| 1 |
C $Header: /usr/local/gcmpack/MITgcm_contrib/high_res_cube/code-mods/mom_vi_hdissip.F_hr,v 1.2 2004/01/25 00:27:25 dimitri Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "CPP_OPTIONS.h" |
| 5 |
|
| 6 |
SUBROUTINE MOM_VI_HDISSIP( |
| 7 |
I bi,bj,k, |
| 8 |
I hDiv,vort3,hFacZ,dStar,zStar, |
| 9 |
O uDissip,vDissip, |
| 10 |
I myThid) |
| 11 |
IMPLICIT NONE |
| 12 |
C |
| 13 |
C Calculate horizontal dissipation terms |
| 14 |
C [del^2 - del^4] (u,v) |
| 15 |
C |
| 16 |
|
| 17 |
C == Global variables == |
| 18 |
#include "SIZE.h" |
| 19 |
#include "GRID.h" |
| 20 |
#include "EEPARAMS.h" |
| 21 |
#include "PARAMS.h" |
| 22 |
|
| 23 |
C == Routine arguments == |
| 24 |
INTEGER bi,bj,k |
| 25 |
_RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 26 |
_RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 27 |
_RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 28 |
_RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 29 |
_RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 30 |
_RL uDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 31 |
_RL vDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 32 |
INTEGER myThid |
| 33 |
|
| 34 |
C == Local variables == |
| 35 |
INTEGER I,J |
| 36 |
_RL Zip,Zij,Zpj,Dim,Dij,Dmj,uD2,vD2,uD4,vD4 |
| 37 |
|
| 38 |
C - Laplacian and bi-harmonic terms |
| 39 |
DO j=2-Oly,sNy+Oly-1 |
| 40 |
DO i=2-Olx,sNx+Olx-1 |
| 41 |
|
| 42 |
c Dim=dyF( i ,j-1,bi,bj)*hFacC( i ,j-1,k,bi,bj)*hDiv( i ,j-1) |
| 43 |
c Dij=dyF( i , j ,bi,bj)*hFacC( i , j ,k,bi,bj)*hDiv( i , j ) |
| 44 |
c Dmj=dyF(i-1, j ,bi,bj)*hFacC(i-1, j ,k,bi,bj)*hDiv(i-1, j ) |
| 45 |
c Dim=dyF( i ,j-1,bi,bj)* hDiv( i ,j-1) |
| 46 |
c Dij=dyF( i , j ,bi,bj)* hDiv( i , j ) |
| 47 |
c Dmj=dyF(i-1, j ,bi,bj)* hDiv(i-1, j ) |
| 48 |
Dim= hDiv( i ,j-1) |
| 49 |
Dij= hDiv( i , j ) |
| 50 |
Dmj= hDiv(i-1, j ) |
| 51 |
|
| 52 |
c Zip=dxV( i ,j+1,bi,bj)*hFacZ( i ,j+1)*vort3( i ,j+1) |
| 53 |
c Zij=dxV( i , j ,bi,bj)*hFacZ( i , j )*vort3( i , j ) |
| 54 |
c Zpj=dxV(i+1, j ,bi,bj)*hFacZ(i+1, j )*vort3(i+1, j ) |
| 55 |
Zip= hFacZ( i ,j+1)*vort3( i ,j+1) |
| 56 |
Zij= hFacZ( i , j )*vort3( i , j ) |
| 57 |
Zpj= hFacZ(i+1, j )*vort3(i+1, j ) |
| 58 |
|
| 59 |
C This bit scales the harmonic dissipation operator to be proportional |
| 60 |
C to the grid-cell area over the time-step. viscAh is then non-dimensional |
| 61 |
C and should be less than 1/8, for example viscAh=0.01 |
| 62 |
if (deltaTmom.NE.0.) then |
| 63 |
Dij = Dij * rA ( i , j ,bi,bj) / deltaTmom |
| 64 |
Dim = Dim * rA ( i ,j-1,bi,bj) / deltaTmom |
| 65 |
Dmj = Dmj * rA (i-1, j ,bi,bj) / deltaTmom |
| 66 |
Zij = Zij * rAz( i , j ,bi,bj) / deltaTmom |
| 67 |
Zip = Zip * rAz( i ,j+1,bi,bj) / deltaTmom |
| 68 |
Zpj = Zpj * rAz(i+1, j ,bi,bj) / deltaTmom |
| 69 |
endif |
| 70 |
|
| 71 |
c uD2 = recip_rAw(i,j,bi,bj)*( |
| 72 |
c & recip_hFacW(i,j,k,bi,bj)*viscAh*( (Dij-Dmj)*cosFacU(j,bi,bj) ) |
| 73 |
c & -recip_hFacW(i,j,k,bi,bj)*viscAh*( Zip-Zij ) ) |
| 74 |
c uD2 = recip_rAw(i,j,bi,bj)*( |
| 75 |
c & viscAh*( (Dij-Dmj)*cosFacU(j,bi,bj) ) |
| 76 |
c & -recip_hFacW(i,j,k,bi,bj)*viscAh*( Zip-Zij ) ) |
| 77 |
uD2 = viscAh*( |
| 78 |
& cosFacU(j,bi,bj)*( Dij-Dmj )*recip_DXC(i,j,bi,bj) |
| 79 |
& -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij )*recip_DYG(i,j,bi,bj) ) |
| 80 |
|
| 81 |
c vD2 = recip_rAs(i,j,bi,bj)*( |
| 82 |
c & recip_hFacS(i,j,k,bi,bj)*viscAh*( (Zpj-Zij)*cosFacV(j,bi,bj) ) |
| 83 |
c & +recip_hFacS(i,j,k,bi,bj)*viscAh*( Dij-Dim ) ) |
| 84 |
c vD2 = recip_rAs(i,j,bi,bj)*( |
| 85 |
c & recip_hFacS(i,j,k,bi,bj)*viscAh*( (Zpj-Zij)*cosFacV(j,bi,bj) ) |
| 86 |
c & + viscAh*( Dij-Dim ) ) |
| 87 |
vD2 = viscAh*( |
| 88 |
& recip_hFacS(i,j,k,bi,bj)*( Zpj-Zij )*recip_DXG(i,j,bi,bj) |
| 89 |
& *cosFacV(j,bi,bj) |
| 90 |
& +( Dij-Dim )*recip_DYC(i,j,bi,bj) ) |
| 91 |
|
| 92 |
c Dim=dyF( i ,j-1,bi,bj)*hFacC( i ,j-1,k,bi,bj)*dStar( i ,j-1) |
| 93 |
c Dij=dyF( i , j ,bi,bj)*hFacC( i , j ,k,bi,bj)*dStar( i , j ) |
| 94 |
c Dmj=dyF(i-1, j ,bi,bj)*hFacC(i-1, j ,k,bi,bj)*dStar(i-1, j ) |
| 95 |
Dim=dyF( i ,j-1,bi,bj)* dStar( i ,j-1) |
| 96 |
Dij=dyF( i , j ,bi,bj)* dStar( i , j ) |
| 97 |
Dmj=dyF(i-1, j ,bi,bj)* dStar(i-1, j ) |
| 98 |
|
| 99 |
Zip=dxV( i ,j+1,bi,bj)*hFacZ( i ,j+1)*zStar( i ,j+1) |
| 100 |
Zij=dxV( i , j ,bi,bj)*hFacZ( i , j )*zStar( i , j ) |
| 101 |
Zpj=dxV(i+1, j ,bi,bj)*hFacZ(i+1, j )*zStar(i+1, j ) |
| 102 |
|
| 103 |
C This bit scales the harmonic dissipation operator to be proportional |
| 104 |
C to the grid-cell area over the time-step. viscAh is then non-dimensional |
| 105 |
C and should be less than 1/8, for example viscAh=0.01 |
| 106 |
if (deltaTmom.NE.0.) then |
| 107 |
Dij = Dij * ((rA ( i , j ,bi,bj))**2) / deltaTmom |
| 108 |
Dim = Dim * ((rA ( i ,j-1,bi,bj))**2) / deltaTmom |
| 109 |
Dmj = Dmj * ((rA (i-1, j ,bi,bj))**2) / deltaTmom |
| 110 |
Zij = Zij * ((rAz( i , j ,bi,bj))**2) / deltaTmom |
| 111 |
Zip = Zip * ((rAz( i ,j+1,bi,bj))**2) / deltaTmom |
| 112 |
Zpj = Zpj * ((rAz(i+1, j ,bi,bj))**2) / deltaTmom |
| 113 |
endif |
| 114 |
|
| 115 |
c uD4 = recip_rAw(i,j,bi,bj)*( |
| 116 |
c & recip_hFacW(i,j,k,bi,bj)*viscA4*( (Dij-Dmj)*cosFacU(j,bi,bj) ) |
| 117 |
c & -recip_hFacW(i,j,k,bi,bj)*viscA4*( Zip-Zij ) ) |
| 118 |
uD4 = recip_rAw(i,j,bi,bj)*( |
| 119 |
& viscA4*( (Dij-Dmj)*cosFacU(j,bi,bj) ) |
| 120 |
& -recip_hFacW(i,j,k,bi,bj)*viscA4*( Zip-Zij ) ) |
| 121 |
|
| 122 |
c vD4 = recip_rAs(i,j,bi,bj)*( |
| 123 |
c & recip_hFacS(i,j,k,bi,bj)*viscA4*( (Zpj-Zij)*cosFacV(j,bi,bj) ) |
| 124 |
c & +recip_hFacS(i,j,k,bi,bj)*viscA4*( Dij-Dim ) ) |
| 125 |
vD4 = recip_rAs(i,j,bi,bj)*( |
| 126 |
& recip_hFacS(i,j,k,bi,bj)*viscA4*( (Zpj-Zij)*cosFacV(j,bi,bj) ) |
| 127 |
& + viscA4*( Dij-Dim ) ) |
| 128 |
|
| 129 |
uDissip(i,j) = uD2 - uD4 |
| 130 |
vDissip(i,j) = vD2 - vD4 |
| 131 |
|
| 132 |
ENDDO |
| 133 |
ENDDO |
| 134 |
|
| 135 |
RETURN |
| 136 |
END |