
382 |
|
|
c convert to dPOCl |
383 |
|
|
dnutrient(iFeT) = dnutrient(iFeT) |
384 |
|
|
& + fesedflux_pcm*tmp |
385 |
|
|
#else |
386 |
|
|
dnutrient(iFeT) = dnutrient(iFeT) |
387 |
|
|
& + fesedflux/(drF(k)*hFacC(i,j,k,bi,bj)) |
388 |
|
|
#endif |
389 |
|
|
endif |
390 |
|
|
endif |
391 |
|
|
#endif |
392 |
|
|
#endif |
393 |
|
|
c --------------------------------------------------------------------- |
394 |
jahn |
1.1 |
c save un-updated biomass as layer above |
395 |
|
|
do io=1,iomax |
396 |
|
|
do jp=1,npmax |
397 |
|
|
bioabove(io,jp)=biomass(io,jp) |
398 |
|
|
enddo |
399 |
|
|
if (io.ne.iChlo) then |
400 |
|
|
do ko=1,komax |
401 |
|
|
orgabove(io,ko)=orgmat(io,ko) |
402 |
|
|
enddo |
403 |
|
|
endif |
404 |
|
|
enddo |
405 |
|
|
c --------------------------------------------------------------------- |
406 |
|
|
c now update main tracer arrays |
407 |
|
|
c for timestep dtplankton |
408 |
|
|
dtplankton = dTtracerLev(k)/float(nsubtime) |
409 |
|
|
cccccccccccccccccccccccccccccccccccccccccccccccccccc |
410 |
|
|
place = 0 |
411 |
|
|
cccccccccccccccccccccccccccccccccccccccccccccccccccc |
412 |
|
|
c Inorganic nutrients |
413 |
|
|
do ii=1,iimax |
414 |
|
|
place = place + 1 |
415 |
|
|
Ptr(i,j,k,bi,bj,place) = Ptr(i,j,k,bi,bj,place) |
416 |
|
|
& + dtplankton*dnutrient(ii) |
417 |
|
|
enddo ! ii |
418 |
|
|
cccccccccccccccccccccccccccccccccccccccccccccccccccc |
419 |
|
|
c Biomass |
420 |
|
|
do io=1,iomax |
421 |
|
|
do jp=1,npmax |
422 |
benw |
1.4 |
if (io.ne.iChlo.or.autotrophy(jp).gt.0. _d 0) then ! if not a grazer |
423 |
benw |
1.2 |
place = place + 1 |
424 |
|
|
Ptr(i,j,k,bi,bj,place) = Ptr(i,j,k,bi,bj,place) |
425 |
|
|
& + dtplankton*dbiomass(io,jp) |
426 |
jahn |
1.1 |
endif |
427 |
|
|
enddo ! jp |
428 |
|
|
enddo ! io |
429 |
|
|
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
430 |
|
|
c Organic matter |
431 |
|
|
do io=1,iomax-iChl |
432 |
|
|
do ko=1,komax |
433 |
|
|
if (ko.ne.1.or.io.ne.iSili) then |
434 |
|
|
place = place + 1 |
435 |
|
|
Ptr(i,j,k,bi,bj,place) = Ptr(i,j,k,bi,bj,place) |
436 |
|
|
& + dtplankton*dorgmat(io,ko) |
437 |
|
|
endif |
438 |
|
|
enddo ! ko |
439 |
|
|
enddo ! io |
440 |
|
|
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
441 |
|
|
c |
442 |
benw |
1.2 |
#ifdef ALLOW_DIAGNOSTICS |
443 |
|
|
COJ for diagnostics |
444 |
|
|
PParr(i,j,k) = PP |
445 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
446 |
|
|
|
447 |
jahn |
1.1 |
#ifdef ALLOW_TIMEAVE |
448 |
benw |
1.2 |
PPave(i,j,k,bi,bj) = PPave(i,j,k,bi,bj) |
449 |
|
|
& + PP * dtplankton |
450 |
|
|
PARave(i,j,k,bi,bj) = PARave(i,j,k,bi,bj) |
451 |
|
|
& + PARlocal * dtplankton |
452 |
jahn |
1.1 |
c |
453 |
benw |
1.2 |
#ifdef QUOTA_DIAG_LIMIT |
454 |
|
|
do jp=1,npmax |
455 |
benw |
1.4 |
! carbon |
456 |
|
|
AP_C_ave(i,j,k,bi,bj,jp) = AP_C_ave(i,j,k,bi,bj,jp) |
457 |
|
|
& + AP(iCarb,jp) * dtplankton |
458 |
|
|
HP_C_ave(i,j,k,bi,bj,jp) = HP_C_ave(i,j,k,bi,bj,jp) |
459 |
|
|
& + HP(iCarb,jp) * dtplankton |
460 |
|
|
! nitrogen |
461 |
|
|
AP_N_ave(i,j,k,bi,bj,jp) = AP_N_ave(i,j,k,bi,bj,jp) |
462 |
|
|
& + AP(iNitr,jp) * dtplankton |
463 |
|
|
HP_N_ave(i,j,k,bi,bj,jp) = HP_N_ave(i,j,k,bi,bj,jp) |
464 |
|
|
& + HP(iNitr,jp) * dtplankton |
465 |
benw |
1.2 |
Nlimave(i,j,k,bi,bj,jp) = Nlimave(i,j,k,bi,bj,jp) |
466 |
benw |
1.4 |
& + Rlim(iNitr-1,jp) * dtplankton |
467 |
|
|
! phosphorus |
468 |
|
|
#ifdef PQUOTA |
469 |
|
|
AP_P_ave(i,j,k,bi,bj,jp) = AP_P_ave(i,j,k,bi,bj,jp) |
470 |
|
|
& + AP(iPhos,jp) * dtplankton |
471 |
|
|
HP_P_ave(i,j,k,bi,bj,jp) = HP_P_ave(i,j,k,bi,bj,jp) |
472 |
|
|
& + HP(iPhos,jp) * dtplankton |
473 |
|
|
Plimave(i,j,k,bi,bj,jp) = Plimave(i,j,k,bi,bj,jp) |
474 |
|
|
& + Rlim(iPhos-1,jp) * dtplankton |
475 |
|
|
#endif |
476 |
|
|
! iron |
477 |
|
|
#ifdef FQUOTA |
478 |
|
|
AP_F_ave(i,j,k,bi,bj,jp) = AP_F_ave(i,j,k,bi,bj,jp) |
479 |
|
|
& + AP(iIron,jp) * dtplankton |
480 |
|
|
HP_F_ave(i,j,k,bi,bj,jp) = HP_F_ave(i,j,k,bi,bj,jp) |
481 |
|
|
& + HP(iIron,jp) * dtplankton |
482 |
benw |
1.2 |
Flimave(i,j,k,bi,bj,jp) = Flimave(i,j,k,bi,bj,jp) |
483 |
benw |
1.4 |
& + Rlim(iIron-1,jp) * dtplankton |
484 |
|
|
#endif |
485 |
|
|
! light |
486 |
benw |
1.2 |
Ilimave(i,j,k,bi,bj,jp) = Ilimave(i,j,k,bi,bj,jp) |
487 |
|
|
& + Ilim(jp) * dtplankton |
488 |
|
|
enddo |
489 |
|
|
Tlimave(i,j,k,bi,bj) = Tlimave(i,j,k,bi,bj) |
490 |
|
|
& + Tlim * dtplankton |
491 |
jahn |
1.1 |
#endif |
492 |
|
|
#endif |
493 |
|
|
endif |
494 |
|
|
c end if hFac>0 |
495 |
|
|
enddo ! k |
496 |
|
|
c end layer loop |
497 |
|
|
c |
498 |
|
|
ENDDO ! i |
499 |
|
|
ENDDO ! j |
500 |
|
|
c |
501 |
|
|
c |
502 |
|
|
COJ fill diagnostics |
503 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
504 |
|
|
IF ( useDiagnostics ) THEN |
505 |
benw |
1.2 |
diagname = 'PP ' |
506 |
|
|
CALL DIAGNOSTICS_FILL( PParr(1-Olx,1-Oly,1), diagname, |
507 |
jahn |
1.1 |
& 0,Nr,2,bi,bj,myThid ) |
508 |
|
|
ENDIF |
509 |
|
|
#endif |
510 |
|
|
COJ |
511 |
|
|
|
512 |
|
|
#ifdef FQUOTA |
513 |
|
|
c determine iron partitioning - solve for free iron |
514 |
|
|
call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax, |
515 |
|
|
& Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe, |
516 |
|
|
& myIter, mythid) |
517 |
|
|
#endif |
518 |
|
|
|
519 |
|
|
c |
520 |
|
|
#ifdef ALLOW_TIMEAVE |
521 |
|
|
c save averages |
522 |
jahn |
1.3 |
dar_timeave(bi,bj) = dar_timeave(bi,bj) + dtplankton |
523 |
jahn |
1.1 |
#endif |
524 |
|
|
c |
525 |
|
|
c ----------------------------------------------------- |
526 |
|
|
ENDDO ! it |
527 |
|
|
c ----------------------------------------------------- |
528 |
|
|
c end of bio-chemical time loop |
529 |
|
|
c |
530 |
|
|
RETURN |
531 |
|
|
END |
532 |
|
|
|
533 |
|
|
#endif /*ALLOW_QUOTA*/ |
534 |
|
|
#endif /*ALLOW_DARWIN*/ |
535 |
|
|
#endif /*ALLOW_PTRACERS*/ |
536 |
|
|
|
537 |
|
|
C============================================================================ |