/[MITgcm]/MITgcm_contrib/high_res_cube/code-mods/mom_vi_hdissip.F_hr
ViewVC logotype

Contents of /MITgcm_contrib/high_res_cube/code-mods/mom_vi_hdissip.F_hr

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (show annotations) (download)
Sat Feb 7 23:18:05 2004 UTC (21 years, 10 months ago) by dimitri
Branch: MAIN
CVS Tags: HEAD
Changes since 1.2: +1 -1 lines
FILE REMOVED
Removed high_res_cube/code-mods/mom_vi_hdissip.F_hr

1 C $Header: /usr/local/gcmpack/MITgcm_contrib/high_res_cube/code-mods/mom_vi_hdissip.F_hr,v 1.2 2004/01/25 00:27:25 dimitri Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 SUBROUTINE MOM_VI_HDISSIP(
7 I bi,bj,k,
8 I hDiv,vort3,hFacZ,dStar,zStar,
9 O uDissip,vDissip,
10 I myThid)
11 IMPLICIT NONE
12 C
13 C Calculate horizontal dissipation terms
14 C [del^2 - del^4] (u,v)
15 C
16
17 C == Global variables ==
18 #include "SIZE.h"
19 #include "GRID.h"
20 #include "EEPARAMS.h"
21 #include "PARAMS.h"
22
23 C == Routine arguments ==
24 INTEGER bi,bj,k
25 _RL hDiv(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
26 _RL vort3(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
27 _RS hFacZ(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
28 _RL dStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
29 _RL zStar(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
30 _RL uDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
31 _RL vDissip(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
32 INTEGER myThid
33
34 C == Local variables ==
35 INTEGER I,J
36 _RL Zip,Zij,Zpj,Dim,Dij,Dmj,uD2,vD2,uD4,vD4
37
38 C - Laplacian and bi-harmonic terms
39 DO j=2-Oly,sNy+Oly-1
40 DO i=2-Olx,sNx+Olx-1
41
42 c Dim=dyF( i ,j-1,bi,bj)*hFacC( i ,j-1,k,bi,bj)*hDiv( i ,j-1)
43 c Dij=dyF( i , j ,bi,bj)*hFacC( i , j ,k,bi,bj)*hDiv( i , j )
44 c Dmj=dyF(i-1, j ,bi,bj)*hFacC(i-1, j ,k,bi,bj)*hDiv(i-1, j )
45 c Dim=dyF( i ,j-1,bi,bj)* hDiv( i ,j-1)
46 c Dij=dyF( i , j ,bi,bj)* hDiv( i , j )
47 c Dmj=dyF(i-1, j ,bi,bj)* hDiv(i-1, j )
48 Dim= hDiv( i ,j-1)
49 Dij= hDiv( i , j )
50 Dmj= hDiv(i-1, j )
51
52 c Zip=dxV( i ,j+1,bi,bj)*hFacZ( i ,j+1)*vort3( i ,j+1)
53 c Zij=dxV( i , j ,bi,bj)*hFacZ( i , j )*vort3( i , j )
54 c Zpj=dxV(i+1, j ,bi,bj)*hFacZ(i+1, j )*vort3(i+1, j )
55 Zip= hFacZ( i ,j+1)*vort3( i ,j+1)
56 Zij= hFacZ( i , j )*vort3( i , j )
57 Zpj= hFacZ(i+1, j )*vort3(i+1, j )
58
59 C This bit scales the harmonic dissipation operator to be proportional
60 C to the grid-cell area over the time-step. viscAh is then non-dimensional
61 C and should be less than 1/8, for example viscAh=0.01
62 if (deltaTmom.NE.0.) then
63 Dij = Dij * rA ( i , j ,bi,bj) / deltaTmom
64 Dim = Dim * rA ( i ,j-1,bi,bj) / deltaTmom
65 Dmj = Dmj * rA (i-1, j ,bi,bj) / deltaTmom
66 Zij = Zij * rAz( i , j ,bi,bj) / deltaTmom
67 Zip = Zip * rAz( i ,j+1,bi,bj) / deltaTmom
68 Zpj = Zpj * rAz(i+1, j ,bi,bj) / deltaTmom
69 endif
70
71 c uD2 = recip_rAw(i,j,bi,bj)*(
72 c & recip_hFacW(i,j,k,bi,bj)*viscAh*( (Dij-Dmj)*cosFacU(j,bi,bj) )
73 c & -recip_hFacW(i,j,k,bi,bj)*viscAh*( Zip-Zij ) )
74 c uD2 = recip_rAw(i,j,bi,bj)*(
75 c & viscAh*( (Dij-Dmj)*cosFacU(j,bi,bj) )
76 c & -recip_hFacW(i,j,k,bi,bj)*viscAh*( Zip-Zij ) )
77 uD2 = viscAh*(
78 & cosFacU(j,bi,bj)*( Dij-Dmj )*recip_DXC(i,j,bi,bj)
79 & -recip_hFacW(i,j,k,bi,bj)*( Zip-Zij )*recip_DYG(i,j,bi,bj) )
80
81 c vD2 = recip_rAs(i,j,bi,bj)*(
82 c & recip_hFacS(i,j,k,bi,bj)*viscAh*( (Zpj-Zij)*cosFacV(j,bi,bj) )
83 c & +recip_hFacS(i,j,k,bi,bj)*viscAh*( Dij-Dim ) )
84 c vD2 = recip_rAs(i,j,bi,bj)*(
85 c & recip_hFacS(i,j,k,bi,bj)*viscAh*( (Zpj-Zij)*cosFacV(j,bi,bj) )
86 c & + viscAh*( Dij-Dim ) )
87 vD2 = viscAh*(
88 & recip_hFacS(i,j,k,bi,bj)*( Zpj-Zij )*recip_DXG(i,j,bi,bj)
89 & *cosFacV(j,bi,bj)
90 & +( Dij-Dim )*recip_DYC(i,j,bi,bj) )
91
92 c Dim=dyF( i ,j-1,bi,bj)*hFacC( i ,j-1,k,bi,bj)*dStar( i ,j-1)
93 c Dij=dyF( i , j ,bi,bj)*hFacC( i , j ,k,bi,bj)*dStar( i , j )
94 c Dmj=dyF(i-1, j ,bi,bj)*hFacC(i-1, j ,k,bi,bj)*dStar(i-1, j )
95 Dim=dyF( i ,j-1,bi,bj)* dStar( i ,j-1)
96 Dij=dyF( i , j ,bi,bj)* dStar( i , j )
97 Dmj=dyF(i-1, j ,bi,bj)* dStar(i-1, j )
98
99 Zip=dxV( i ,j+1,bi,bj)*hFacZ( i ,j+1)*zStar( i ,j+1)
100 Zij=dxV( i , j ,bi,bj)*hFacZ( i , j )*zStar( i , j )
101 Zpj=dxV(i+1, j ,bi,bj)*hFacZ(i+1, j )*zStar(i+1, j )
102
103 C This bit scales the harmonic dissipation operator to be proportional
104 C to the grid-cell area over the time-step. viscAh is then non-dimensional
105 C and should be less than 1/8, for example viscAh=0.01
106 if (deltaTmom.NE.0.) then
107 Dij = Dij * ((rA ( i , j ,bi,bj))**2) / deltaTmom
108 Dim = Dim * ((rA ( i ,j-1,bi,bj))**2) / deltaTmom
109 Dmj = Dmj * ((rA (i-1, j ,bi,bj))**2) / deltaTmom
110 Zij = Zij * ((rAz( i , j ,bi,bj))**2) / deltaTmom
111 Zip = Zip * ((rAz( i ,j+1,bi,bj))**2) / deltaTmom
112 Zpj = Zpj * ((rAz(i+1, j ,bi,bj))**2) / deltaTmom
113 endif
114
115 c uD4 = recip_rAw(i,j,bi,bj)*(
116 c & recip_hFacW(i,j,k,bi,bj)*viscA4*( (Dij-Dmj)*cosFacU(j,bi,bj) )
117 c & -recip_hFacW(i,j,k,bi,bj)*viscA4*( Zip-Zij ) )
118 uD4 = recip_rAw(i,j,bi,bj)*(
119 & viscA4*( (Dij-Dmj)*cosFacU(j,bi,bj) )
120 & -recip_hFacW(i,j,k,bi,bj)*viscA4*( Zip-Zij ) )
121
122 c vD4 = recip_rAs(i,j,bi,bj)*(
123 c & recip_hFacS(i,j,k,bi,bj)*viscA4*( (Zpj-Zij)*cosFacV(j,bi,bj) )
124 c & +recip_hFacS(i,j,k,bi,bj)*viscA4*( Dij-Dim ) )
125 vD4 = recip_rAs(i,j,bi,bj)*(
126 & recip_hFacS(i,j,k,bi,bj)*viscA4*( (Zpj-Zij)*cosFacV(j,bi,bj) )
127 & + viscA4*( Dij-Dim ) )
128
129 uDissip(i,j) = uD2 - uD4
130 vDissip(i,j) = vD2 - vD4
131
132 ENDDO
133 ENDDO
134
135 RETURN
136 END

  ViewVC Help
Powered by ViewVC 1.1.22