1 |
dcarroll |
1.1 |
#include "CPP_OPTIONS.h" |
2 |
|
|
#include "PTRACERS_OPTIONS.h" |
3 |
|
|
#include "DARWIN_OPTIONS.h" |
4 |
|
|
|
5 |
|
|
#ifdef ALLOW_PTRACERS |
6 |
|
|
#ifdef ALLOW_DARWIN |
7 |
|
|
|
8 |
|
|
#ifdef ALLOW_CARBON |
9 |
|
|
|
10 |
|
|
CBOP |
11 |
|
|
C !ROUTINE: DIC_BUDGETTHETA |
12 |
|
|
|
13 |
|
|
C !INTERFACE: ========================================================== |
14 |
|
|
SUBROUTINE DIC_BUDGETTHETA( PTR_DIC , PTR_ALK, PTR_PO4, PTR_SIL, |
15 |
|
|
O deltaTheta, |
16 |
|
|
I bi,bj,imin,imax,jmin,jmax, |
17 |
|
|
I myIter,myTime,myThid) |
18 |
|
|
|
19 |
|
|
C !DESCRIPTION: |
20 |
|
|
C Calculate the carbon air-sea flux terms |
21 |
|
|
C following external_forcing_dic.F (OCMIP run) from Mick |
22 |
|
|
|
23 |
|
|
C !USES: =============================================================== |
24 |
|
|
IMPLICIT NONE |
25 |
|
|
#include "SIZE.h" |
26 |
|
|
#include "DYNVARS.h" |
27 |
|
|
#include "EEPARAMS.h" |
28 |
|
|
#include "PARAMS.h" |
29 |
|
|
#include "GRID.h" |
30 |
|
|
#include "FFIELDS.h" |
31 |
|
|
#include "DARWIN_SIZE.h" |
32 |
|
|
#include "DARWIN_IO.h" |
33 |
|
|
#include "DARWIN_FLUX.h" |
34 |
|
|
#ifdef USE_EXFWIND |
35 |
|
|
#include "EXF_FIELDS.h" |
36 |
|
|
#endif |
37 |
|
|
|
38 |
|
|
C !INPUT PARAMETERS: =================================================== |
39 |
|
|
C myThid :: thread number |
40 |
|
|
C myIter :: current timestep |
41 |
|
|
C myTime :: current time |
42 |
|
|
c PTR_DIC :: DIC tracer field |
43 |
|
|
INTEGER myIter, myThid |
44 |
|
|
_RL myTime |
45 |
|
|
_RL PTR_DIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
46 |
|
|
_RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
47 |
|
|
_RL PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
48 |
|
|
_RL PTR_SIL(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
49 |
|
|
INTEGER iMin,iMax,jMin,jMax, bi, bj |
50 |
|
|
|
51 |
|
|
C !LOCAL VARIABLES: ==================================================== |
52 |
|
|
INTEGER I,J, kLev, it |
53 |
|
|
C Number of iterations for pCO2 solvers... |
54 |
|
|
C Solubility relation coefficients |
55 |
|
|
_RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
56 |
|
|
_RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
57 |
|
|
_RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
58 |
|
|
_RL pisvel(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
59 |
|
|
C local variables for carbon chem |
60 |
|
|
_RL surfdic(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
61 |
|
|
_RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
62 |
|
|
_RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
63 |
|
|
_RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
64 |
|
|
_RL surfsalt(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
65 |
|
|
_RL surftemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
66 |
|
|
_RL budgetTemp1Pert(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
67 |
|
|
#ifdef ALLOW_OLD_VIRTUALFLUX |
68 |
|
|
_RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
69 |
|
|
#endif |
70 |
|
|
C local variables for CO2_FLUX_BUDGET |
71 |
|
|
_RL FluxCO2_loc(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
72 |
|
|
_RL deltaTheta(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
73 |
|
|
CEOP |
74 |
|
|
|
75 |
|
|
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
76 |
|
|
|
77 |
|
|
kLev=1 |
78 |
|
|
|
79 |
|
|
cc if coupled to atmsopheric model, use the |
80 |
|
|
cc Co2 value passed from the coupler |
81 |
|
|
c#ifndef USE_ATMOSCO2 |
82 |
|
|
cC PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv |
83 |
|
|
c DO j=1-OLy,sNy+OLy |
84 |
|
|
c DO i=1-OLx,sNx+OLx |
85 |
|
|
c AtmospCO2(i,j,bi,bj)=278.0 _d -6 |
86 |
|
|
c ENDDO |
87 |
|
|
c ENDDO |
88 |
|
|
c#endif |
89 |
|
|
C ================================================================= |
90 |
|
|
C determine inorganic carbon chem coefficients |
91 |
|
|
DO j=jmin,jmax |
92 |
|
|
DO i=imin,imax |
93 |
|
|
c put bounds on tracers so pH solver doesn't blow up |
94 |
|
|
surfdic(i,j) = |
95 |
|
|
& max(100. _d 0 , min(4000. _d 0, PTR_DIC(i,j)))*1e-3 |
96 |
|
|
& * maskC(i,j,kLev,bi,bj) |
97 |
|
|
surfalk(i,j) = |
98 |
|
|
& max(100. _d 0 , min(4000. _d 0, PTR_ALK(i,j)))*1e-3 |
99 |
|
|
& * maskC(i,j,kLev,bi,bj) |
100 |
|
|
surfphos(i,j) = |
101 |
|
|
& max(1. _d -10, min(10. _d 0, PTR_PO4(i,j)))*1e-3 |
102 |
|
|
& * maskC(i,j,kLev,bi,bj) |
103 |
|
|
surfsi(i,j) = |
104 |
|
|
& max(1. _d -8, min(500. _d 0, PTR_SIL(i,j)))*1e-3 |
105 |
|
|
& * maskC(i,j,kLev,bi,bj) |
106 |
|
|
surfsalt(i,j) = |
107 |
|
|
& max(4. _d 0, min(50. _d 0, salt(i,j,kLev,bi,bj))) |
108 |
|
|
C theta from previous timestep |
109 |
|
|
surftemp(i,j) = budgetTemp1(i,j,bi,bj) |
110 |
|
|
C theta from current timestep |
111 |
|
|
budgetTemp1(i,j,bi,bj) = |
112 |
|
|
& max(-4. _d 0, min(39. _d 0, theta(i,j,kLev,bi,bj))) |
113 |
|
|
if(budgetTStep1.EQ.0) then |
114 |
|
|
C if first timestep |
115 |
|
|
C this is problematic for restarts; to do correctly we will have to |
116 |
|
|
C add to pickups or run simulation without interruptions |
117 |
|
|
surftemp(i,j) = budgetTemp1(i,j,bi,bj) |
118 |
|
|
endif |
119 |
|
|
budgetTemp1Pert(i,j) = budgetTemp1(i,j,bi,bj) + |
120 |
|
|
& budgetPert |
121 |
|
|
ENDDO |
122 |
|
|
ENDDO |
123 |
|
|
|
124 |
|
|
CALL CARBON_COEFFS( |
125 |
|
|
I budgetTemp1Pert,surfsalt, |
126 |
|
|
I bi,bj,iMin,iMax,jMin,jMax,myThid) |
127 |
|
|
C==================================================================== |
128 |
|
|
|
129 |
|
|
DO j=jmin,jmax |
130 |
|
|
DO i=imin,imax |
131 |
|
|
C Compute AtmosP and Kwexch_Pre which are re-used for flux of O2 |
132 |
|
|
|
133 |
|
|
#ifdef USE_PLOAD |
134 |
|
|
C Convert anomalous pressure pLoad (in Pa) from atmospheric model |
135 |
|
|
C to total pressure (in Atm) |
136 |
|
|
C Note: it is assumed the reference atmospheric pressure is 1Atm=1013mb |
137 |
|
|
C rather than the actual ref. pressure from Atm. model so that on |
138 |
|
|
C average AtmosP is about 1 Atm. |
139 |
|
|
AtmosP(i,j,bi,bj)= 1. _d 0 + pLoad(i,j,bi,bj)/Pa2Atm |
140 |
|
|
#endif |
141 |
|
|
|
142 |
|
|
C Pre-compute part of exchange coefficient: pisvel*(1-fice) |
143 |
|
|
C Schmidt number is accounted for later |
144 |
|
|
#ifdef USE_EXFWIND |
145 |
|
|
pisvel(i,j)=0.337 _d 0 *wspeed(i,j,bi,bj)**2/3.6 _d 5 |
146 |
|
|
cBX linear piston velocity after Krakauer et al. (2006), Eq. 3 |
147 |
|
|
cBX using <k> = 20, n=0.5, and <u^n> = 2.6747 (as determined from 2010 |
148 |
|
|
cBX EXFwspee field from cube92 run) |
149 |
|
|
cDc pisvel(i,j)=20 _d 0 *(wspeed(i,j,bi,bj)**0.5 |
150 |
|
|
cDc & /2.6747 _d 0) /3.6 _d 5 |
151 |
|
|
#else |
152 |
|
|
pisvel(i,j)=0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5 |
153 |
|
|
#endif |
154 |
|
|
Kwexch_Pre(i,j,bi,bj) = pisvel(i,j) |
155 |
|
|
& * (1. _d 0 - FIce(i,j,bi,bj)) |
156 |
|
|
|
157 |
|
|
ENDDO |
158 |
|
|
ENDDO |
159 |
|
|
|
160 |
|
|
c pCO2 solver... |
161 |
|
|
C$TAF LOOP = parallel |
162 |
|
|
DO j=jmin,jmax |
163 |
|
|
C$TAF LOOP = parallel |
164 |
|
|
DO i=imin,imax |
165 |
|
|
|
166 |
|
|
IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN |
167 |
|
|
CALL CALC_PCO2_APPROX( |
168 |
|
|
I budgetTemp1Pert(i,j),surfsalt(i,j), |
169 |
|
|
I surfdic(i,j), surfphos(i,j), |
170 |
|
|
I surfsi(i,j),surfalk(i,j), |
171 |
|
|
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
172 |
|
|
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
173 |
|
|
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
174 |
|
|
I aksi(i,j,bi,bj),akf(i,j,bi,bj), |
175 |
|
|
I ak0(i,j,bi,bj), fugf(i,j,bi,bj), |
176 |
|
|
I ff(i,j,bi,bj), |
177 |
|
|
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
178 |
|
|
U pH(i,j,bi,bj),pCO2(i,j,bi,bj),CO3(i,j,bi,bj), |
179 |
|
|
I myThid ) |
180 |
|
|
ELSE |
181 |
|
|
pH(i,j,bi,bj) = 0. _d 0 |
182 |
|
|
pCO2(i,j,bi,bj) = 0. _d 0 |
183 |
|
|
CO3(i,j,bi,bj) = 0. _d 0 |
184 |
|
|
ENDIF |
185 |
|
|
ENDDO |
186 |
|
|
ENDDO |
187 |
|
|
|
188 |
|
|
DO j=jmin,jmax |
189 |
|
|
DO i=imin,imax |
190 |
|
|
|
191 |
|
|
IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN |
192 |
|
|
C calculate SCHMIDT NO. for CO2 |
193 |
|
|
SchmidtNoDIC(i,j) = |
194 |
|
|
& sca1 |
195 |
|
|
& + sca2 * surftemp(i,j) |
196 |
|
|
& + sca3 * surftemp(i,j)*surftemp(i,j) |
197 |
|
|
& + sca4 * surftemp(i,j)*surftemp(i,j) |
198 |
|
|
& *surftemp(i,j) |
199 |
|
|
c put positive bound on SCHMIT number (will go negative for temp>40) |
200 |
|
|
SchmidtNoDIC(i,j) = max(1. _d -2, SchmidtNoDIC(i,j)) |
201 |
|
|
|
202 |
|
|
C Determine surface flux (FDIC) |
203 |
|
|
C first correct pCO2at for surface atmos pressure |
204 |
|
|
pCO2sat(i,j) = |
205 |
|
|
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
206 |
|
|
|
207 |
|
|
C then account for Schmidt number |
208 |
|
|
Kwexch(i,j) = Kwexch_Pre(i,j,bi,bj) |
209 |
|
|
& / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0) |
210 |
|
|
|
211 |
|
|
#ifdef WATERVAP_BUG |
212 |
|
|
C Calculate flux in terms of DIC units using K0, solubility |
213 |
|
|
C Flux = Vp * ([CO2sat] - [CO2]) |
214 |
|
|
C CO2sat = K0*pCO2atmos*P/P0 |
215 |
|
|
C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 |
216 |
|
|
FluxCO2_loc(i,j) = |
217 |
|
|
& Kwexch(i,j)*( |
218 |
|
|
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
219 |
|
|
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
220 |
|
|
& ) |
221 |
|
|
#else |
222 |
|
|
C Corrected by Val Bennington Nov 2010 per G.A. McKinley's finding |
223 |
|
|
C of error in application of water vapor correction |
224 |
|
|
c Flux = kw*rho*(ff*pCO2atm-k0*FugFac*pCO2ocean) |
225 |
|
|
FluxCO2_loc(i,j) = |
226 |
|
|
& Kwexch(i,j)*( |
227 |
|
|
& ff(i,j,bi,bj)*pCO2sat(i,j) - |
228 |
|
|
& pCO2(i,j,bi,bj)*fugf(i,j,bi,bj) |
229 |
|
|
& *ak0(i,j,bi,bj) ) |
230 |
|
|
& |
231 |
|
|
#endif |
232 |
|
|
ELSE |
233 |
|
|
FluxCO2_loc(i,j) = 0. _d 0 |
234 |
|
|
ENDIF |
235 |
|
|
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
236 |
|
|
FluxCO2_loc(i,j) = FluxCO2_loc(i,j)/permil |
237 |
|
|
c convert flux (mol m-2 s-1) to (mmol m-2 s-1) |
238 |
|
|
FluxCO2_loc(i,j) = FluxCO2_loc(i,j)*1. _d 3 |
239 |
|
|
|
240 |
|
|
#ifdef ALLOW_OLD_VIRTUALFLUX |
241 |
|
|
IF (maskC(i,j,kLev,bi,bj).NE.0. _d 0) THEN |
242 |
|
|
c calculate virtual flux |
243 |
|
|
c EminusPforV = dS/dt*(1/Sglob) |
244 |
|
|
C NOTE: Be very careful with signs here! |
245 |
|
|
C Positive EminusPforV => loss of water to atmos and increase |
246 |
|
|
C in salinity. Thus, also increase in other surface tracers |
247 |
|
|
C (i.e. positive virtual flux into surface layer) |
248 |
|
|
C ...so here, VirtualFLux = dC/dt! |
249 |
|
|
VirtualFlux(i,j)=gsm_DIC*surfaceForcingS(i,j,bi,bj)/gsm_s |
250 |
|
|
c OR |
251 |
|
|
c let virtual flux be zero |
252 |
|
|
c VirtualFlux(i,j)=0.d0 |
253 |
|
|
c |
254 |
|
|
ELSE |
255 |
|
|
VirtualFlux(i,j)=0. _d 0 |
256 |
|
|
ENDIF |
257 |
|
|
#endif /* ALLOW_OLD_VIRTUALFLUX */ |
258 |
|
|
ENDDO |
259 |
|
|
ENDDO |
260 |
|
|
|
261 |
|
|
C update tendency |
262 |
|
|
DO j=jmin,jmax |
263 |
|
|
DO i=imin,imax |
264 |
|
|
if(budgetTStep1.EQ.0) then |
265 |
|
|
C if first timestep |
266 |
|
|
C this is problematic at restart; clean-up later |
267 |
|
|
dFluxCO2Temp(i,j,bi,bj) = 0. _d 0 |
268 |
|
|
deltaTheta(i,j) = 0. _d 0 |
269 |
|
|
else |
270 |
|
|
C at this point in code, fluxCO2_1 contains |
271 |
|
|
C total flux for current time step |
272 |
|
|
dFluxCO2Temp(i,j,bi,bj) = fluxCO2_1(i,j,bi,bj) - |
273 |
|
|
& FluxCO2_loc(i,j) |
274 |
|
|
C current value - value from last timestep |
275 |
|
|
deltaTheta(i,j) = budgetTemp1(i,j,bi,bj) - |
276 |
|
|
& surftemp(i,j) |
277 |
|
|
endif |
278 |
|
|
ENDDO |
279 |
|
|
ENDDO |
280 |
|
|
|
281 |
|
|
RETURN |
282 |
|
|
END |
283 |
|
|
#endif /*ALLOW_CARBON*/ |
284 |
|
|
|
285 |
|
|
#endif /*DARWIN*/ |
286 |
|
|
#endif /*ALLOW_PTRACERS*/ |
287 |
|
|
c ================================================================== |