1 |
cnh |
1.1 |
function [del] = griddata_preprocess(x,y,xi,yi,method) |
2 |
|
|
%GRIDDATA_PREPROCESS Pre-calculate Delaunay triangulation for use |
3 |
|
|
% with GRIDDATA_FAST. |
4 |
|
|
% |
5 |
|
|
% DEL = GRIDDATA_PREPROCESS(X,Y,XI,YI) |
6 |
|
|
|
7 |
|
|
% Clay M. Thompson 8-21-95 |
8 |
|
|
% Copyright 1984-2001 The MathWorks, Inc. |
9 |
|
|
% $Revision: 5.28 $ $Date: 2001/04/15 11:59:14 $ |
10 |
|
|
|
11 |
|
|
error(nargchk(4,5,nargin)) |
12 |
|
|
|
13 |
|
|
if prod(size(xi)) ~= prod(size(yi)) |
14 |
|
|
[yi,xi]=ndgrid(yi,xi); |
15 |
|
|
end |
16 |
|
|
|
17 |
|
|
if nargin<6, method = 'linear'; end |
18 |
|
|
if ~isstr(method), |
19 |
|
|
error('METHOD must be one of ''linear'',''cubic'',''nearest'', or ''v4''.'); |
20 |
|
|
end |
21 |
|
|
|
22 |
|
|
|
23 |
|
|
switch lower(method), |
24 |
|
|
case 'linear' |
25 |
|
|
del = linear(x,y,xi,yi); |
26 |
|
|
% case 'cubic' |
27 |
|
|
% zi = cubic(x,y,z,xi,yi); |
28 |
|
|
% case 'nearest' |
29 |
|
|
% zi = nearest(x,y,z,xi,yi); |
30 |
|
|
% case {'invdist','v4'} |
31 |
|
|
% zi = gdatav4(x,y,z,xi,yi); |
32 |
|
|
otherwise |
33 |
|
|
error('Unknown method.'); |
34 |
|
|
end |
35 |
|
|
|
36 |
|
|
|
37 |
|
|
|
38 |
|
|
%------------------------------------------------------------ |
39 |
|
|
function delau = linear(x,y,xi,yi) |
40 |
|
|
%LINEAR Triangle-based linear interpolation |
41 |
|
|
|
42 |
|
|
% Reference: David F. Watson, "Contouring: A guide |
43 |
|
|
% to the analysis and display of spacial data", Pergamon, 1994. |
44 |
|
|
|
45 |
|
|
siz = size(xi); |
46 |
|
|
xi = xi(:); yi = yi(:); % Treat these as columns |
47 |
|
|
x = x(:); y = y(:); % Treat these as columns |
48 |
|
|
|
49 |
|
|
% Triangularize the data |
50 |
|
|
tri = delaunayn([x y]); |
51 |
|
|
if isempty(tri), |
52 |
|
|
warning('Data cannot be triangulated.'); |
53 |
|
|
return |
54 |
|
|
end |
55 |
|
|
|
56 |
|
|
% Find the nearest triangle (t) |
57 |
|
|
t = tsearch(x,y,tri,xi,yi); |
58 |
|
|
|
59 |
|
|
% Only keep the relevant triangles. |
60 |
|
|
out = find(isnan(t)); |
61 |
|
|
if ~isempty(out), t(out) = ones(size(out)); end |
62 |
|
|
tri = tri(t,:); |
63 |
|
|
|
64 |
|
|
% Compute Barycentric coordinates (w). P. 78 in Watson. |
65 |
|
|
del = (x(tri(:,2))-x(tri(:,1))) .* (y(tri(:,3))-y(tri(:,1))) - ... |
66 |
|
|
(x(tri(:,3))-x(tri(:,1))) .* (y(tri(:,2))-y(tri(:,1))); |
67 |
|
|
w(:,3) = ((x(tri(:,1))-xi).*(y(tri(:,2))-yi) - ... |
68 |
|
|
(x(tri(:,2))-xi).*(y(tri(:,1))-yi)) ./ del; |
69 |
|
|
w(:,2) = ((x(tri(:,3))-xi).*(y(tri(:,1))-yi) - ... |
70 |
|
|
(x(tri(:,1))-xi).*(y(tri(:,3))-yi)) ./ del; |
71 |
|
|
w(:,1) = ((x(tri(:,2))-xi).*(y(tri(:,3))-yi) - ... |
72 |
|
|
(x(tri(:,3))-xi).*(y(tri(:,2))-yi)) ./ del; |
73 |
|
|
w(out,:) = zeros(length(out),3); |
74 |
|
|
|
75 |
|
|
delau.tri=tri; |
76 |
|
|
delau.w=w; |
77 |
|
|
delau.siz=siz; |
78 |
|
|
delau.out=out; |
79 |
|
|
|
80 |
|
|
%------------------------------------------------------------ |