/[MITgcm]/MITgcm_contrib/gmaze_pv/C_compute_potential_vorticity.m
ViewVC logotype

Annotation of /MITgcm_contrib/gmaze_pv/C_compute_potential_vorticity.m

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download)
Fri Jun 16 21:12:20 2006 UTC (19 years, 1 month ago) by gmaze
Branch: MAIN
Add PV routines and sub-functions

1 gmaze 1.1 %
2     % [] = C_COMPUTE_POTENTIAL_VORTICITY(SNAPSHOT,[WANTSPLPV])
3     %
4     % This file computes the potential vorticity Q from
5     % netcdf files of relative vorticity (OMEGAX, OMEGAY, ZETA)
6     % and potential density (SIGMATHETA) as
7     % Q = OMEGAX . dSIGMATHETA/dx + OMEGAY . dSIGMATHETA/dy + (f+ZETA).dSIGMATHETA/dz
8     %
9     % The optional flag WANTSPLPV is set to 0 by defaut. If turn to 1,
10     % then the program computes the simple PV defined by:
11     % splQ = f.dSIGMATHETA/dz
12     %
13     % Note that none of the fields are defined on the same grid points.
14     % So, I decided to compute Q on the same grid as SIGMATHETA, ie. the
15     % center of the c-grid.
16     %
17     % 06/07/2006
18     % gmaze@mit.edu
19     %
20    
21     function [] = C_compute_potential_vorticity(snapshot,varargin)
22    
23     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24     %% Setup
25     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26     global sla netcdf_domain netcdf_suff
27     pv_checkpath
28    
29     %% Flags to choose which term to compute (by default, all):
30     FLpv1 = 1;
31     FLpv2 = 1;
32     FLpv3 = 1;
33     if nargin==2 % case of optional flag presents:
34     if varargin{1}(1) == 1 % Case of the simple PV:
35     FLpv1 = 0;
36     FLpv2 = 0;
37     FLpv3 = 2;
38     end
39     end %if
40    
41     %% Optionnal flags:
42     global toshow % Turn to 1 to follow the computing process
43    
44    
45     %% NETCDF files:
46    
47     % Path and extension to find them:
48     pathname = strcat('netcdf-files',sla,snapshot,sla);
49     ext = strcat('.',netcdf_suff);
50    
51     % Names:
52     if FLpv3 ~= 2 % We don't need them for splPV
53     filOx = strcat('OMEGAX' ,'.',netcdf_domain);
54     filOy = strcat('OMEGAY' ,'.',netcdf_domain);
55     filOz = strcat('ZETA' ,'.',netcdf_domain);
56     end %if
57     filST = strcat('SIGMATHETA','.',netcdf_domain);
58    
59     % Load files and coordinates:
60     if FLpv3 ~= 2 % We don't need them for splPV
61     ferfile = strcat(pathname,sla,filOx,ext);
62     ncOx = netcdf(ferfile,'nowrite');
63     [Oxlon Oxlat Oxdpt] = coordfromnc(ncOx);
64     ferfile = strcat(pathname,sla,filOy,ext);
65     ncOy = netcdf(ferfile,'nowrite');
66     [Oylon Oylat Oydpt] = coordfromnc(ncOy);
67     ferfile = strcat(pathname,sla,filOz,ext);
68     ncOz = netcdf(ferfile,'nowrite');
69     [Ozlon Ozlat Ozdpt] = coordfromnc(ncOz);
70     end %if
71     ferfile = strcat(pathname,sla,filST,ext);
72     ncST = netcdf(ferfile,'nowrite');
73     [STlon STlat STdpt] = coordfromnc(ncST);
74    
75    
76     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
77     % Then, compute the first term: OMEGAX . dSIGMATHETA/dx %
78     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
79     if FLpv1
80    
81     %%%%%
82     %% 1: Compute zonal gradient of SIGMATHETA:
83    
84     % Dim:
85     if toshow,disp('dim'),end
86     nx = length(STlon) - 1;
87     ny = length(STlat);
88     nz = length(STdpt);
89    
90     % Pre-allocate:
91     if toshow,disp('pre-allocate'),end
92     dSIGMATHETAdx = zeros(nz,ny,nx-1)*NaN;
93     dx = zeros(1,nx).*NaN;
94     STup = zeros(nz,nx);
95     STdw = zeros(nz,nx);
96    
97     % Zonal gradient of SIGMATHETA:
98     if toshow,disp('grad'), end
99     for iy = 1 : ny
100     if toshow
101     disp(strcat('Computing dSIGMATHETA/dx at latitude : ',num2str(STlat(iy)),...
102     '^o (',num2str(iy),'/',num2str(ny),')' ));
103     end
104     [dx b] = meshgrid( m_lldist(STlon(1:nx+1),[1 1]*STlat(iy)), STdpt ) ; clear b
105     STup = squeeze(ncST{4}(:,iy,2:nx+1));
106     STdw = squeeze(ncST{4}(:,iy,1:nx));
107     dSTdx = ( STup - STdw ) ./ dx;
108     % Change horizontal grid point definition to fit with SIGMATHETA:
109     dSTdx = ( dSTdx(:,1:nx-1) + dSTdx(:,2:nx) )./2;
110     dSIGMATHETAdx(:,iy,:) = dSTdx;
111     end %for iy
112    
113    
114     %%%%%
115     %% 2: Move OMEGAX on the same grid:
116     if toshow,disp('Move OMEGAX on the same grid as dSIGMATHETA/dx'), end
117    
118     % Change vertical gridding of OMEGAX:
119     Ox = ncOx{4}(:,:,:);
120     Ox = ( Ox(2:nz-1,:,:) + Ox(1:nz-2,:,:) )./2;
121     % And horizontal gridding:
122     Ox = ( Ox(:,2:ny-1,:) + Ox(:,1:ny-2,:) )./2;
123    
124     %%%%%
125     %% 3: Make both fields having same limits:
126     %% (Keep points where both fields are defined)
127     Ox = squeeze(Ox(:,:,2:nx));
128     dSIGMATHETAdx = squeeze( dSIGMATHETAdx (2:nz-1,2:ny-1,:) );
129    
130     %%%%%
131     %% 4: Last, compute first term of PV:
132     PV1 = Ox.*dSIGMATHETAdx ;
133    
134     % and define axis fron the ST grid:
135     PV1_lon = STlon(2:length(STlon)-1);
136     PV1_lat = STlat(2:length(STlat)-1);
137     PV1_dpt = STdpt(2:length(STdpt)-1);
138    
139     clear nx ny nz dx STup STdw iy dSTdx Ox dSIGMATHETAdx
140     end %if FLpv1
141    
142    
143    
144    
145     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
146     % Compute the second term: OMEGAY . dSIGMATHETA/dy %
147     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
148     if FLpv2
149    
150     %%%%%
151     %% 1: Compute meridional gradient of SIGMATHETA:
152    
153     % Dim:
154     if toshow,disp('dim'), end
155     nx = length(STlon) ;
156     ny = length(STlat) - 1 ;
157     nz = length(STdpt) ;
158    
159     % Pre-allocate:
160     if toshow,disp('pre-allocate'), end
161     dSIGMATHETAdy = zeros(nz,ny-1,nx).*NaN;
162     dy = zeros(1,ny).*NaN;
163     STup = zeros(nz,ny);
164     STdw = zeros(nz,ny);
165    
166     % Meridional gradient of SIGMATHETA:
167     % (Assuming the grid is regular, dy is independent of x)
168     [dy b] = meshgrid( m_lldist([1 1]*STlon(1),STlat(1:ny+1) ), STdpt ) ; clear b
169     for ix = 1 : nx
170     if toshow
171     disp(strcat('Computing dSIGMATHETA/dy at longitude : ',num2str(STlon(ix)),...
172     '^o (',num2str(ix),'/',num2str(nx),')' ));
173     end
174     STup = squeeze(ncST{4}(:,2:ny+1,ix));
175     STdw = squeeze(ncST{4}(:,1:ny,ix));
176     dSTdy = ( STup - STdw ) ./ dy;
177     % Change horizontal grid point definition to fit with SIGMATHETA:
178     dSTdy = ( dSTdy(:,1:ny-1) + dSTdy(:,2:ny) )./2;
179     dSIGMATHETAdy(:,:,ix) = dSTdy;
180     end %for iy
181    
182     %%%%%
183     %% 2: Move OMEGAY on the same grid:
184     if toshow,disp('Move OMEGAY on the same grid as dSIGMATHETA/dy'), end
185    
186     % Change vertical gridding of OMEGAY:
187     Oy = ncOy{4}(:,:,:);
188     Oy = ( Oy(2:nz-1,:,:) + Oy(1:nz-2,:,:) )./2;
189     % And horizontal gridding:
190     Oy = ( Oy(:,:,2:nx-1) + Oy(:,:,1:nx-2) )./2;
191    
192     %%%%%
193     %% 3: Make them having same limits:
194     %% (Keep points where both fields are defined)
195     Oy = squeeze(Oy(:,2:ny,:));
196     dSIGMATHETAdy = squeeze( dSIGMATHETAdy (2:nz-1,:,2:nx-1) );
197    
198     %%%%%
199     %% 4: Last, compute second term of PV:
200     PV2 = Oy.*dSIGMATHETAdy ;
201    
202     % and defined axis fron the ST grid:
203     PV2_lon = STlon(2:length(STlon)-1);
204     PV2_lat = STlat(2:length(STlat)-1);
205     PV2_dpt = STdpt(2:length(STdpt)-1);
206    
207    
208     clear nx ny nz dy STup STdw dy dSTdy Oy dSIGMATHETAdy
209     end %if FLpv2
210    
211    
212    
213    
214    
215     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
216     % Compute the third term: ( f + ZETA ) . dSIGMATHETA/dz %
217     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
218     if FLpv3
219    
220     %%%%%
221     %% 1: Compute vertical gradient of SIGMATHETA:
222    
223     % Dim:
224     if toshow,disp('dim'), end
225     nx = length(STlon) ;
226     ny = length(STlat) ;
227     nz = length(STdpt) - 1 ;
228    
229     % Pre-allocate:
230     if toshow,disp('pre-allocate'), end
231     dSIGMATHETAdz = zeros(nz-1,ny,nx).*NaN;
232     ST = zeros(nz+1,ny,nx);
233     dz = zeros(1,nz).*NaN;
234    
235     % Vertical grid differences:
236     dz = diff(STdpt);
237     [a dz_3D c] = meshgrid(STlat,dz,STlon); clear a c
238    
239     % Vertical gradient:
240     if toshow,disp('Vertical gradient of SIGMATHETA'), end
241     ST = ncST{4}(:,:,:);
242     dSIGMATHETAdz = ( ST(2:nz+1,:,:) - ST(1:nz,:,:) ) ./ dz_3D;
243     clear dz_3D ST
244    
245     % Change vertical gridding:
246     dSIGMATHETAdz = ( dSIGMATHETAdz(1:nz-1,:,:) + dSIGMATHETAdz(2:nz,:,:) )./2;
247    
248     if FLpv3 == 1 % Just for full PV
249    
250     %%%%%
251     %% 2: Move ZETA on the same grid:
252     if toshow,disp('Move ZETA on the same grid as dSIGMATHETA/dz'), end
253     Oz = ncOz{4}(:,:,:);
254     % Change horizontal gridding:
255     Oz = ( Oz(:,:,2:nx-1) + Oz(:,:,1:nx-2) )./2;
256     Oz = ( Oz(:,2:ny-1,:) + Oz(:,1:ny-2,:) )./2;
257    
258     end %if FLpv3=1
259    
260     %%%%%
261     %% 3: Make them having same limits:
262     %% (Keep points where both fields are defined)
263     if FLpv3 == 1
264     Oz = squeeze(Oz(2:nz,:,:));
265     end %if
266     dSIGMATHETAdz = squeeze( dSIGMATHETAdz (:,2:ny-1,2:nx-1) );
267    
268    
269     %%%%%
270     %% 4: Last, compute third term of PV:
271     % and defined axis fron the ST grid:
272     PV3_lon = STlon(2:length(STlon)-1);
273     PV3_lat = STlat(2:length(STlat)-1);
274     PV3_dpt = STdpt(2:length(STdpt)-1);
275    
276     % Planetary vorticity:
277     f = 2*(2*pi/86400)*sin(PV3_lat*pi/180);
278     [a f c]=meshgrid(PV3_lon,f,PV3_dpt); clear a c
279     f = permute(f,[3 1 2]);
280    
281     % Third term of PV:
282     if FLpv3 == 2
283     % Compute simple PV, just with planetary vorticity:
284     PV3 = f.*dSIGMATHETAdz ;
285     else
286     % To compute full PV:
287     PV3 = (f+Oz).*dSIGMATHETAdz ;
288     end
289    
290    
291    
292     clear nx ny nz dz ST Oz dSIGMATHETAdz f
293     end %if FLpv3
294    
295    
296    
297     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
298     % Then, compute potential vorticity:
299     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
300     if toshow,disp('Summing terms to get PV:'),end
301     % If we had computed the first term:
302     if FLpv1
303     if toshow,disp('First term alone'),end
304     PV = PV1;
305     PV_lon=PV1_lon;PV_lat=PV1_lat;PV_dpt=PV1_dpt;
306     end
307     % If we had computed the second term:
308     if FLpv2
309     if exist('PV') % and the first one:
310     if toshow,disp('Second term added to first one'),end
311     PV = PV + PV2;
312     else % or not:
313     if toshow,disp('Second term alone'),end
314     PV = PV2;
315     PV_lon=PV2_lon;PV_lat=PV2_lat;PV_dpt=PV2_dpt;
316     end
317     end
318     % If we had computed the third term:
319     if FLpv3
320     if exist('PV') % and one of the first or second one:
321     if toshow,disp('Third term added to first and/or second one(s)'),end
322     PV = PV + PV3;
323     else % or not:
324     if toshow,disp('Third term alone'),end
325     PV = PV3;
326     PV_lon=PV3_lon;PV_lat=PV3_lat;PV_dpt=PV3_dpt;
327     end
328     end
329    
330    
331     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
332     % Record:
333     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
334     if toshow,disp('Now reccording PV file ...'),end
335    
336     % General informations:
337     if FLpv3 == 1
338     netfil = strcat('PV','.',netcdf_domain,'.',netcdf_suff);
339     units = 'kg/s/m^4';
340     ncid = 'PV';
341     longname = 'Potential vorticity';
342     uniquename = 'potential_vorticity';
343     else
344     netfil = strcat('splPV','.',netcdf_domain,'.',netcdf_suff);
345     units = 'kg/s/m^4';
346     ncid = 'splPV';
347     longname = 'Simple Potential vorticity';
348     uniquename = 'simple_potential_vorticity';
349     end %if
350    
351     % Open output file:
352     nc = netcdf(strcat(pathname,sla,netfil),'clobber');
353    
354     % Define axis:
355     nc('X') = length(PV_lon);
356     nc('Y') = length(PV_lat);
357     nc('Z') = length(PV_dpt);
358    
359     nc{'X'} = 'X';
360     nc{'Y'} = 'Y';
361     nc{'Z'} = 'Z';
362    
363     nc{'X'} = ncfloat('X');
364     nc{'X'}.uniquename = ncchar('X');
365     nc{'X'}.long_name = ncchar('longitude');
366     nc{'X'}.gridtype = nclong(0);
367     nc{'X'}.units = ncchar('degrees_east');
368     nc{'X'}(:) = PV_lon;
369    
370     nc{'Y'} = ncfloat('Y');
371     nc{'Y'}.uniquename = ncchar('Y');
372     nc{'Y'}.long_name = ncchar('latitude');
373     nc{'Y'}.gridtype = nclong(0);
374     nc{'Y'}.units = ncchar('degrees_north');
375     nc{'Y'}(:) = PV_lat;
376    
377     nc{'Z'} = ncfloat('Z');
378     nc{'Z'}.uniquename = ncchar('Z');
379     nc{'Z'}.long_name = ncchar('depth');
380     nc{'Z'}.gridtype = nclong(0);
381     nc{'Z'}.units = ncchar('m');
382     nc{'Z'}(:) = PV_dpt;
383    
384     % And main field:
385     nc{ncid} = ncfloat('Z', 'Y', 'X');
386     nc{ncid}.units = ncchar(units);
387     nc{ncid}.missing_value = ncfloat(NaN);
388     nc{ncid}.FillValue_ = ncfloat(NaN);
389     nc{ncid}.longname = ncchar(longname);
390     nc{ncid}.uniquename = ncchar(uniquename);
391     nc{ncid}(:,:,:) = PV;
392    
393     nc=close(nc);
394    

  ViewVC Help
Powered by ViewVC 1.1.22