| 1 |
gmaze |
1.1 |
% |
| 2 |
gmaze |
1.2 |
% [] = B_compute_relative_vorticity(SNAPSHOT) |
| 3 |
gmaze |
1.1 |
% |
| 4 |
|
|
% For a time snapshot, this program computes the |
| 5 |
|
|
% 3D relative vorticity field from 3D |
| 6 |
|
|
% horizontal speed fields U,V (x,y,z) as: |
| 7 |
|
|
% OMEGA = ( -dVdz ; dUdz ; dVdx - dUdy ) |
| 8 |
|
|
% = ( Ox ; Oy ; ZETA ) |
| 9 |
|
|
% 3 output files are created. |
| 10 |
|
|
% |
| 11 |
gmaze |
1.2 |
% Files names are: |
| 12 |
|
|
% INPUT: |
| 13 |
|
|
% ./netcdf-files/<SNAPSHOT>/<netcdf_UVEL>.<netcdf_domain>.<netcdf_suff> |
| 14 |
|
|
% ./netcdf-files/<SNAPSHOT>/<netcdf_VVEL>.<netcdf_domain>.<netcdf_suff> |
| 15 |
|
|
% OUPUT: |
| 16 |
|
|
% ./netcdf-files/<SNAPSHOT>/OMEGAX.<netcdf_domain>.<netcdf_suff> |
| 17 |
|
|
% ./netcdf-files/<SNAPSHOT>/OMEGAY.<netcdf_domain>.<netcdf_suff> |
| 18 |
|
|
% ./netcdf-files/<SNAPSHOT>/ZETA.<netcdf_domain>.<netcdf_suff> |
| 19 |
|
|
% |
| 20 |
gmaze |
1.1 |
% 06/07/2006 |
| 21 |
|
|
% gmaze@mit.edu |
| 22 |
|
|
% |
| 23 |
|
|
|
| 24 |
|
|
function [] = B_compute_relative_vorticity(snapshot) |
| 25 |
|
|
|
| 26 |
|
|
|
| 27 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 28 |
|
|
% Setup |
| 29 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 30 |
|
|
global sla netcdf_UVEL netcdf_VVEL netcdf_domain netcdf_suff |
| 31 |
|
|
pv_checkpath |
| 32 |
|
|
|
| 33 |
|
|
|
| 34 |
|
|
%% U,V files name: |
| 35 |
|
|
filU = strcat(netcdf_UVEL,'.',netcdf_domain); |
| 36 |
|
|
filV = strcat(netcdf_VVEL,'.',netcdf_domain); |
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
|
%% Path and extension to find them: |
| 40 |
|
|
pathname = strcat('netcdf-files',sla,snapshot,sla); |
| 41 |
|
|
ext = strcat('.',netcdf_suff); |
| 42 |
|
|
|
| 43 |
|
|
|
| 44 |
|
|
%% Load files: |
| 45 |
|
|
ferfile = strcat(pathname,sla,filU,ext); |
| 46 |
|
|
ncU = netcdf(ferfile,'nowrite'); |
| 47 |
|
|
[Ulon Ulat Udpt] = coordfromnc(ncU); |
| 48 |
|
|
|
| 49 |
|
|
ferfile = strcat(pathname,sla,filV,ext); |
| 50 |
|
|
ncV = netcdf(ferfile,'nowrite'); |
| 51 |
|
|
[Vlon Vlat Vdpt] = coordfromnc(ncV); |
| 52 |
|
|
|
| 53 |
|
|
clear ext ferfile |
| 54 |
|
|
|
| 55 |
|
|
%% Optionnal flags |
| 56 |
|
|
computeZETA = 1; % Compute ZETA or not ? |
| 57 |
|
|
global toshow % Turn to 1 to follow the computing process |
| 58 |
|
|
|
| 59 |
|
|
|
| 60 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 61 |
|
|
% VERTICAL COMPONENT: ZETA % |
| 62 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 63 |
|
|
|
| 64 |
|
|
% U field is on the zonal side of the c-grid and |
| 65 |
|
|
% V field on the meridional one. |
| 66 |
|
|
% So computing meridional gradient for U and |
| 67 |
|
|
% zonal gradient for V makes the relative vorticity |
| 68 |
|
|
% zeta defined on the corner of the c-grid. |
| 69 |
|
|
|
| 70 |
|
|
%%%%%%%%%%%%%% |
| 71 |
|
|
%% Dimensions of ZETA field: |
| 72 |
|
|
if toshow,disp('Dim'),end |
| 73 |
|
|
ny = length(Ulat)-1; |
| 74 |
|
|
nx = length(Vlon)-1; |
| 75 |
|
|
nz = length(Udpt); % Note that Udpt=Vdpt |
| 76 |
|
|
ZETA_lon = Ulon(1:nx); |
| 77 |
|
|
ZETA_lat = Vlat(1:ny); |
| 78 |
|
|
|
| 79 |
|
|
%%%%%%%%%%%%%% |
| 80 |
|
|
%% Pre-allocation: |
| 81 |
|
|
if toshow,disp('Pre-allocate'),end |
| 82 |
|
|
ZETA = zeros(nz,ny-1,nx-1).*NaN; |
| 83 |
|
|
dx = zeros(ny-1,nx-1); |
| 84 |
|
|
dy = zeros(ny-1,nx-1); |
| 85 |
|
|
|
| 86 |
|
|
%%%%%%%%%%%%%% |
| 87 |
|
|
%% Compute relative vorticity for each z-level: |
| 88 |
|
|
if computeZETA |
| 89 |
|
|
for iz=1:nz |
| 90 |
|
|
if toshow |
| 91 |
|
|
disp(strcat('Computing \zeta at depth : ',num2str(Udpt(iz)),... |
| 92 |
|
|
'm (',num2str(iz),'/',num2str(nz),')' )); |
| 93 |
|
|
end |
| 94 |
|
|
|
| 95 |
|
|
% Get velocities: |
| 96 |
|
|
U = ncU{4}(iz,:,:); |
| 97 |
|
|
V = ncV{4}(iz,:,:); |
| 98 |
|
|
|
| 99 |
|
|
% And now compute the vertical component of relative vorticity: |
| 100 |
|
|
% (TO DO: m_lldist accepts tables as input, so this part may be |
| 101 |
|
|
% done without x,y loop ...) |
| 102 |
|
|
for iy = 1 : ny |
| 103 |
|
|
for ix = 1 : nx |
| 104 |
|
|
if iz==1 % It's more efficient to make this test each time than |
| 105 |
|
|
% recomputing distance each time. m_lldist is a slow routine. |
| 106 |
|
|
% ZETA axis and grid distance: |
| 107 |
|
|
dx(iy,ix) = m_lldist([Vlon(ix+1) Vlon(ix)],[1 1]*Vlat(iy)); |
| 108 |
|
|
dy(iy,ix) = m_lldist([1 1]*Vlon(ix),[Ulat(iy+1) Ulat(iy)]); |
| 109 |
|
|
end %if |
| 110 |
|
|
% Horizontal gradients and ZETA: |
| 111 |
|
|
dVdx = ( V(iy,ix+1)-V(iy,ix) ) / dx(iy,ix) ; |
| 112 |
|
|
dUdy = ( U(iy+1,ix)-U(iy,ix) ) / dy(iy,ix) ; |
| 113 |
|
|
ZETA(iz,iy,ix) = dVdx - dUdy; |
| 114 |
|
|
end %for ix |
| 115 |
|
|
end %for iy |
| 116 |
|
|
|
| 117 |
|
|
end %for iz |
| 118 |
|
|
|
| 119 |
|
|
%%%%%%%%%%%%%% |
| 120 |
|
|
%% Netcdf record: |
| 121 |
|
|
|
| 122 |
|
|
% General informations: |
| 123 |
|
|
netfil = strcat('ZETA','.',netcdf_domain,'.',netcdf_suff); |
| 124 |
|
|
units = '1/s'; |
| 125 |
|
|
ncid = 'ZETA'; |
| 126 |
|
|
longname = 'Vertical Component of the Relative Vorticity'; |
| 127 |
|
|
uniquename = 'vertical_relative_vorticity'; |
| 128 |
|
|
|
| 129 |
|
|
% Open output file: |
| 130 |
|
|
nc = netcdf(strcat(pathname,sla,netfil),'clobber'); |
| 131 |
|
|
|
| 132 |
|
|
% Define axis: |
| 133 |
|
|
nc('X') = nx; |
| 134 |
|
|
nc('Y') = ny; |
| 135 |
|
|
nc('Z') = nz; |
| 136 |
|
|
|
| 137 |
|
|
nc{'X'} = 'X'; |
| 138 |
|
|
nc{'Y'} = 'Y'; |
| 139 |
|
|
nc{'Z'} = 'Z'; |
| 140 |
|
|
|
| 141 |
|
|
nc{'X'} = ncfloat('X'); |
| 142 |
|
|
nc{'X'}.uniquename = ncchar('X'); |
| 143 |
|
|
nc{'X'}.long_name = ncchar('longitude'); |
| 144 |
|
|
nc{'X'}.gridtype = nclong(0); |
| 145 |
|
|
nc{'X'}.units = ncchar('degrees_east'); |
| 146 |
|
|
nc{'X'}(:) = ZETA_lon; |
| 147 |
|
|
|
| 148 |
|
|
nc{'Y'} = ncfloat('Y'); |
| 149 |
|
|
nc{'Y'}.uniquename = ncchar('Y'); |
| 150 |
|
|
nc{'Y'}.long_name = ncchar('latitude'); |
| 151 |
|
|
nc{'Y'}.gridtype = nclong(0); |
| 152 |
|
|
nc{'Y'}.units = ncchar('degrees_north'); |
| 153 |
|
|
nc{'Y'}(:) = ZETA_lat; |
| 154 |
|
|
|
| 155 |
|
|
nc{'Z'} = ncfloat('Z'); |
| 156 |
|
|
nc{'Z'}.uniquename = ncchar('Z'); |
| 157 |
|
|
nc{'Z'}.long_name = ncchar('depth'); |
| 158 |
|
|
nc{'Z'}.gridtype = nclong(0); |
| 159 |
|
|
nc{'Z'}.units = ncchar('m'); |
| 160 |
|
|
nc{'Z'}(:) = Udpt; |
| 161 |
|
|
|
| 162 |
|
|
% And main field: |
| 163 |
|
|
nc{ncid} = ncfloat('Z', 'Y', 'X'); |
| 164 |
|
|
nc{ncid}.units = ncchar(units); |
| 165 |
|
|
nc{ncid}.missing_value = ncfloat(NaN); |
| 166 |
|
|
nc{ncid}.FillValue_ = ncfloat(NaN); |
| 167 |
|
|
nc{ncid}.longname = ncchar(longname); |
| 168 |
|
|
nc{ncid}.uniquename = ncchar(uniquename); |
| 169 |
|
|
nc{ncid}(:,:,:) = ZETA; |
| 170 |
|
|
|
| 171 |
|
|
nc=close(nc); |
| 172 |
|
|
|
| 173 |
|
|
clear x y z U V dx dy nx ny nz DVdx dUdy |
| 174 |
|
|
|
| 175 |
|
|
end %if compute ZETA |
| 176 |
|
|
|
| 177 |
|
|
|
| 178 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%% |
| 179 |
|
|
% HORIZONTAL COMPONENTS % |
| 180 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%% |
| 181 |
|
|
if toshow, disp('') |
| 182 |
|
|
disp('Now compute horizontal components of relative vorticity ...'); end |
| 183 |
|
|
|
| 184 |
|
|
% U and V are defined on the same Z grid. |
| 185 |
|
|
|
| 186 |
|
|
%%%%%%%%%%%%%% |
| 187 |
|
|
%% Dimensions of OMEGA x and y fields: |
| 188 |
|
|
if toshow,disp('Dim'),end |
| 189 |
|
|
O_nx = [length(Vlon) length(Ulon)]; |
| 190 |
|
|
O_ny = [length(Vlat) length(Ulat)]; |
| 191 |
|
|
O_nz = length(Udpt) - 1; % Idem Vdpt |
| 192 |
|
|
|
| 193 |
|
|
%%%%%%%%%%%%%% |
| 194 |
|
|
%% Pre-allocations: |
| 195 |
|
|
if toshow,disp('Pre-allocate'),end |
| 196 |
|
|
Ox = zeros(O_nz,O_ny(1),O_nx(1)).*NaN; |
| 197 |
|
|
Oy = zeros(O_nz,O_ny(2),O_nx(2)).*NaN; |
| 198 |
|
|
|
| 199 |
|
|
%%%%%%%%%%%%%% |
| 200 |
|
|
%% Horizontal components: |
| 201 |
|
|
|
| 202 |
|
|
%% Vertical grid differences: |
| 203 |
|
|
dZ = diff(Udpt); |
| 204 |
|
|
Odpt = Udpt(1:O_nz) + dZ/2; |
| 205 |
|
|
|
| 206 |
|
|
%% Zonal component of OMEGA: |
| 207 |
|
|
if toshow,disp('Zonal direction ...'); end |
| 208 |
|
|
[a dZ_3D c] = meshgrid(Vlat,dZ,Vlon); clear a c |
| 209 |
|
|
V = ncV{4}(:,:,:); |
| 210 |
|
|
Ox = - ( V(2:O_nz+1,:,:) - V(1:O_nz,:,:) ) ./ dZ_3D; |
| 211 |
|
|
clear V dZ_3D % For memory use |
| 212 |
|
|
|
| 213 |
|
|
%% Meridional component of OMEGA: |
| 214 |
|
|
if toshow,disp('Meridional direction ...'); end |
| 215 |
|
|
[a dZ_3D c] = meshgrid(Ulat,dZ,Ulon); clear a c |
| 216 |
|
|
U = ncU{4}(:,:,:); |
| 217 |
|
|
Oy = ( U(2:O_nz+1,:,:) - U(1:O_nz,:,:) ) ./ dZ_3D; |
| 218 |
|
|
clear U dZ_3D % For memory use |
| 219 |
|
|
|
| 220 |
|
|
clear dZ |
| 221 |
|
|
|
| 222 |
|
|
%%%%%%%%%%%%%% |
| 223 |
|
|
%% Record Zonal component: |
| 224 |
|
|
if toshow,disp('Records ...'); end |
| 225 |
|
|
|
| 226 |
|
|
% General informations: |
| 227 |
|
|
netfil = strcat('OMEGAX','.',netcdf_domain,'.',netcdf_suff); |
| 228 |
|
|
units = '1/s'; |
| 229 |
|
|
ncid = 'OMEGAX'; |
| 230 |
|
|
longname = 'Zonal Component of the Relative Vorticity'; |
| 231 |
|
|
uniquename = 'zonal_relative_vorticity'; |
| 232 |
|
|
|
| 233 |
|
|
% Open output file: |
| 234 |
|
|
nc = netcdf(strcat(pathname,sla,netfil),'clobber'); |
| 235 |
|
|
|
| 236 |
|
|
% Define axis: |
| 237 |
|
|
nc('X') = O_nx(1); |
| 238 |
|
|
nc('Y') = O_ny(1); |
| 239 |
|
|
nc('Z') = O_nz; |
| 240 |
|
|
|
| 241 |
|
|
nc{'X'} = 'X'; |
| 242 |
|
|
nc{'Y'} = 'Y'; |
| 243 |
|
|
nc{'Z'} = 'Z'; |
| 244 |
|
|
|
| 245 |
|
|
nc{'X'} = ncfloat('X'); |
| 246 |
|
|
nc{'X'}.uniquename = ncchar('X'); |
| 247 |
|
|
nc{'X'}.long_name = ncchar('longitude'); |
| 248 |
|
|
nc{'X'}.gridtype = nclong(0); |
| 249 |
|
|
nc{'X'}.units = ncchar('degrees_east'); |
| 250 |
|
|
nc{'X'}(:) = Vlon; |
| 251 |
|
|
|
| 252 |
|
|
nc{'Y'} = ncfloat('Y'); |
| 253 |
|
|
nc{'Y'}.uniquename = ncchar('Y'); |
| 254 |
|
|
nc{'Y'}.long_name = ncchar('latitude'); |
| 255 |
|
|
nc{'Y'}.gridtype = nclong(0); |
| 256 |
|
|
nc{'Y'}.units = ncchar('degrees_north'); |
| 257 |
|
|
nc{'Y'}(:) = Vlat; |
| 258 |
|
|
|
| 259 |
|
|
nc{'Z'} = ncfloat('Z'); |
| 260 |
|
|
nc{'Z'}.uniquename = ncchar('Z'); |
| 261 |
|
|
nc{'Z'}.long_name = ncchar('depth'); |
| 262 |
|
|
nc{'Z'}.gridtype = nclong(0); |
| 263 |
|
|
nc{'Z'}.units = ncchar('m'); |
| 264 |
|
|
nc{'Z'}(:) = Odpt; |
| 265 |
|
|
|
| 266 |
|
|
% And main field: |
| 267 |
|
|
nc{ncid} = ncfloat('Z', 'Y', 'X'); |
| 268 |
|
|
nc{ncid}.units = ncchar(units); |
| 269 |
|
|
nc{ncid}.missing_value = ncfloat(NaN); |
| 270 |
|
|
nc{ncid}.FillValue_ = ncfloat(NaN); |
| 271 |
|
|
nc{ncid}.longname = ncchar(longname); |
| 272 |
|
|
nc{ncid}.uniquename = ncchar(uniquename); |
| 273 |
|
|
nc{ncid}(:,:,:) = Ox; |
| 274 |
|
|
|
| 275 |
|
|
nc=close(nc); |
| 276 |
|
|
|
| 277 |
|
|
%%%%%%%%%%%%%% |
| 278 |
|
|
%% Record Meridional component: |
| 279 |
|
|
% General informations: |
| 280 |
|
|
netfil = strcat('OMEGAY','.',netcdf_domain,'.',netcdf_suff); |
| 281 |
|
|
units = '1/s'; |
| 282 |
|
|
ncid = 'OMEGAY'; |
| 283 |
|
|
longname = 'Meridional Component of the Relative Vorticity'; |
| 284 |
|
|
uniquename = 'meridional_relative_vorticity'; |
| 285 |
|
|
|
| 286 |
|
|
% Open output file: |
| 287 |
|
|
nc = netcdf(strcat(pathname,sla,netfil),'clobber'); |
| 288 |
|
|
|
| 289 |
|
|
% Define axis: |
| 290 |
|
|
nc('X') = O_nx(2); |
| 291 |
|
|
nc('Y') = O_ny(2); |
| 292 |
|
|
nc('Z') = O_nz; |
| 293 |
|
|
|
| 294 |
|
|
nc{'X'} = 'X'; |
| 295 |
|
|
nc{'Y'} = 'Y'; |
| 296 |
|
|
nc{'Z'} = 'Z'; |
| 297 |
|
|
|
| 298 |
|
|
nc{'X'} = ncfloat('X'); |
| 299 |
|
|
nc{'X'}.uniquename = ncchar('X'); |
| 300 |
|
|
nc{'X'}.long_name = ncchar('longitude'); |
| 301 |
|
|
nc{'X'}.gridtype = nclong(0); |
| 302 |
|
|
nc{'X'}.units = ncchar('degrees_east'); |
| 303 |
|
|
nc{'X'}(:) = Ulon; |
| 304 |
|
|
|
| 305 |
|
|
nc{'Y'} = ncfloat('Y'); |
| 306 |
|
|
nc{'Y'}.uniquename = ncchar('Y'); |
| 307 |
|
|
nc{'Y'}.long_name = ncchar('latitude'); |
| 308 |
|
|
nc{'Y'}.gridtype = nclong(0); |
| 309 |
|
|
nc{'Y'}.units = ncchar('degrees_north'); |
| 310 |
|
|
nc{'Y'}(:) = Ulat; |
| 311 |
|
|
|
| 312 |
|
|
nc{'Z'} = ncfloat('Z'); |
| 313 |
|
|
nc{'Z'}.uniquename = ncchar('Z'); |
| 314 |
|
|
nc{'Z'}.long_name = ncchar('depth'); |
| 315 |
|
|
nc{'Z'}.gridtype = nclong(0); |
| 316 |
|
|
nc{'Z'}.units = ncchar('m'); |
| 317 |
|
|
nc{'Z'}(:) = Odpt; |
| 318 |
|
|
|
| 319 |
|
|
% And main field: |
| 320 |
|
|
nc{ncid} = ncfloat('Z', 'Y', 'X'); |
| 321 |
|
|
nc{ncid}.units = ncchar(units); |
| 322 |
|
|
nc{ncid}.missing_value = ncfloat(NaN); |
| 323 |
|
|
nc{ncid}.FillValue_ = ncfloat(NaN); |
| 324 |
|
|
nc{ncid}.longname = ncchar(longname); |
| 325 |
|
|
nc{ncid}.uniquename = ncchar(uniquename); |
| 326 |
|
|
nc{ncid}(:,:,:) = Oy; |
| 327 |
|
|
|
| 328 |
|
|
nc=close(nc); |
| 329 |
|
|
|