| 1 |
dgoldberg |
1.1 |
C $Header: /u/gcmpack/MITgcm_contrib/verification_other/shelfice_remeshing/code/ini_masks_etc.F,v 1.1 2016/04/04 12:53:15 dgoldberg Exp $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "PACKAGES_CONFIG.h" |
| 5 |
|
|
#include "CPP_OPTIONS.h" |
| 6 |
|
|
#ifdef ALLOW_SHELFICE |
| 7 |
|
|
# include "SHELFICE_OPTIONS.h" |
| 8 |
|
|
#endif /* ALLOW_SHELFICE */ |
| 9 |
|
|
|
| 10 |
|
|
CBOP |
| 11 |
|
|
C !ROUTINE: INI_MASKS_ETC |
| 12 |
|
|
C !INTERFACE: |
| 13 |
|
|
SUBROUTINE INI_MASKS_ETC( myThid ) |
| 14 |
|
|
C !DESCRIPTION: \bv |
| 15 |
|
|
C *==========================================================* |
| 16 |
|
|
C | SUBROUTINE INI_MASKS_ETC |
| 17 |
|
|
C | o Initialise masks and topography factors |
| 18 |
|
|
C *==========================================================* |
| 19 |
|
|
C | These arrays are used throughout the code and describe |
| 20 |
|
|
C | the topography of the domain through masks (0s and 1s) |
| 21 |
|
|
C | and fractional height factors (0<hFac<1). The latter |
| 22 |
|
|
C | distinguish between the lopped-cell and full-step |
| 23 |
|
|
C | topographic representations. |
| 24 |
|
|
C *==========================================================* |
| 25 |
|
|
C \ev |
| 26 |
|
|
|
| 27 |
|
|
C !USES: |
| 28 |
|
|
IMPLICIT NONE |
| 29 |
|
|
C === Global variables === |
| 30 |
|
|
#include "SIZE.h" |
| 31 |
|
|
#include "EEPARAMS.h" |
| 32 |
|
|
#include "PARAMS.h" |
| 33 |
|
|
#include "GRID.h" |
| 34 |
|
|
#ifdef NONLIN_FRSURF |
| 35 |
|
|
# include "SURFACE.h" |
| 36 |
|
|
#endif /* NONLIN_FRSURF */ |
| 37 |
|
|
|
| 38 |
|
|
C !INPUT/OUTPUT PARAMETERS: |
| 39 |
|
|
C == Routine arguments == |
| 40 |
|
|
C myThid :: Number of this instance of INI_MASKS_ETC |
| 41 |
|
|
INTEGER myThid |
| 42 |
|
|
|
| 43 |
|
|
C !LOCAL VARIABLES: |
| 44 |
|
|
C == Local variables == |
| 45 |
|
|
C bi,bj :: tile indices |
| 46 |
|
|
C i,j,k :: Loop counters |
| 47 |
|
|
C tmpfld :: Temporary array used to compute & write Total Depth |
| 48 |
|
|
_RS tmpfld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 49 |
|
|
INTEGER bi, bj |
| 50 |
|
|
INTEGER i, j, k |
| 51 |
|
|
_RL hFacCtmp |
| 52 |
|
|
_RL hFacMnSz |
| 53 |
|
|
CEOP |
| 54 |
|
|
|
| 55 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 56 |
|
|
|
| 57 |
|
|
IF ( selectSigmaCoord.EQ.0 ) THEN |
| 58 |
|
|
C--- r-coordinate with partial-cell or full cell mask |
| 59 |
|
|
|
| 60 |
|
|
C-- Calculate lopping factor hFacC : over-estimate the part inside of the domain |
| 61 |
|
|
C taking into account the lower_R Boundary (Bathymetrie / Top of Atmos) |
| 62 |
|
|
DO bj=myByLo(myThid), myByHi(myThid) |
| 63 |
|
|
DO bi=myBxLo(myThid), myBxHi(myThid) |
| 64 |
|
|
DO k=1, Nr |
| 65 |
|
|
hFacMnSz=max( hFacMin, min(hFacMinDr*recip_drF(k),1. _d 0) ) |
| 66 |
|
|
DO j=1-OLy,sNy+OLy |
| 67 |
|
|
DO i=1-OLx,sNx+OLx |
| 68 |
|
|
C o Non-dimensional distance between grid bound. and domain lower_R bound. |
| 69 |
|
|
hFacCtmp = (rF(k)-R_low(i,j,bi,bj))*recip_drF(k) |
| 70 |
|
|
C o Select between, closed, open or partial (0,1,0-1) |
| 71 |
|
|
hFacCtmp=min( max( hFacCtmp, 0. _d 0) , 1. _d 0) |
| 72 |
|
|
C o Impose minimum fraction and/or size (dimensional) |
| 73 |
|
|
IF (hFacCtmp.LT.hFacMnSz) THEN |
| 74 |
|
|
IF (hFacCtmp.LT.hFacMnSz*0.5) THEN |
| 75 |
|
|
hFacC(i,j,k,bi,bj)=0. |
| 76 |
|
|
ELSE |
| 77 |
|
|
hFacC(i,j,k,bi,bj)=hFacMnSz |
| 78 |
|
|
ENDIF |
| 79 |
|
|
ELSE |
| 80 |
|
|
hFacC(i,j,k,bi,bj)=hFacCtmp |
| 81 |
|
|
ENDIF |
| 82 |
|
|
ENDDO |
| 83 |
|
|
ENDDO |
| 84 |
|
|
ENDDO |
| 85 |
|
|
|
| 86 |
|
|
C- Re-calculate lower-R Boundary position, taking into account hFacC |
| 87 |
|
|
DO j=1-OLy,sNy+OLy |
| 88 |
|
|
DO i=1-OLx,sNx+OLx |
| 89 |
|
|
R_low(i,j,bi,bj) = rF(1) |
| 90 |
|
|
ENDDO |
| 91 |
|
|
ENDDO |
| 92 |
|
|
DO k=Nr,1,-1 |
| 93 |
|
|
DO j=1-OLy,sNy+OLy |
| 94 |
|
|
DO i=1-OLx,sNx+OLx |
| 95 |
|
|
R_low(i,j,bi,bj) = R_low(i,j,bi,bj) |
| 96 |
|
|
& - drF(k)*hFacC(i,j,k,bi,bj) |
| 97 |
|
|
ENDDO |
| 98 |
|
|
ENDDO |
| 99 |
|
|
ENDDO |
| 100 |
|
|
C- end bi,bj loops. |
| 101 |
|
|
ENDDO |
| 102 |
|
|
ENDDO |
| 103 |
|
|
|
| 104 |
|
|
C-- Calculate lopping factor hFacC : Remove part outside of the domain |
| 105 |
|
|
C taking into account the Reference (=at rest) Surface Position Ro_surf |
| 106 |
|
|
DO bj=myByLo(myThid), myByHi(myThid) |
| 107 |
|
|
DO bi=myBxLo(myThid), myBxHi(myThid) |
| 108 |
|
|
DO k=1, Nr |
| 109 |
|
|
hFacMnSz=max( hFacMin, min(hFacMinDr*recip_drF(k),1. _d 0) ) |
| 110 |
|
|
DO j=1-OLy,sNy+OLy |
| 111 |
|
|
DO i=1-OLx,sNx+OLx |
| 112 |
|
|
C o Non-dimensional distance between grid boundary and model surface |
| 113 |
|
|
hFacCtmp = (rF(k)-Ro_surf(i,j,bi,bj))*recip_drF(k) |
| 114 |
|
|
C o Reduce the previous fraction : substract the outside part. |
| 115 |
|
|
hFacCtmp = hFacC(i,j,k,bi,bj) - max( hFacCtmp, 0. _d 0) |
| 116 |
|
|
C o set to zero if empty Column : |
| 117 |
|
|
hFacCtmp = max( hFacCtmp, 0. _d 0) |
| 118 |
|
|
C o Impose minimum fraction and/or size (dimensional) |
| 119 |
|
|
IF (hFacCtmp.LT.hFacMnSz) THEN |
| 120 |
|
|
IF (hFacCtmp.LT.hFacMnSz*0.5) THEN |
| 121 |
|
|
hFacC(i,j,k,bi,bj)=0. |
| 122 |
|
|
ELSE |
| 123 |
|
|
hFacC(i,j,k,bi,bj)=hFacMnSz |
| 124 |
|
|
ENDIF |
| 125 |
|
|
ELSE |
| 126 |
|
|
hFacC(i,j,k,bi,bj)=hFacCtmp |
| 127 |
|
|
ENDIF |
| 128 |
|
|
ENDDO |
| 129 |
|
|
ENDDO |
| 130 |
|
|
ENDDO |
| 131 |
|
|
ENDDO |
| 132 |
|
|
ENDDO |
| 133 |
|
|
|
| 134 |
|
|
#ifdef ALLOW_SHELFICE |
| 135 |
|
|
IF ( useShelfIce ) THEN |
| 136 |
|
|
C-- Modify lopping factor hFacC : Remove part outside of the domain |
| 137 |
|
|
C taking into account the Reference (=at rest) Surface Position Ro_shelfIce |
| 138 |
|
|
CALL SHELFICE_UPDATE_MASKS( |
| 139 |
|
|
I rF, recip_drF, |
| 140 |
|
|
U hFacC, |
| 141 |
|
|
I myThid ) |
| 142 |
|
|
ENDIF |
| 143 |
|
|
#endif /* ALLOW_SHELFICE */ |
| 144 |
|
|
|
| 145 |
|
|
C- Re-calculate Reference surface position, taking into account hFacC |
| 146 |
|
|
C initialize Total column fluid thickness and surface k index |
| 147 |
|
|
C Note: if no fluid (continent) ==> kSurf = Nr+1 |
| 148 |
|
|
DO bj=myByLo(myThid), myByHi(myThid) |
| 149 |
|
|
DO bi=myBxLo(myThid), myBxHi(myThid) |
| 150 |
|
|
DO j=1-OLy,sNy+OLy |
| 151 |
|
|
DO i=1-OLx,sNx+OLx |
| 152 |
|
|
tmpfld(i,j,bi,bj) = 0. |
| 153 |
|
|
kSurfC(i,j,bi,bj) = Nr+1 |
| 154 |
|
|
c maskH(i,j,bi,bj) = 0. |
| 155 |
|
|
Ro_surf(i,j,bi,bj) = R_low(i,j,bi,bj) |
| 156 |
|
|
DO k=Nr,1,-1 |
| 157 |
|
|
Ro_surf(i,j,bi,bj) = Ro_surf(i,j,bi,bj) |
| 158 |
|
|
& + drF(k)*hFacC(i,j,k,bi,bj) |
| 159 |
|
|
IF (hFacC(i,j,k,bi,bj).NE.0.) THEN |
| 160 |
|
|
kSurfC(i,j,bi,bj) = k |
| 161 |
|
|
c maskH(i,j,bi,bj) = 1. |
| 162 |
|
|
tmpfld(i,j,bi,bj) = tmpfld(i,j,bi,bj) + 1. |
| 163 |
|
|
ENDIF |
| 164 |
|
|
ENDDO |
| 165 |
|
|
kLowC(i,j,bi,bj) = 0 |
| 166 |
|
|
DO k= 1, Nr |
| 167 |
|
|
IF (hFacC(i,j,k,bi,bj).NE.0) THEN |
| 168 |
|
|
kLowC(i,j,bi,bj) = k |
| 169 |
|
|
ENDIF |
| 170 |
|
|
ENDDO |
| 171 |
|
|
maskInC(i,j,bi,bj)= 0. |
| 172 |
|
|
IF ( kSurfC(i,j,bi,bj).LE.Nr ) maskInC(i,j,bi,bj)= 1. |
| 173 |
|
|
ENDDO |
| 174 |
|
|
ENDDO |
| 175 |
|
|
C- end bi,bj loops. |
| 176 |
|
|
ENDDO |
| 177 |
|
|
ENDDO |
| 178 |
|
|
|
| 179 |
|
|
#ifdef ALLOW_SHELFICE |
| 180 |
|
|
#ifdef ALLOW_SHELFICE_REMESHING |
| 181 |
|
|
IF ( useShelfIce ) THEN |
| 182 |
|
|
C-- Modify lopping factor hFacC : Remove part outside of the domain |
| 183 |
|
|
C taking into account the Reference (=at rest) Surface Position Ro_shelfIce |
| 184 |
|
|
CALL SHELFICE_DIG_SHELF( |
| 185 |
|
|
I myThid ) |
| 186 |
|
|
ENDIF |
| 187 |
|
|
#endif |
| 188 |
|
|
#endif /* ALLOW_SHELFICE */ |
| 189 |
|
|
|
| 190 |
|
|
|
| 191 |
|
|
|
| 192 |
|
|
IF ( printDomain ) THEN |
| 193 |
|
|
c CALL PLOT_FIELD_XYRS( tmpfld, |
| 194 |
|
|
c & 'Model Depths K Index' , -1, myThid ) |
| 195 |
|
|
CALL PLOT_FIELD_XYRS(R_low, |
| 196 |
|
|
& 'Model R_low (ini_masks_etc)', -1, myThid ) |
| 197 |
|
|
CALL PLOT_FIELD_XYRS(Ro_surf, |
| 198 |
|
|
& 'Model Ro_surf (ini_masks_etc)', -1, myThid ) |
| 199 |
|
|
ENDIF |
| 200 |
|
|
|
| 201 |
|
|
C-- Calculate quantities derived from XY depth map |
| 202 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
| 203 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
| 204 |
|
|
DO j=1-OLy,sNy+OLy |
| 205 |
|
|
DO i=1-OLx,sNx+OLx |
| 206 |
|
|
C Total fluid column thickness (r_unit) : |
| 207 |
|
|
c Rcolumn(i,j,bi,bj)= Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj) |
| 208 |
|
|
tmpfld(i,j,bi,bj) = Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj) |
| 209 |
|
|
C Inverse of fluid column thickness (1/r_unit) |
| 210 |
|
|
IF ( tmpfld(i,j,bi,bj) .LE. 0. ) THEN |
| 211 |
|
|
recip_Rcol(i,j,bi,bj) = 0. |
| 212 |
|
|
ELSE |
| 213 |
|
|
recip_Rcol(i,j,bi,bj) = 1. _d 0 / tmpfld(i,j,bi,bj) |
| 214 |
|
|
ENDIF |
| 215 |
|
|
ENDDO |
| 216 |
|
|
ENDDO |
| 217 |
|
|
ENDDO |
| 218 |
|
|
ENDDO |
| 219 |
|
|
|
| 220 |
|
|
C-- hFacW and hFacS (at U and V points) |
| 221 |
|
|
DO bj=myByLo(myThid), myByHi(myThid) |
| 222 |
|
|
DO bi=myBxLo(myThid), myBxHi(myThid) |
| 223 |
|
|
DO k=1, Nr |
| 224 |
|
|
DO j=1-OLy,sNy+OLy |
| 225 |
|
|
hFacW(1-OLx,j,k,bi,bj)= 0. |
| 226 |
|
|
DO i=2-OLx,sNx+OLx |
| 227 |
|
|
hFacW(i,j,k,bi,bj)= |
| 228 |
|
|
& MIN(hFacC(i,j,k,bi,bj),hFacC(i-1,j,k,bi,bj)) |
| 229 |
|
|
ENDDO |
| 230 |
|
|
ENDDO |
| 231 |
|
|
DO i=1-OLx,sNx+OLx |
| 232 |
|
|
hFacS(i,1-OLy,k,bi,bj)= 0. |
| 233 |
|
|
ENDDO |
| 234 |
|
|
DO j=2-OLy,sNy+oly |
| 235 |
|
|
DO i=1-OLx,sNx+OLx |
| 236 |
|
|
hFacS(i,j,k,bi,bj)= |
| 237 |
|
|
& MIN(hFacC(i,j,k,bi,bj),hFacC(i,j-1,k,bi,bj)) |
| 238 |
|
|
ENDDO |
| 239 |
|
|
ENDDO |
| 240 |
|
|
ENDDO |
| 241 |
|
|
C rLow & reference rSurf at Western & Southern edges (U and V points) |
| 242 |
|
|
i = 1-OLx |
| 243 |
|
|
DO j=1-OLy,sNy+OLy |
| 244 |
|
|
rLowW (i,j,bi,bj) = 0. |
| 245 |
|
|
rSurfW(i,j,bi,bj) = 0. |
| 246 |
|
|
ENDDO |
| 247 |
|
|
j = 1-OLy |
| 248 |
|
|
DO i=1-OLx,sNx+OLx |
| 249 |
|
|
rLowS (i,j,bi,bj) = 0. |
| 250 |
|
|
rSurfS(i,j,bi,bj) = 0. |
| 251 |
|
|
ENDDO |
| 252 |
|
|
DO j=1-OLy,sNy+OLy |
| 253 |
|
|
DO i=2-OLx,sNx+OLx |
| 254 |
|
|
rLowW(i,j,bi,bj) = |
| 255 |
|
|
& MAX( R_low(i-1,j,bi,bj), R_low(i,j,bi,bj) ) |
| 256 |
|
|
rSurfW(i,j,bi,bj) = |
| 257 |
|
|
& MIN( Ro_surf(i-1,j,bi,bj), Ro_surf(i,j,bi,bj) ) |
| 258 |
|
|
rSurfW(i,j,bi,bj) = |
| 259 |
|
|
& MAX( rSurfW(i,j,bi,bj), rLowW(i,j,bi,bj) ) |
| 260 |
|
|
ENDDO |
| 261 |
|
|
ENDDO |
| 262 |
|
|
DO j=2-OLy,sNy+OLy |
| 263 |
|
|
DO i=1-OLx,sNx+OLx |
| 264 |
|
|
rLowS(i,j,bi,bj) = |
| 265 |
|
|
& MAX( R_low(i,j-1,bi,bj), R_low(i,j,bi,bj) ) |
| 266 |
|
|
rSurfS(i,j,bi,bj) = |
| 267 |
|
|
& MIN( Ro_surf(i,j-1,bi,bj), Ro_surf(i,j,bi,bj) ) |
| 268 |
|
|
rSurfS(i,j,bi,bj) = |
| 269 |
|
|
& MAX( rSurfS(i,j,bi,bj), rLowS(i,j,bi,bj) ) |
| 270 |
|
|
ENDDO |
| 271 |
|
|
ENDDO |
| 272 |
|
|
C- end bi,bj loops. |
| 273 |
|
|
ENDDO |
| 274 |
|
|
ENDDO |
| 275 |
|
|
CALL EXCH_UV_XYZ_RS(hFacW,hFacS,.FALSE.,myThid) |
| 276 |
|
|
CALL EXCH_UV_XY_RS( rSurfW, rSurfS, .FALSE., myThid ) |
| 277 |
|
|
CALL EXCH_UV_XY_RS( rLowW, rLowS, .FALSE., myThid ) |
| 278 |
|
|
|
| 279 |
|
|
C-- Addtional closing of Western and Southern grid-cell edges: for example, |
| 280 |
|
|
C a) might add some "thin walls" in specific location |
| 281 |
|
|
C-- b) close non-periodic N & S boundaries of lat-lon grid at the N/S poles. |
| 282 |
|
|
CALL ADD_WALLS2MASKS( myThid ) |
| 283 |
|
|
|
| 284 |
|
|
C-- Calculate surface k index for interface W & S (U & V points) |
| 285 |
|
|
DO bj=myByLo(myThid), myByHi(myThid) |
| 286 |
|
|
DO bi=myBxLo(myThid), myBxHi(myThid) |
| 287 |
|
|
DO j=1-OLy,sNy+OLy |
| 288 |
|
|
DO i=1-OLx,sNx+OLx |
| 289 |
|
|
kSurfW(i,j,bi,bj) = Nr+1 |
| 290 |
|
|
kSurfS(i,j,bi,bj) = Nr+1 |
| 291 |
|
|
DO k=Nr,1,-1 |
| 292 |
|
|
IF (hFacW(i,j,k,bi,bj).NE.0.) kSurfW(i,j,bi,bj) = k |
| 293 |
|
|
IF (hFacS(i,j,k,bi,bj).NE.0.) kSurfS(i,j,bi,bj) = k |
| 294 |
|
|
ENDDO |
| 295 |
|
|
maskInW(i,j,bi,bj)= 0. |
| 296 |
|
|
IF ( kSurfW(i,j,bi,bj).LE.Nr ) maskInW(i,j,bi,bj)= 1. |
| 297 |
|
|
maskInS(i,j,bi,bj)= 0. |
| 298 |
|
|
IF ( kSurfS(i,j,bi,bj).LE.Nr ) maskInS(i,j,bi,bj)= 1. |
| 299 |
|
|
ENDDO |
| 300 |
|
|
ENDDO |
| 301 |
|
|
ENDDO |
| 302 |
|
|
ENDDO |
| 303 |
|
|
|
| 304 |
|
|
ELSE |
| 305 |
|
|
#ifndef DISABLE_SIGMA_CODE |
| 306 |
|
|
C--- Sigma and Hybrid-Sigma set-up: |
| 307 |
|
|
CALL INI_SIGMA_HFAC( myThid ) |
| 308 |
|
|
#endif /* DISABLE_SIGMA_CODE */ |
| 309 |
|
|
ENDIF |
| 310 |
|
|
|
| 311 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
| 312 |
|
|
|
| 313 |
|
|
C-- Write to disk: Total Column Thickness & hFac(C,W,S): |
| 314 |
|
|
C This I/O is now done in write_grid.F |
| 315 |
|
|
c CALL WRITE_FLD_XY_RS( 'Depth',' ',tmpfld,0,myThid) |
| 316 |
|
|
c CALL WRITE_FLD_XYZ_RS( 'hFacC',' ',hFacC,0,myThid) |
| 317 |
|
|
c CALL WRITE_FLD_XYZ_RS( 'hFacW',' ',hFacW,0,myThid) |
| 318 |
|
|
c CALL WRITE_FLD_XYZ_RS( 'hFacS',' ',hFacS,0,myThid) |
| 319 |
|
|
|
| 320 |
|
|
IF ( printDomain ) THEN |
| 321 |
|
|
CALL PLOT_FIELD_XYZRS( hFacC, 'hFacC' , Nr, 0, myThid ) |
| 322 |
|
|
CALL PLOT_FIELD_XYZRS( hFacW, 'hFacW' , Nr, 0, myThid ) |
| 323 |
|
|
CALL PLOT_FIELD_XYZRS( hFacS, 'hFacS' , Nr, 0, myThid ) |
| 324 |
|
|
ENDIF |
| 325 |
|
|
|
| 326 |
|
|
C-- Masks and reciprocals of hFac[CWS] |
| 327 |
|
|
DO bj = myByLo(myThid), myByHi(myThid) |
| 328 |
|
|
DO bi = myBxLo(myThid), myBxHi(myThid) |
| 329 |
|
|
DO k=1,Nr |
| 330 |
|
|
DO j=1-OLy,sNy+OLy |
| 331 |
|
|
DO i=1-OLx,sNx+OLx |
| 332 |
|
|
IF (hFacC(i,j,k,bi,bj) .NE. 0. ) THEN |
| 333 |
|
|
recip_hFacC(i,j,k,bi,bj) = 1. _d 0 / hFacC(i,j,k,bi,bj) |
| 334 |
|
|
maskC(i,j,k,bi,bj) = 1. |
| 335 |
|
|
ELSE |
| 336 |
|
|
recip_hFacC(i,j,k,bi,bj) = 0. |
| 337 |
|
|
maskC(i,j,k,bi,bj) = 0. |
| 338 |
|
|
ENDIF |
| 339 |
|
|
IF (hFacW(i,j,k,bi,bj) .NE. 0. ) THEN |
| 340 |
|
|
recip_hFacW(i,j,k,bi,bj) = 1. _d 0 / hFacW(i,j,k,bi,bj) |
| 341 |
|
|
maskW(i,j,k,bi,bj) = 1. |
| 342 |
|
|
ELSE |
| 343 |
|
|
recip_hFacW(i,j,k,bi,bj) = 0. |
| 344 |
|
|
maskW(i,j,k,bi,bj) = 0. |
| 345 |
|
|
ENDIF |
| 346 |
|
|
IF (hFacS(i,j,k,bi,bj) .NE. 0. ) THEN |
| 347 |
|
|
recip_hFacS(i,j,k,bi,bj) = 1. _d 0 / hFacS(i,j,k,bi,bj) |
| 348 |
|
|
maskS(i,j,k,bi,bj) = 1. |
| 349 |
|
|
ELSE |
| 350 |
|
|
recip_hFacS(i,j,k,bi,bj) = 0. |
| 351 |
|
|
maskS(i,j,k,bi,bj) = 0. |
| 352 |
|
|
ENDIF |
| 353 |
|
|
ENDDO |
| 354 |
|
|
ENDDO |
| 355 |
|
|
ENDDO |
| 356 |
|
|
#ifdef NONLIN_FRSURF |
| 357 |
|
|
C-- Save initial geometrical hFac factor into h0Fac (fixed in time): |
| 358 |
|
|
C Note: In case 1 pkg modifies hFac (from packages_init_fixed, called |
| 359 |
|
|
C later in sequence of calls) this pkg would need also to update h0Fac. |
| 360 |
|
|
DO k=1,Nr |
| 361 |
|
|
DO j=1-OLy,sNy+OLy |
| 362 |
|
|
DO i=1-OLx,sNx+OLx |
| 363 |
|
|
h0FacC(i,j,k,bi,bj) = _hFacC(i,j,k,bi,bj) |
| 364 |
|
|
h0FacW(i,j,k,bi,bj) = _hFacW(i,j,k,bi,bj) |
| 365 |
|
|
h0FacS(i,j,k,bi,bj) = _hFacS(i,j,k,bi,bj) |
| 366 |
|
|
ENDDO |
| 367 |
|
|
ENDDO |
| 368 |
|
|
ENDDO |
| 369 |
|
|
#endif /* NONLIN_FRSURF */ |
| 370 |
|
|
C- end bi,bj loops. |
| 371 |
|
|
ENDDO |
| 372 |
|
|
ENDDO |
| 373 |
|
|
|
| 374 |
|
|
c #ifdef ALLOW_NONHYDROSTATIC |
| 375 |
|
|
C-- Calculate "recip_hFacU" = reciprocal hfac distance/volume for W cells |
| 376 |
|
|
C NOTE: not used ; computed locally in CALC_GW |
| 377 |
|
|
c #endif |
| 378 |
|
|
|
| 379 |
|
|
RETURN |
| 380 |
|
|
END |