1 |
C $Header: /u/gcmpack/MITgcm_contrib/gael/verification/global_oce_llc90/code/rotate_uv2en.F,v 1.1 2013/04/09 17:23:18 gforget Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "CPP_OPTIONS.h" |
5 |
|
6 |
C-- File rotate_uv2en.F: Routines to handle a vector coordinate system rotation. |
7 |
C-- Contents |
8 |
C-- o ROTATE_UV2EN_RL |
9 |
C-- o ROTATE_UV2EN_RS |
10 |
|
11 |
subroutine rotate_uv2en_rl( |
12 |
U uFldX, vFldY, |
13 |
U uFldE, vFldN, |
14 |
I xy2en, switchGrid, applyMask, kSize, mythid |
15 |
& ) |
16 |
|
17 |
c ================================================================== |
18 |
c SUBROUTINE rotate_uv2en_rl |
19 |
c ================================================================== |
20 |
c |
21 |
c o uFldX/vFldY are in the model grid directions. |
22 |
c o uFldE/vFldN are eastward/northward. |
23 |
c o This routine goes from uFldX/vFldY to uFldE/vFldN (for xy2en=.TRUE.) |
24 |
c or vice versa (for xy2en=.FALSE.). |
25 |
c o uFldX/vFldY may be at the C grid velocity points, or at the A grid |
26 |
c velocity points (i.e. the C grid cell center). uFldE/vFldN are always |
27 |
c at the cell center. If switchGrid=.TRUE. we go from C grid uFldX/vFldY |
28 |
c to A grid uFldE/vFldN, or vice versa. If switchGrid=.FALSE. we go |
29 |
c from A grid uFldX/vFldY to A grid uFldE/vFldN, or vice versa. |
30 |
c o If applyMask=.TRUE. then masks are applied to the output. |
31 |
c If kSize=1 (resp. nr) we then use the surface (resp. 3D) masks. |
32 |
c o In any case it is assumed that exchanges are done on the outside. |
33 |
c |
34 |
c ================================================================== |
35 |
c SUBROUTINE rotate_uv2en_rl |
36 |
c ================================================================== |
37 |
|
38 |
implicit none |
39 |
|
40 |
c == global variables == |
41 |
|
42 |
#include "EEPARAMS.h" |
43 |
#include "SIZE.h" |
44 |
#include "PARAMS.h" |
45 |
#include "GRID.h" |
46 |
|
47 |
c == routine arguments == |
48 |
|
49 |
integer kSize |
50 |
logical xy2en, switchGrid, applyMask |
51 |
_RL uFldX(1-olx:snx+olx,1-oly:sny+oly,kSize,nsx,nsy) |
52 |
_RL vFldY(1-olx:snx+olx,1-oly:sny+oly,kSize,nsx,nsy) |
53 |
_RL uFldE(1-olx:snx+olx,1-oly:sny+oly,kSize,nsx,nsy) |
54 |
_RL vFldN(1-olx:snx+olx,1-oly:sny+oly,kSize,nsx,nsy) |
55 |
|
56 |
integer mythid |
57 |
|
58 |
c == local variables == |
59 |
|
60 |
integer bi,bj |
61 |
integer i,j,k,kk |
62 |
_RL tmpU(1-olx:snx+olx,1-oly:sny+oly) |
63 |
_RL tmpV(1-olx:snx+olx,1-oly:sny+oly) |
64 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
65 |
|
66 |
c == end of interface == |
67 |
|
68 |
if ( (kSize.NE.1).AND.(kSize.NE.nr) |
69 |
& .AND.(applyMask) ) then |
70 |
WRITE(msgBuf,'(2A,I4,A)') ' ROTATE_UV2EN: ', |
71 |
& 'no mask has ',kSize,' levels' |
72 |
CALL PRINT_ERROR(msgBuf, myThid) |
73 |
STOP 'ABNROMAL END: S/R ROTATE_UV2EN' |
74 |
endif |
75 |
|
76 |
do bj = mybylo(mythid),mybyhi(mythid) |
77 |
do bi = mybxlo(mythid),mybxhi(mythid) |
78 |
do k = 1,kSize |
79 |
|
80 |
if ( (kSize.EQ.1).AND.(usingPCoords) ) then |
81 |
kk=nr |
82 |
else |
83 |
kk=k |
84 |
endif |
85 |
|
86 |
if ( xy2en ) then |
87 |
c go from uFldX/vFldY to uFldE/vFldN |
88 |
do j = 1-oly,sny+oly |
89 |
do i = 1-olx,snx+olx |
90 |
uFldE(i,j,k,bi,bj) = 0. _d 0 |
91 |
vFldN(i,j,k,bi,bj) = 0. _d 0 |
92 |
tmpU(i,j) = 0. _d 0 |
93 |
tmpV(i,j) = 0. _d 0 |
94 |
enddo |
95 |
enddo |
96 |
if ( switchGrid ) then |
97 |
C 1a) go from C grid velocity points to A grid velocity points |
98 |
do j = 1,sny |
99 |
do i = 1,snx |
100 |
tmpU(i,j) = 0.5 _d 0 |
101 |
& *( uFldX(i+1,j,k,bi,bj) + uFldX(i,j,k,bi,bj) ) |
102 |
tmpV(i,j) = 0.5 _d 0 |
103 |
& *( vFldY(i,j+1,k,bi,bj) + vFldY(i,j,k,bi,bj) ) |
104 |
if (applyMask) then |
105 |
tmpU(i,j) = tmpU(i,j) * maskC(i,j,kk,bi,bj) |
106 |
tmpV(i,j) = tmpV(i,j) * maskC(i,j,kk,bi,bj) |
107 |
endif |
108 |
enddo |
109 |
enddo |
110 |
else |
111 |
C 1b) stay at A grid velocity points (i.e. at the C grid cell center) |
112 |
do j = 1,sny |
113 |
do i = 1,snx |
114 |
tmpU(i,j) = uFldX(i,j,k,bi,bj) |
115 |
tmpV(i,j) = vFldY(i,j,k,bi,bj) |
116 |
if (applyMask) then |
117 |
tmpU(i,j) = tmpU(i,j) * maskC(i,j,kk,bi,bj) |
118 |
tmpV(i,j) = tmpV(i,j) * maskC(i,j,kk,bi,bj) |
119 |
endif |
120 |
enddo |
121 |
enddo |
122 |
endif!if ( switchGrid ) then |
123 |
|
124 |
C 2) rotation |
125 |
do j = 1,sny |
126 |
do i = 1,snx |
127 |
uFldE(i,j,k,bi,bj) = |
128 |
& angleCosC(i,j,bi,bj)*tmpU(i,j) |
129 |
& -angleSinC(i,j,bi,bj)*tmpV(i,j) |
130 |
vFldN(i,j,k,bi,bj) = |
131 |
& angleSinC(i,j,bi,bj)*tmpU(i,j) |
132 |
& +angleCosC(i,j,bi,bj)*tmpV(i,j) |
133 |
enddo |
134 |
enddo |
135 |
|
136 |
else!if (xy2en) then |
137 |
c go from uFldE/vFldN to uFldX/vFldY |
138 |
do j = 1-oly,sny+oly |
139 |
do i = 1-olx,snx+olx |
140 |
uFldX(i,j,k,bi,bj) = 0. _d 0 |
141 |
vFldY(i,j,k,bi,bj) = 0. _d 0 |
142 |
tmpU(i,j) = 0. _d 0 |
143 |
tmpV(i,j) = 0. _d 0 |
144 |
enddo |
145 |
enddo |
146 |
C 1) rotation |
147 |
do j = 1,sny |
148 |
do i = 1-olx,snx+olx |
149 |
tmpU(i,j) = |
150 |
& angleCosC(i,j,bi,bj)*uFldE(i,j,k,bi,bj) |
151 |
& +angleSinC(i,j,bi,bj)*vFldN(i,j,k,bi,bj) |
152 |
tmpV(i,j) = |
153 |
& -angleSinC(i,j,bi,bj)*uFldE(i,j,k,bi,bj) |
154 |
& +angleCosC(i,j,bi,bj)*vFldN(i,j,k,bi,bj) |
155 |
enddo |
156 |
enddo |
157 |
do j = 1-oly,sny+oly |
158 |
do i = 1,snx |
159 |
tmpU(i,j) = |
160 |
& angleCosC(i,j,bi,bj)*uFldE(i,j,k,bi,bj) |
161 |
& +angleSinC(i,j,bi,bj)*vFldN(i,j,k,bi,bj) |
162 |
tmpV(i,j) = |
163 |
& -angleSinC(i,j,bi,bj)*uFldE(i,j,k,bi,bj) |
164 |
& +angleCosC(i,j,bi,bj)*vFldN(i,j,k,bi,bj) |
165 |
enddo |
166 |
enddo |
167 |
|
168 |
if ( switchGrid ) then |
169 |
C 2a) go from A grid velocity points to C grid velocity points |
170 |
do j = 1,sny |
171 |
do i = 1,snx |
172 |
uFldX(i,j,k,bi,bj) = 0.5 _d 0 |
173 |
& *( tmpU(i-1,j) + tmpU(i,j) ) |
174 |
vFldY(i,j,k,bi,bj) = 0.5 _d 0 |
175 |
& *( tmpV(i,j-1) + tmpV(i,j) ) |
176 |
if (applyMask) then |
177 |
uFldX(i,j,k,bi,bj)=uFldX(i,j,k,bi,bj)*maskW(i,j,kk,bi,bj) |
178 |
vFldY(i,j,k,bi,bj)=vFldY(i,j,k,bi,bj)*maskS(i,j,kk,bi,bj) |
179 |
endif |
180 |
enddo |
181 |
enddo |
182 |
else |
183 |
C 2b) stay at A grid velocity points (i.e. at the C grid cell center) |
184 |
do j = 1,sny |
185 |
do i = 1,snx |
186 |
uFldX(i,j,k,bi,bj) = tmpU(i,j) |
187 |
vFldY(i,j,k,bi,bj) = tmpV(i,j) |
188 |
if (applyMask) then |
189 |
uFldX(i,j,k,bi,bj)=uFldX(i,j,k,bi,bj)*maskC(i,j,kk,bi,bj) |
190 |
vFldY(i,j,k,bi,bj)=vFldY(i,j,k,bi,bj)*maskC(i,j,kk,bi,bj) |
191 |
endif |
192 |
enddo |
193 |
enddo |
194 |
endif!if ( switchGrid ) then |
195 |
|
196 |
endif!if (xy2en) then |
197 |
|
198 |
enddo |
199 |
enddo |
200 |
enddo |
201 |
|
202 |
return |
203 |
end |
204 |
|
205 |
subroutine rotate_uv2en_rs( |
206 |
U uFldX, vFldY, |
207 |
U uFldE, vFldN, |
208 |
I xy2en, switchGrid, applyMask, kSize, mythid |
209 |
& ) |
210 |
|
211 |
c ================================================================== |
212 |
c SUBROUTINE rotate_uv2en_rs |
213 |
c ================================================================== |
214 |
c |
215 |
c o uFldX/vFldY are in the model grid directions. |
216 |
c o uFldE/vFldN are eastward/northward. |
217 |
c o This routine goes from uFldX/vFldY to uFldE/vFldN (for xy2en=.TRUE.) |
218 |
c or vice versa (for xy2en=.FALSE.). |
219 |
c o uFldX/vFldY may be at the C grid velocity points, or at the A grid |
220 |
c velocity points (i.e. the C grid cell center). uFldE/vFldN are always |
221 |
c at the cell center. If switchGrid=.TRUE. we go from C grid uFldX/vFldY |
222 |
c to A grid uFldE/vFldN, or vice versa. If switchGrid=.FALSE. we go |
223 |
c from A grid uFldX/vFldY to A grid uFldE/vFldN, or vice versa. |
224 |
c o If applyMask=.TRUE. then masks are applied to the output. |
225 |
c If kSize=1 (resp. nr) we then use the surface (resp. 3D) masks. |
226 |
c o In any case it is assumed that exchanges are done on the outside. |
227 |
c |
228 |
c ================================================================== |
229 |
c SUBROUTINE rotate_uv2en_rs |
230 |
c ================================================================== |
231 |
|
232 |
implicit none |
233 |
|
234 |
c == global variables == |
235 |
|
236 |
#include "EEPARAMS.h" |
237 |
#include "SIZE.h" |
238 |
#include "PARAMS.h" |
239 |
#include "GRID.h" |
240 |
|
241 |
c == routine arguments == |
242 |
|
243 |
integer kSize |
244 |
logical xy2en, switchGrid, applyMask |
245 |
_RS uFldX(1-olx:snx+olx,1-oly:sny+oly,kSize,nsx,nsy) |
246 |
_RS vFldY(1-olx:snx+olx,1-oly:sny+oly,kSize,nsx,nsy) |
247 |
_RS uFldE(1-olx:snx+olx,1-oly:sny+oly,kSize,nsx,nsy) |
248 |
_RS vFldN(1-olx:snx+olx,1-oly:sny+oly,kSize,nsx,nsy) |
249 |
|
250 |
integer mythid |
251 |
|
252 |
c == local variables == |
253 |
|
254 |
integer bi,bj |
255 |
integer i,j,k,kk |
256 |
_RS tmpU(1-olx:snx+olx,1-oly:sny+oly) |
257 |
_RS tmpV(1-olx:snx+olx,1-oly:sny+oly) |
258 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
259 |
|
260 |
c == end of interface == |
261 |
|
262 |
if ( (kSize.NE.1).AND.(kSize.NE.nr) |
263 |
& .AND.(applyMask) ) then |
264 |
WRITE(msgBuf,'(2A,I4,A)') ' ROTATE_UV2EN: ', |
265 |
& 'no mask has ',kSize,' levels' |
266 |
CALL PRINT_ERROR(msgBuf, myThid) |
267 |
STOP 'ABNROMAL END: S/R ROTATE_UV2EN' |
268 |
endif |
269 |
|
270 |
do bj = mybylo(mythid),mybyhi(mythid) |
271 |
do bi = mybxlo(mythid),mybxhi(mythid) |
272 |
do k = 1,kSize |
273 |
|
274 |
if ( (kSize.EQ.1).AND.(usingPCoords) ) then |
275 |
kk=nr |
276 |
else |
277 |
kk=k |
278 |
endif |
279 |
|
280 |
if ( xy2en ) then |
281 |
c go from uFldX/vFldY to uFldE/vFldN |
282 |
if ( switchGrid ) then |
283 |
C 1a) go from C grid velocity points to A grid velocity points |
284 |
do i = 1-olx,snx+olx |
285 |
tmpU(i,sny+Oly)=0. |
286 |
tmpV(i,sny+Oly)=0. |
287 |
enddo |
288 |
do j = 1-oly,sny+oly-1 |
289 |
tmpU(snx+Olx,j)=0. |
290 |
tmpV(snx+Olx,j)=0. |
291 |
do i = 1-olx,snx+olx-1 |
292 |
tmpU(i,j) = 0.5 _d 0 |
293 |
& *( uFldX(i+1,j,k,bi,bj) + uFldX(i,j,k,bi,bj) ) |
294 |
tmpV(i,j) = 0.5 _d 0 |
295 |
& *( vFldY(i,j+1,k,bi,bj) + vFldY(i,j,k,bi,bj) ) |
296 |
if (applyMask) then |
297 |
tmpU(i,j) = tmpU(i,j) * maskC(i,j,kk,bi,bj) |
298 |
tmpV(i,j) = tmpV(i,j) * maskC(i,j,kk,bi,bj) |
299 |
endif |
300 |
enddo |
301 |
enddo |
302 |
else |
303 |
C 1b) stay at A grid velocity points (i.e. at the C grid cell center) |
304 |
do j = 1-oly,sny+oly |
305 |
do i = 1-olx,snx+olx |
306 |
tmpU(i,j) = uFldX(i,j,k,bi,bj) |
307 |
tmpV(i,j) = vFldY(i,j,k,bi,bj) |
308 |
if (applyMask) then |
309 |
tmpU(i,j) = tmpU(i,j) * maskC(i,j,kk,bi,bj) |
310 |
tmpV(i,j) = tmpV(i,j) * maskC(i,j,kk,bi,bj) |
311 |
endif |
312 |
enddo |
313 |
enddo |
314 |
endif!if ( switchGrid ) then |
315 |
|
316 |
C 2) rotation |
317 |
do j = 1-oly,sny+oly |
318 |
do i = 1-olx,snx+olx |
319 |
uFldE(i,j,k,bi,bj) = |
320 |
& angleCosC(i,j,bi,bj)*tmpU(i,j) |
321 |
& -angleSinC(i,j,bi,bj)*tmpV(i,j) |
322 |
vFldN(i,j,k,bi,bj) = |
323 |
& angleSinC(i,j,bi,bj)*tmpU(i,j) |
324 |
& +angleCosC(i,j,bi,bj)*tmpV(i,j) |
325 |
enddo |
326 |
enddo |
327 |
|
328 |
else!if (xy2en) then |
329 |
c go from uFldE/vFldN to uFldX/vFldY |
330 |
|
331 |
C 1) rotation |
332 |
do j = 1-oly,sny+oly |
333 |
do i = 1-olx,snx+olx |
334 |
tmpU(i,j) = |
335 |
& angleCosC(i,j,bi,bj)*uFldE(i,j,k,bi,bj) |
336 |
& +angleSinC(i,j,bi,bj)*vFldN(i,j,k,bi,bj) |
337 |
tmpV(i,j) = |
338 |
& -angleSinC(i,j,bi,bj)*uFldE(i,j,k,bi,bj) |
339 |
& +angleCosC(i,j,bi,bj)*vFldN(i,j,k,bi,bj) |
340 |
enddo |
341 |
enddo |
342 |
|
343 |
if ( switchGrid ) then |
344 |
C 2a) go from A grid velocity points to C grid velocity points |
345 |
do i = 1-olx,snx+olx |
346 |
uFldX(i,1,k,bi,bj)=0. |
347 |
vFldY(i,1,k,bi,bj)=0. |
348 |
enddo |
349 |
do j = 1-oly+1,sny+oly |
350 |
uFldX(1,j,k,bi,bj)=0. |
351 |
vFldY(1,j,k,bi,bj)=0. |
352 |
do i = 1-olx+1,snx+olx |
353 |
uFldX(i,j,k,bi,bj) = 0.5 _d 0 |
354 |
& *( tmpU(i-1,j) + tmpU(i,j) ) |
355 |
vFldY(i,j,k,bi,bj) = 0.5 _d 0 |
356 |
& *( tmpV(i,j-1) + tmpV(i,j) ) |
357 |
if (applyMask) then |
358 |
uFldX(i,j,k,bi,bj)=uFldX(i,j,k,bi,bj)*maskW(i,j,kk,bi,bj) |
359 |
vFldY(i,j,k,bi,bj)=vFldY(i,j,k,bi,bj)*maskS(i,j,kk,bi,bj) |
360 |
endif |
361 |
enddo |
362 |
enddo |
363 |
else |
364 |
C 2b) stay at A grid velocity points (i.e. at the C grid cell center) |
365 |
do j = 1-oly,sny+oly |
366 |
do i = 1-olx,snx+olx |
367 |
uFldX(i,j,k,bi,bj) = tmpU(i,j) |
368 |
vFldY(i,j,k,bi,bj) = tmpV(i,j) |
369 |
if (applyMask) then |
370 |
uFldX(i,j,k,bi,bj)=uFldX(i,j,k,bi,bj)*maskC(i,j,kk,bi,bj) |
371 |
vFldY(i,j,k,bi,bj)=vFldY(i,j,k,bi,bj)*maskC(i,j,kk,bi,bj) |
372 |
endif |
373 |
enddo |
374 |
enddo |
375 |
endif!if ( switchGrid ) then |
376 |
|
377 |
endif!if (xy2en) then |
378 |
|
379 |
enddo |
380 |
enddo |
381 |
enddo |
382 |
|
383 |
return |
384 |
end |
385 |
|