function [n2] = dens_poly3(poly3,t,s,dzc) % D=DENS_POLY3(P,T,S,dzc) % % Calculates Brunt-Vasala frequecy as approximated by the POLY3 method % used in the MITgcm. % P - coefficients read from file 'POLY3.COEFFS' using INI_POLY3 % T - potential temperature % S - salinity % % eg. % >> P=ini_poly3; % >> T=rdmds('T',100); % >> S=rdmds('S',100); % >> N2=n2_poly3(P,T,S); % % or to work within a single model level % >> N2=n2_poly3(P,T(:,:,3),S(:,:,3),3); if size(t) ~= size(s) error('T and S must be the same shape and size') end %if size(t,ndims(t)) ~= size(poly3,2) % error('Last dimension of T and S must be the number of levels in P') %end n=size(t); nz=size(poly3,2); t=reshape(t,[prod(size(t))/nz nz]); s=reshape(s,[prod(size(t))/nz nz]); n2=0*t; for k=2:nz, d1=dens_poly3(poly3(k-1),t(:,k-1),s(:,k-1)); d2=dens_poly3(poly3(k-1),t(:,k ),s(:,k )); dRdz=(d1-d2)/dzc(k); dRdz( find( t(:,k)==0 ) )=0; n2(:,k)=-9.81*dRdz; end n2=reshape(n2,n);