1 |
#include "CPP_OPTIONS.h" |
2 |
#include "PTRACERS_OPTIONS.h" |
3 |
#include "DARWIN_OPTIONS.h" |
4 |
|
5 |
#ifdef ALLOW_PTRACERS |
6 |
#ifdef ALLOW_DARWIN |
7 |
|
8 |
#ifdef ALLOW_CARBON |
9 |
|
10 |
CBOP |
11 |
C !ROUTINE: DIC_BUDGETPV |
12 |
|
13 |
C !INTERFACE: ========================================================== |
14 |
SUBROUTINE DIC_BUDGETPV( PTR_DIC , PTR_ALK, PTR_PO4, PTR_SIL, |
15 |
I bi,bj,imin,imax,jmin,jmax, |
16 |
I myIter,myTime,myThid) |
17 |
|
18 |
C !DESCRIPTION: |
19 |
C Calculate the carbon air-sea flux terms |
20 |
C following external_forcing_dic.F (OCMIP run) from Mick |
21 |
|
22 |
C !USES: =============================================================== |
23 |
IMPLICIT NONE |
24 |
#include "SIZE.h" |
25 |
#include "DYNVARS.h" |
26 |
#include "EEPARAMS.h" |
27 |
#include "PARAMS.h" |
28 |
#include "GRID.h" |
29 |
#include "FFIELDS.h" |
30 |
#include "DARWIN_SIZE.h" |
31 |
#include "DARWIN_IO.h" |
32 |
#include "DARWIN_FLUX.h" |
33 |
#ifdef USE_EXFWIND |
34 |
#include "EXF_FIELDS.h" |
35 |
#endif |
36 |
|
37 |
C !INPUT PARAMETERS: =================================================== |
38 |
C myThid :: thread number |
39 |
C myIter :: current timestep |
40 |
C myTime :: current time |
41 |
c PTR_DIC :: DIC tracer field |
42 |
INTEGER myIter, myThid |
43 |
_RL myTime |
44 |
_RL PTR_DIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
45 |
_RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
46 |
_RL PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
47 |
_RL PTR_SIL(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
48 |
INTEGER iMin,iMax,jMin,jMax, bi, bj |
49 |
|
50 |
C !LOCAL VARIABLES: ==================================================== |
51 |
INTEGER I,J, kLev, it |
52 |
C Number of iterations for pCO2 solvers... |
53 |
C Solubility relation coefficients |
54 |
_RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
55 |
_RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
56 |
_RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
57 |
_RL pisvel(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
58 |
C local variables for carbon chem |
59 |
_RL surfdic(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
60 |
_RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
61 |
_RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
62 |
_RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
63 |
_RL surfsalt(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
64 |
_RL surftemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
65 |
#ifdef ALLOW_OLD_VIRTUALFLUX |
66 |
_RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
67 |
#endif |
68 |
C local variables for CO2_FLUX_BUDGET |
69 |
_RL FluxCO2_loc(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
70 |
CEOP |
71 |
|
72 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
73 |
|
74 |
kLev=1 |
75 |
|
76 |
cc if coupled to atmsopheric model, use the |
77 |
cc Co2 value passed from the coupler |
78 |
c#ifndef USE_ATMOSCO2 |
79 |
cC PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv |
80 |
c DO j=1-OLy,sNy+OLy |
81 |
c DO i=1-OLx,sNx+OLx |
82 |
c AtmospCO2(i,j,bi,bj)=278.0 _d -6 |
83 |
c ENDDO |
84 |
c ENDDO |
85 |
c#endif |
86 |
C ================================================================= |
87 |
C determine inorganic carbon chem coefficients |
88 |
DO j=jmin,jmax |
89 |
DO i=imin,imax |
90 |
c put bounds on tracers so pH solver doesn't blow up |
91 |
surfdic(i,j) = |
92 |
& max(100. _d 0 , min(4000. _d 0, PTR_DIC(i,j)))*1e-3 |
93 |
& * maskC(i,j,kLev,bi,bj) |
94 |
surfalk(i,j) = |
95 |
& max(100. _d 0 , min(4000. _d 0, PTR_ALK(i,j)))*1e-3 |
96 |
& * maskC(i,j,kLev,bi,bj) |
97 |
surfphos(i,j) = |
98 |
& max(1. _d -10, min(10. _d 0, PTR_PO4(i,j)))*1e-3 |
99 |
& * maskC(i,j,kLev,bi,bj) |
100 |
surfsi(i,j) = |
101 |
& max(1. _d -8, min(500. _d 0, PTR_SIL(i,j)))*1e-3 |
102 |
& * maskC(i,j,kLev,bi,bj) |
103 |
surfsalt(i,j) = |
104 |
& max(4. _d 0, min(50. _d 0, salt(i,j,kLev,bi,bj))) |
105 |
surftemp(i,j) = |
106 |
& max(-4. _d 0, min(39. _d 0, theta(i,j,kLev,bi,bj))) |
107 |
ENDDO |
108 |
ENDDO |
109 |
|
110 |
CALL CARBON_COEFFS( |
111 |
I surftemp,surfsalt, |
112 |
I bi,bj,iMin,iMax,jMin,jMax,myThid) |
113 |
C==================================================================== |
114 |
|
115 |
DO j=jmin,jmax |
116 |
DO i=imin,imax |
117 |
C Compute AtmosP and Kwexch_Pre which are re-used for flux of O2 |
118 |
|
119 |
#ifdef USE_PLOAD |
120 |
C Convert anomalous pressure pLoad (in Pa) from atmospheric model |
121 |
C to total pressure (in Atm) |
122 |
C Note: it is assumed the reference atmospheric pressure is 1Atm=1013mb |
123 |
C rather than the actual ref. pressure from Atm. model so that on |
124 |
C average AtmosP is about 1 Atm. |
125 |
AtmosP(i,j,bi,bj)= 1. _d 0 + pLoad(i,j,bi,bj)/Pa2Atm |
126 |
#endif |
127 |
|
128 |
C Pre-compute part of exchange coefficient: pisvel*(1-fice) |
129 |
C Schmidt number is accounted for later |
130 |
#ifdef USE_EXFWIND |
131 |
pisvel(i,j)=0.337 _d 0 *wspeed(i,j,bi,bj)**2/3.6 _d 5 |
132 |
cBX linear piston velocity after Krakauer et al. (2006), Eq. 3 |
133 |
cBX using <k> = 20, n=0.5, and <u^n> = 2.6747 (as determined from 2010 |
134 |
cBX EXFwspee field from cube92 run) |
135 |
cDc pisvel(i,j)=20 _d 0 *(wspeed(i,j,bi,bj)**0.5 |
136 |
cDc & /2.6747 _d 0) /3.6 _d 5 |
137 |
#else |
138 |
pisvel(i,j)=0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5 |
139 |
#endif |
140 |
Kwexch_Pre(i,j,bi,bj) = pisvel(i,j) |
141 |
& * (1. _d 0 - FIce(i,j,bi,bj)) |
142 |
|
143 |
ENDDO |
144 |
ENDDO |
145 |
|
146 |
c pCO2 solver... |
147 |
C$TAF LOOP = parallel |
148 |
DO j=jmin,jmax |
149 |
C$TAF LOOP = parallel |
150 |
DO i=imin,imax |
151 |
|
152 |
IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN |
153 |
CALL CALC_PCO2_APPROX( |
154 |
I surftemp(i,j),surfsalt(i,j), |
155 |
I surfdic(i,j), surfphos(i,j), |
156 |
I surfsi(i,j),surfalk(i,j), |
157 |
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
158 |
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
159 |
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
160 |
I aksi(i,j,bi,bj),akf(i,j,bi,bj), |
161 |
I ak0(i,j,bi,bj), fugf(i,j,bi,bj), |
162 |
I ff(i,j,bi,bj), |
163 |
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
164 |
U pH(i,j,bi,bj),pCO2(i,j,bi,bj),CO3(i,j,bi,bj), |
165 |
I myThid ) |
166 |
ELSE |
167 |
pH(i,j,bi,bj) = 0. _d 0 |
168 |
pCO2(i,j,bi,bj) = 0. _d 0 |
169 |
CO3(i,j,bi,bj) = 0. _d 0 |
170 |
ENDIF |
171 |
ENDDO |
172 |
ENDDO |
173 |
|
174 |
|
175 |
DO j=jmin,jmax |
176 |
DO i=imin,imax |
177 |
|
178 |
IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN |
179 |
C calculate SCHMIDT NO. for CO2 |
180 |
SchmidtNoDIC(i,j) = |
181 |
& sca1 |
182 |
& + sca2 * surftemp(i,j) |
183 |
& + sca3 * surftemp(i,j)*surftemp(i,j) |
184 |
& + sca4 * surftemp(i,j)*surftemp(i,j) |
185 |
& *surftemp(i,j) |
186 |
c put positive bound on SCHMIT number (will go negative for temp>40) |
187 |
SchmidtNoDIC(i,j) = max(1. _d -2, SchmidtNoDIC(i,j)) |
188 |
|
189 |
C Determine surface flux (FDIC) |
190 |
C first correct pCO2at for surface atmos pressure |
191 |
pCO2sat(i,j) = |
192 |
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
193 |
|
194 |
C then account for Schmidt number |
195 |
Kwexch(i,j) = budgetPV1(i,j,bi,bj) |
196 |
budgetPV1(i,j,bi,bj) = Kwexch_Pre(i,j,bi,bj) |
197 |
& / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0) |
198 |
if(budgetTStep1.EQ.0) then |
199 |
C if first timestep |
200 |
C this is problematic for restarts; to do correctly we will have to |
201 |
C add to pickups or run simulation without interruptions |
202 |
Kwexch(i,j) = budgetPV1(i,j,bi,bj) |
203 |
endif |
204 |
|
205 |
#ifdef WATERVAP_BUG |
206 |
C Calculate flux in terms of DIC units using K0, solubility |
207 |
C Flux = Vp * ([CO2sat] - [CO2]) |
208 |
C CO2sat = K0*pCO2atmos*P/P0 |
209 |
C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 |
210 |
FluxCO2_loc(i,j) = |
211 |
& Kwexch(i,j)*( |
212 |
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
213 |
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
214 |
& ) |
215 |
#else |
216 |
C Corrected by Val Bennington Nov 2010 per G.A. McKinley's finding |
217 |
C of error in application of water vapor correction |
218 |
c Flux = kw*rho*(ff*pCO2atm-k0*FugFac*pCO2ocean) |
219 |
FluxCO2_loc(i,j) = |
220 |
& Kwexch(i,j)*( |
221 |
& ff(i,j,bi,bj)*pCO2sat(i,j) - |
222 |
& pCO2(i,j,bi,bj)*fugf(i,j,bi,bj) |
223 |
& *ak0(i,j,bi,bj) ) |
224 |
& |
225 |
#endif |
226 |
ELSE |
227 |
FluxCO2_loc(i,j) = 0. _d 0 |
228 |
ENDIF |
229 |
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
230 |
FluxCO2_loc(i,j) = FluxCO2_loc(i,j)/permil |
231 |
c convert flux (mol m-2 s-1) to (mmol m-2 s-1) |
232 |
FluxCO2_loc(i,j) = FluxCO2_loc(i,j)*1. _d 3 |
233 |
|
234 |
#ifdef ALLOW_OLD_VIRTUALFLUX |
235 |
IF (maskC(i,j,kLev,bi,bj).NE.0. _d 0) THEN |
236 |
c calculate virtual flux |
237 |
c EminusPforV = dS/dt*(1/Sglob) |
238 |
C NOTE: Be very careful with signs here! |
239 |
C Positive EminusPforV => loss of water to atmos and increase |
240 |
C in salinity. Thus, also increase in other surface tracers |
241 |
C (i.e. positive virtual flux into surface layer) |
242 |
C ...so here, VirtualFLux = dC/dt! |
243 |
VirtualFlux(i,j)=gsm_DIC*surfaceForcingS(i,j,bi,bj)/gsm_s |
244 |
c OR |
245 |
c let virtual flux be zero |
246 |
c VirtualFlux(i,j)=0.d0 |
247 |
c |
248 |
ELSE |
249 |
VirtualFlux(i,j)=0. _d 0 |
250 |
ENDIF |
251 |
#endif /* ALLOW_OLD_VIRTUALFLUX */ |
252 |
ENDDO |
253 |
ENDDO |
254 |
|
255 |
C update tendency |
256 |
DO j=jmin,jmax |
257 |
DO i=imin,imax |
258 |
if(budgetTStep1.EQ.0) then |
259 |
C if first timestep |
260 |
C this is problematic at restart; clean-up later |
261 |
dFluxCO2Pv(i,j,bi,bj) = 0. d 0 |
262 |
else |
263 |
C at this point in code, fluxCO2_1 contains total flux for current time step |
264 |
dFluxCO2Pv(i,j,bi,bj) = fluxCO2_1(i,j,bi,bj) - |
265 |
& FluxCO2_loc(i,j) |
266 |
endif |
267 |
ENDDO |
268 |
ENDDO |
269 |
|
270 |
RETURN |
271 |
END |
272 |
#endif /*ALLOW_CARBON*/ |
273 |
|
274 |
#endif /*DARWIN*/ |
275 |
#endif /*ALLOW_PTRACERS*/ |
276 |
c ================================================================== |