1 |
C $Header: /u/gcmpack/MITgcm_contrib/darwin2/pkg/quota/quota_forcing.F,v 1.3 2013/12/27 17:29:00 jahn Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "CPP_OPTIONS.h" |
5 |
#include "PTRACERS_OPTIONS.h" |
6 |
#include "DARWIN_OPTIONS.h" |
7 |
|
8 |
#ifdef ALLOW_PTRACERS |
9 |
#ifdef ALLOW_DARWIN |
10 |
#ifdef ALLOW_QUOTA |
11 |
|
12 |
c============================================================= |
13 |
c subroutine quota_forcing |
14 |
c step forward bio-chemical tracers in time |
15 |
C============================================================== |
16 |
SUBROUTINE QUOTA_FORCING( |
17 |
U Ptr, |
18 |
I bi,bj,imin,imax,jmin,jmax, |
19 |
I myTime,myIter,myThid) |
20 |
#include "SIZE.h" |
21 |
#include "EEPARAMS.h" |
22 |
#include "PARAMS.h" |
23 |
#include "GRID.h" |
24 |
#include "PTRACERS_SIZE.h" |
25 |
#include "PTRACERS_PARAMS.h" |
26 |
#include "GCHEM.h" |
27 |
#include "QUOTA_SIZE.h" |
28 |
#include "QUOTA.h" |
29 |
#include "DARWIN_IO.h" |
30 |
#include "DYNVARS.h" |
31 |
#ifdef USE_QSW |
32 |
#include "FFIELDS.h" |
33 |
#endif |
34 |
|
35 |
C === Global variables === |
36 |
c tracers |
37 |
_RL Ptr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy,nDarwin) |
38 |
INTEGER bi,bj,imin,imax,jmin,jmax |
39 |
_RL myTime |
40 |
INTEGER myIter |
41 |
INTEGER myThid |
42 |
|
43 |
C============== Local variables ============================================ |
44 |
c biomodel tracer arrays |
45 |
_RL nutrient(iimax) |
46 |
_RL biomass(iomax,npmax) |
47 |
_RL orgmat(iomax-iChl,komax) |
48 |
#ifdef FQUOTA |
49 |
c iron partitioning |
50 |
_RL freefe(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
51 |
_RL freefu |
52 |
_RL inputFel |
53 |
#endif |
54 |
c upstream arrays for sinking |
55 |
_RL bioabove(iomax,npmax) |
56 |
_RL orgabove(iomax-iChl,komax) |
57 |
c some working variables |
58 |
_RL sumpy |
59 |
_RL sumpyup |
60 |
c light variables |
61 |
_RL PAR(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
62 |
_RL sfac(1-OLy:sNy+OLy) |
63 |
_RL atten,lite |
64 |
_RL newtime ! for sub-timestepping |
65 |
_RL runtim ! time from tracer initialization |
66 |
c |
67 |
#ifdef ALLOW_DIAGNOSTICS |
68 |
COJ for diagnostics |
69 |
_RL PParr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
70 |
#endif |
71 |
#ifdef ALLOW_TIMEAVE |
72 |
#ifdef QUOTA_DIAG_LIMIT |
73 |
_RL Rlim(iomax-iChl-1,npmax) |
74 |
_RL Ilim(npmax) |
75 |
_RL Tlim |
76 |
_RL AP(iomax,npmax) |
77 |
_RL HP(iomax,npmax) |
78 |
#endif |
79 |
#endif |
80 |
c |
81 |
|
82 |
c some local variables |
83 |
_RL Tlocal |
84 |
_RL Slocal |
85 |
_RL PARlocal |
86 |
_RL dzlocal |
87 |
_RL dtplankton |
88 |
_RL PP |
89 |
c local tendencies |
90 |
_RL dbiomass(iomax,npmax) |
91 |
_RL dorgmat(iomax-iChl,komax) |
92 |
_RL dnutrient(iimax) |
93 |
_RL tmp |
94 |
|
95 |
INTEGER bottom |
96 |
INTEGER surface |
97 |
INTEGER i,j,k,it,ktmp |
98 |
INTEGER ii,io,jp,ko |
99 |
INTEGER place |
100 |
INTEGER debug |
101 |
#ifdef ALLOW_DIAGNOSTICS |
102 |
CHARACTER*8 diagname |
103 |
#endif |
104 |
|
105 |
c |
106 |
c-------------------------------------------------- |
107 |
c initialise variables |
108 |
DO j=1-OLy,sNy+OLy |
109 |
DO i=1-OLx,sNx+OLx |
110 |
do k=1,Nr |
111 |
#ifdef FQUOTA |
112 |
freefe(i,j,k) = 0.0 _d 0 |
113 |
# endif |
114 |
PAR(i,j,k) = 0.0 _d 0 |
115 |
#ifdef ALLOW_DIAGNOSTICS |
116 |
COJ for diagnostics |
117 |
PParr(i,j,k) = 0. _d 0 |
118 |
#endif |
119 |
enddo !k |
120 |
ENDDO !i |
121 |
ENDDO !j |
122 |
c |
123 |
c bio-chemical time loop |
124 |
c-------------------------------------------------- |
125 |
DO it=1,nsubtime |
126 |
c ------------------------------------------------- |
127 |
COJ cannot use dfloat because of adjoint |
128 |
COJ division will be double precision anyway because of dTtracerLev |
129 |
newtime=myTime-dTtracerLev(1)+ |
130 |
& float(it)*dTtracerLev(1)/float(nsubtime) |
131 |
c print*,'it ',it,newtime,nsubtime,myTime |
132 |
runtim=myTime-float(PTRACERS_Iter0)*dTtracerLev(1) |
133 |
|
134 |
#ifdef FQUOTA |
135 |
c determine iron partitioning - solve for free iron |
136 |
call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax, |
137 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe, |
138 |
& myIter, mythid) |
139 |
#endif |
140 |
|
141 |
c find light in each grid cell |
142 |
c --------------------------- |
143 |
c determine incident light |
144 |
#ifndef READ_PAR |
145 |
#ifdef USE_QSW |
146 |
DO j=1-OLy,sNy+OLy |
147 |
DO i=1-OLx,sNx+OLx |
148 |
sur_par(i,j,bi,bj)=-parfrac*Qsw(i,j,bi,bj)* |
149 |
& parconv*maskC(i,j,1,bi,bj) |
150 |
ENDDO |
151 |
ENDDO |
152 |
#else |
153 |
DO j=1-OLy,sNy+OLy |
154 |
sfac(j)=0. _d 0 |
155 |
ENDDO |
156 |
call darwin_insol(newTime,sfac,bj) |
157 |
DO j=1-OLy,sNy+OLy |
158 |
DO i=1-OLx,sNx+OLx |
159 |
sur_par(i,j,bi,bj)=sfac(j)*maskC(i,j,1,bi,bj)/86400. _d 6 |
160 |
c if (i.eq.1.and.j.ge.1.and.j.le.sNy) |
161 |
c & write(24,*) sur_par(i,j,bi,bj) |
162 |
ENDDO |
163 |
ENDDO |
164 |
#endif |
165 |
#endif |
166 |
|
167 |
C................................................................. |
168 |
C................................................................. |
169 |
|
170 |
|
171 |
DO j=1,sNy |
172 |
DO i=1,sNx |
173 |
c surface PAR |
174 |
c take ice coverage into account |
175 |
#if (defined (ALLOW_SEAICE) && defined (USE_QSW)) |
176 |
COJ ice coverage already taken into account by seaice package |
177 |
lite=sur_par(i,j,bi,bj) |
178 |
#else |
179 |
#if (defined (ALLOW_SEAICE) && defined (USE_QSW)) |
180 |
c if using Qsw and seaice, then ice fraction is already |
181 |
c taken into account |
182 |
lite=sur_par(i,j,bi,bj) |
183 |
#else |
184 |
lite=sur_par(i,j,bi,bj)*(1. _d 0-fice(i,j,bi,bj)) |
185 |
#endif |
186 |
#endif |
187 |
atten = 0. _d 0 |
188 |
sumpy = 0. _d 0 |
189 |
c |
190 |
c FOR EACH LAYER ... |
191 |
do k= 1, NR |
192 |
if (HFacC(i,j,k,bi,bj).gt.0. _d 0) then |
193 |
c --------------------------------------------------------------------- |
194 |
c benw |
195 |
c |
196 |
c Fetch biomodel variables from ptr (ptracers) |
197 |
c (making sure they are .ge. 0 - brute force) |
198 |
c |
199 |
c (set biomodel tendencies to zero, at the same time) |
200 |
c |
201 |
c ********************************************************************* |
202 |
place = 0 |
203 |
c Inorganic Nutrients |
204 |
do ii=1,iimax |
205 |
place = place + 1 |
206 |
c ambient nutrients for each element (1 to iimax) |
207 |
nutrient(ii) = max(Ptr(i,j,k,bi,bj,place),0. _d 0) |
208 |
dnutrient(ii) = 0. _d 0 |
209 |
enddo ! ii |
210 |
c ********************************************************************* |
211 |
c Unicellular biomass (including chlorophyll biomass - for non-grazers) |
212 |
do io=1,iomax |
213 |
do jp=1,npmax |
214 |
if (io.ne.iChlo.or.autotrophy(jp).gt.0. _d 0) then ! no grazer chlorophyll |
215 |
place = place + 1 |
216 |
biomass(io,jp) = max(Ptr(i,j,k,bi,bj,place),0. _d 0) |
217 |
! biomasses above current layer for sinking |
218 |
if (k.eq.1) then |
219 |
bioabove(io,jp)=0. _d 0 |
220 |
endif |
221 |
! initialise biomass rate of change |
222 |
dbiomass(io,jp) = 0. _d 0 |
223 |
else ! if grazer, fill chl biomass with zeros |
224 |
biomass(io,jp) = 0. _d 0 |
225 |
endif |
226 |
enddo ! jp |
227 |
enddo |
228 |
c ********************************************************************* |
229 |
c Organic matter |
230 |
do io=1,iomax-iChl |
231 |
do ko=1,komax |
232 |
c mass of element x for all OM classes |
233 |
place = place + 1 |
234 |
orgmat(io,ko) = max(Ptr(i,j,k,bi,bj,place),0. _d 0) |
235 |
! biomasses above current layer for sinking |
236 |
if (k.eq.1) then |
237 |
orgabove(io,ko) = 0. _d 0 |
238 |
endif |
239 |
#ifdef SQUOTA |
240 |
if (ko.and.1.and.io.eq.iSili) then |
241 |
place = place - 1 |
242 |
orgmat(iSili,1) = 0. _d 0 |
243 |
orgabove(iSili,1) = 0. _d 0 |
244 |
endif |
245 |
#endif |
246 |
dorgmat(io,ko) = 0. _d 0 |
247 |
enddo ! ko |
248 |
enddo ! io |
249 |
c ********************************************************************* |
250 |
c |
251 |
c --------------------------------------------------------------------- |
252 |
|
253 |
|
254 |
c find local light for level k |
255 |
sumpyup = sumpy |
256 |
sumpy = 0. _d 0 |
257 |
do jp=1,npmax |
258 |
#ifndef GEIDER |
259 |
! sum nitrogen biomass |
260 |
sumpy = sumpy + biomass(iNitr,jp) |
261 |
#else |
262 |
! sum chlorophyll |
263 |
sumpy = sumpy + biomass(iChlo,jp) |
264 |
#endif |
265 |
enddo |
266 |
|
267 |
atten= atten + (k_w + k_chl*sumpy)*5. _d -1*drF(k) |
268 |
if (k.gt.1)then |
269 |
atten = atten + (k_w+k_chl*sumpyup)*5. _d -1*drF(k-1) |
270 |
endif |
271 |
PAR(i,j,k) = lite*exp(-atten) |
272 |
c |
273 |
c Physical variables |
274 |
PARlocal = PAR(i,j,k) |
275 |
Tlocal = theta(i,j,k,bi,bj) |
276 |
Slocal = salt(i,j,k,bi,bj) |
277 |
c Free Iron |
278 |
#ifdef FQUOTA |
279 |
freefu = max(freefe(i,j,k),0. _d 0) |
280 |
if (k.eq.1) then |
281 |
inputFel = inputFe(i,j,bi,bj) |
282 |
else |
283 |
inputFel = 0. _d 0 |
284 |
endif |
285 |
#endif |
286 |
c Layer thickness |
287 |
dzlocal = drF(k)*HFacC(i,j,k,bi,bj) |
288 |
c |
289 |
c set bottom=1.0 if the layer below is not ocean |
290 |
ktmp=min(nR,k+1) |
291 |
if(hFacC(i,j,ktmp,bi,bj).eq.0. _d 0.or.k.eq.Nr) then |
292 |
bottom = 1 |
293 |
else |
294 |
bottom = 0 |
295 |
endif |
296 |
if (k.eq.1) then |
297 |
surface = 1 |
298 |
else |
299 |
surface = 0 |
300 |
endif |
301 |
|
302 |
c set other arguments to zero |
303 |
debug=0 |
304 |
|
305 |
if (debug.eq.7) print*,'Inorganic nutrients',nutrient |
306 |
if (debug.eq.7) print*,'Plankton biomass', biomass |
307 |
if (debug.eq.7) print*,'Organic nutrients',orgmat |
308 |
if (debug.eq.8) print*,'k, PARlocal, dzlocal', |
309 |
& k,PARlocal,dzlocal |
310 |
c --------------------------------------------------------------------- |
311 |
CALL QUOTA_PLANKTON( |
312 |
I biomass, orgmat, nutrient, |
313 |
O PP, |
314 |
I bioabove, |
315 |
I orgabove, |
316 |
#ifdef FQUOTA |
317 |
I freefu, inputFel, |
318 |
#endif |
319 |
#ifdef ALLOW_TIMEAVE |
320 |
#ifdef QUOTA_DIAG_LIMIT |
321 |
O AP, HP, |
322 |
O Rlim, Ilim, Tlim, |
323 |
#endif |
324 |
#endif |
325 |
I PARlocal, Tlocal, Slocal, |
326 |
I bottom, surface, dzlocal, |
327 |
O dbiomass, dorgmat, dnutrient, |
328 |
I debug, |
329 |
I runtim, |
330 |
I MyThid) |
331 |
c --------------------------------------------------------------------- |
332 |
c |
333 |
#ifdef RELAX_NUTS |
334 |
if (darwin_relaxscale.gt.0. _d 0) then |
335 |
! |
336 |
IF ( darwin_NO3_relaxFile .NE. ' ' ) THEN |
337 |
tmp=(Ptr(i,j,k,bi,bj,iNO3 )-no3_obs(i,j,k,bi,bj)) |
338 |
if (tmp.lt.0. _d 0) then |
339 |
dnutrient(iNO3)=dnutrient(iNO3) |
340 |
& -(tmp/darwin_relaxscale) |
341 |
endif |
342 |
ENDIF |
343 |
#ifdef PQUOTA |
344 |
IF ( darwin_PO4_relaxFile .NE. ' ' ) THEN |
345 |
tmp=(Ptr(i,j,k,bi,bj,iPO4 )-po4_obs(i,j,k,bi,bj)) |
346 |
if (tmp.lt.0. _d 0) then |
347 |
dnutrient(iPO4)=dnutrient(iPO4) |
348 |
& -(tmp/darwin_relaxscale) |
349 |
endif |
350 |
ENDIF |
351 |
#endif |
352 |
#ifdef FQOUTA |
353 |
IF ( darwin_Fet_relaxFile .NE. ' ' ) THEN |
354 |
tmp=(Ptr(i,j,k,bi,bj,iFeT )-fet_obs(i,j,k,bi,bj)) |
355 |
if (tmp.lt.0. _d 0) then |
356 |
dnutrient(iFeT)=dnutrient(iFeT) |
357 |
& -(tmp/darwin_relaxscale) |
358 |
endif |
359 |
ENDIF |
360 |
#endif |
361 |
#ifdef SQUOTA |
362 |
IF ( darwin_Si_relaxFile .NE. ' ' ) THEN |
363 |
tmp=( Ptr(i,j,k,bi,bj,iSi )-si_obs(i,j,k,bi,bj)) |
364 |
if (tmp.lt.0. _d 0) then |
365 |
dnutrient(iSi)=dnutrient(iSi) |
366 |
& -(tmp/darwin_relaxscale) |
367 |
endif |
368 |
ENDIF |
369 |
#endif |
370 |
endif |
371 |
#endif |
372 |
c |
373 |
#ifdef FQUOTA |
374 |
#ifdef IRON_SED_SOURCE |
375 |
c only above minimum depth (continental shelf) |
376 |
if (rF(k).lt.depthfesed) then |
377 |
c only if bottom layer |
378 |
if (HFacC(i,j,k+1,bi,bj).eq.0. _d 0) then |
379 |
#ifdef IRON_SED_SOURCE_VARIABLE |
380 |
c calculate sink of POC into bottom layer |
381 |
tmp=orgsink(2)*orgabove(iCarb,2)/dzlocal |
382 |
c convert to dPOCl |
383 |
dnutrient(iFeT) = dnutrient(iFeT) |
384 |
& + fesedflux_pcm*tmp |
385 |
#else |
386 |
dnutrient(iFeT) = dnutrient(iFeT) |
387 |
& + fesedflux/(drF(k)*hFacC(i,j,k,bi,bj)) |
388 |
#endif |
389 |
endif |
390 |
endif |
391 |
#endif |
392 |
#endif |
393 |
c --------------------------------------------------------------------- |
394 |
c save un-updated biomass as layer above |
395 |
do io=1,iomax |
396 |
do jp=1,npmax |
397 |
bioabove(io,jp)=biomass(io,jp) |
398 |
enddo |
399 |
if (io.ne.iChlo) then |
400 |
do ko=1,komax |
401 |
orgabove(io,ko)=orgmat(io,ko) |
402 |
enddo |
403 |
endif |
404 |
enddo |
405 |
c --------------------------------------------------------------------- |
406 |
c now update main tracer arrays |
407 |
c for timestep dtplankton |
408 |
dtplankton = dTtracerLev(k)/float(nsubtime) |
409 |
cccccccccccccccccccccccccccccccccccccccccccccccccccc |
410 |
place = 0 |
411 |
cccccccccccccccccccccccccccccccccccccccccccccccccccc |
412 |
c Inorganic nutrients |
413 |
do ii=1,iimax |
414 |
place = place + 1 |
415 |
Ptr(i,j,k,bi,bj,place) = Ptr(i,j,k,bi,bj,place) |
416 |
& + dtplankton*dnutrient(ii) |
417 |
enddo ! ii |
418 |
cccccccccccccccccccccccccccccccccccccccccccccccccccc |
419 |
c Biomass |
420 |
do io=1,iomax |
421 |
do jp=1,npmax |
422 |
if (io.ne.iChlo.or.autotrophy(jp).gt.0. _d 0) then ! if not a grazer |
423 |
place = place + 1 |
424 |
Ptr(i,j,k,bi,bj,place) = Ptr(i,j,k,bi,bj,place) |
425 |
& + dtplankton*dbiomass(io,jp) |
426 |
endif |
427 |
enddo ! jp |
428 |
enddo ! io |
429 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
430 |
c Organic matter |
431 |
do io=1,iomax-iChl |
432 |
do ko=1,komax |
433 |
if (ko.ne.1.or.io.ne.iSili) then |
434 |
place = place + 1 |
435 |
Ptr(i,j,k,bi,bj,place) = Ptr(i,j,k,bi,bj,place) |
436 |
& + dtplankton*dorgmat(io,ko) |
437 |
endif |
438 |
enddo ! ko |
439 |
enddo ! io |
440 |
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
441 |
c |
442 |
#ifdef ALLOW_DIAGNOSTICS |
443 |
COJ for diagnostics |
444 |
PParr(i,j,k) = PP |
445 |
#endif /* ALLOW_DIAGNOSTICS */ |
446 |
|
447 |
#ifdef ALLOW_TIMEAVE |
448 |
PPave(i,j,k,bi,bj) = PPave(i,j,k,bi,bj) |
449 |
& + PP * dtplankton |
450 |
PARave(i,j,k,bi,bj) = PARave(i,j,k,bi,bj) |
451 |
& + PARlocal * dtplankton |
452 |
c |
453 |
#ifdef QUOTA_DIAG_LIMIT |
454 |
do jp=1,npmax |
455 |
! carbon |
456 |
AP_C_ave(i,j,k,bi,bj,jp) = AP_C_ave(i,j,k,bi,bj,jp) |
457 |
& + AP(iCarb,jp) * dtplankton |
458 |
HP_C_ave(i,j,k,bi,bj,jp) = HP_C_ave(i,j,k,bi,bj,jp) |
459 |
& + HP(iCarb,jp) * dtplankton |
460 |
! nitrogen |
461 |
AP_N_ave(i,j,k,bi,bj,jp) = AP_N_ave(i,j,k,bi,bj,jp) |
462 |
& + AP(iNitr,jp) * dtplankton |
463 |
HP_N_ave(i,j,k,bi,bj,jp) = HP_N_ave(i,j,k,bi,bj,jp) |
464 |
& + HP(iNitr,jp) * dtplankton |
465 |
Nlimave(i,j,k,bi,bj,jp) = Nlimave(i,j,k,bi,bj,jp) |
466 |
& + Rlim(iNitr-1,jp) * dtplankton |
467 |
! phosphorus |
468 |
#ifdef PQUOTA |
469 |
AP_P_ave(i,j,k,bi,bj,jp) = AP_P_ave(i,j,k,bi,bj,jp) |
470 |
& + AP(iPhos,jp) * dtplankton |
471 |
HP_P_ave(i,j,k,bi,bj,jp) = HP_P_ave(i,j,k,bi,bj,jp) |
472 |
& + HP(iPhos,jp) * dtplankton |
473 |
Plimave(i,j,k,bi,bj,jp) = Plimave(i,j,k,bi,bj,jp) |
474 |
& + Rlim(iPhos-1,jp) * dtplankton |
475 |
#endif |
476 |
! iron |
477 |
#ifdef FQUOTA |
478 |
AP_F_ave(i,j,k,bi,bj,jp) = AP_F_ave(i,j,k,bi,bj,jp) |
479 |
& + AP(iIron,jp) * dtplankton |
480 |
HP_F_ave(i,j,k,bi,bj,jp) = HP_F_ave(i,j,k,bi,bj,jp) |
481 |
& + HP(iIron,jp) * dtplankton |
482 |
Flimave(i,j,k,bi,bj,jp) = Flimave(i,j,k,bi,bj,jp) |
483 |
& + Rlim(iIron-1,jp) * dtplankton |
484 |
#endif |
485 |
! light |
486 |
Ilimave(i,j,k,bi,bj,jp) = Ilimave(i,j,k,bi,bj,jp) |
487 |
& + Ilim(jp) * dtplankton |
488 |
enddo |
489 |
Tlimave(i,j,k,bi,bj) = Tlimave(i,j,k,bi,bj) |
490 |
& + Tlim * dtplankton |
491 |
#endif |
492 |
#endif |
493 |
endif |
494 |
c end if hFac>0 |
495 |
enddo ! k |
496 |
c end layer loop |
497 |
c |
498 |
ENDDO ! i |
499 |
ENDDO ! j |
500 |
c |
501 |
c |
502 |
COJ fill diagnostics |
503 |
#ifdef ALLOW_DIAGNOSTICS |
504 |
IF ( useDiagnostics ) THEN |
505 |
diagname = 'PP ' |
506 |
CALL DIAGNOSTICS_FILL( PParr(1-Olx,1-Oly,1), diagname, |
507 |
& 0,Nr,2,bi,bj,myThid ) |
508 |
ENDIF |
509 |
#endif |
510 |
COJ |
511 |
|
512 |
#ifdef FQUOTA |
513 |
c determine iron partitioning - solve for free iron |
514 |
call darwin_fe_chem(bi,bj,iMin,iMax,jMin,jMax, |
515 |
& Ptr(1-OLx,1-OLy,1,bi,bj,iFeT), freefe, |
516 |
& myIter, mythid) |
517 |
#endif |
518 |
|
519 |
c |
520 |
#ifdef ALLOW_TIMEAVE |
521 |
c save averages |
522 |
dar_timeave(bi,bj) = dar_timeave(bi,bj) + dtplankton |
523 |
#endif |
524 |
c |
525 |
c ----------------------------------------------------- |
526 |
ENDDO ! it |
527 |
c ----------------------------------------------------- |
528 |
c end of bio-chemical time loop |
529 |
c |
530 |
RETURN |
531 |
END |
532 |
|
533 |
#endif /*ALLOW_QUOTA*/ |
534 |
#endif /*ALLOW_DARWIN*/ |
535 |
#endif /*ALLOW_PTRACERS*/ |
536 |
|
537 |
C============================================================================ |