1 |
gforget |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_budget_ice.F,v 1.3 2006/12/19 18:57:09 dimitri Exp $ |
2 |
|
|
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "SEAICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
CStartOfInterface |
7 |
|
|
SUBROUTINE SEAICE_BUDGET_ICE( |
8 |
|
|
I UG, HICE_ACTUAL, HSNOW_ACTUAL, |
9 |
|
|
U TSURF, |
10 |
|
|
O F_io_net,F_ia_net,F_ia, IcePenetratingShortwaveFlux, |
11 |
|
|
I bi, bj ) |
12 |
|
|
C /================================================================\ |
13 |
|
|
C | SUBROUTINE seaice_budget_ice | |
14 |
|
|
C | o Calculate ice growth rate, surface fluxes and temperature of | |
15 |
|
|
C | ice surface. | |
16 |
|
|
C | see Hibler, MWR, 108, 1943-1973, 1980 | |
17 |
|
|
C |================================================================| |
18 |
|
|
C \================================================================/ |
19 |
|
|
IMPLICIT NONE |
20 |
|
|
|
21 |
|
|
C === Global variables === |
22 |
|
|
#include "SIZE.h" |
23 |
|
|
#include "EEPARAMS.h" |
24 |
|
|
#include "FFIELDS.h" |
25 |
|
|
#include "SEAICE_PARAMS.h" |
26 |
|
|
#include "SEAICE_FFIELDS.h" |
27 |
|
|
#ifdef SEAICE_VARIABLE_FREEZING_POINT |
28 |
|
|
#include "DYNVARS.h" |
29 |
|
|
#endif /* SEAICE_VARIABLE_FREEZING_POINT */ |
30 |
|
|
|
31 |
|
|
C === Routine arguments === |
32 |
|
|
C INPUT: |
33 |
|
|
C UG :: thermal wind of atmosphere |
34 |
|
|
C TSURF :: surface temperature of ice in Kelvin, updated |
35 |
|
|
C HICE_ACTUAL :: (actual) ice thickness with upper and lower limit |
36 |
|
|
C HSNOW_ACTUAL :: actual snow thickness |
37 |
|
|
C bi,bj :: loop indices |
38 |
|
|
C OUTPUT: |
39 |
|
|
C netHeatFlux :: net heat flux under ice = growth rate |
40 |
|
|
C IcePenetratingShortwaveFlux :: short wave heat flux under ice |
41 |
|
|
_RL UG (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
42 |
|
|
_RL TSURF (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
43 |
|
|
_RL HICE_ACTUAL (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
44 |
|
|
_RL HSNOW_ACTUAL (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
45 |
|
|
|
46 |
|
|
_RL F_ia (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
47 |
|
|
_RL F_io_net (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
48 |
|
|
_RL F_ia_net (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
49 |
|
|
|
50 |
|
|
_RL F_swi (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
51 |
|
|
_RL F_lwd (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
52 |
|
|
_RL F_lwu (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
53 |
|
|
_RL F_lh (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
54 |
|
|
_RL F_sens (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
55 |
|
|
_RL F_c (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
56 |
|
|
_RL qhice_mm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
57 |
|
|
|
58 |
|
|
_RL IcePenetratingShortwaveFlux (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
59 |
|
|
_RL AbsorbedShortwaveFlux (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
60 |
|
|
_RL IcePenetratingShortwaveFluxFraction |
61 |
|
|
& (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
62 |
|
|
|
63 |
|
|
INTEGER bi, bj |
64 |
|
|
INTEGER KOPEN |
65 |
|
|
|
66 |
|
|
C === Local variables === |
67 |
|
|
C i,j - Loop counters |
68 |
|
|
INTEGER i, j |
69 |
|
|
INTEGER ITER |
70 |
|
|
_RL QS1, C1, C2, C3, C4, C5, TB, D1, D1I, D3,IAN1 |
71 |
|
|
_RL TMELT, TMELTP, XKI, XKS, HCUT, ASNOW, XIO |
72 |
|
|
C effective conductivity of combined ice and snow |
73 |
|
|
_RL effConduct |
74 |
|
|
C specific humidity at ice surface |
75 |
|
|
_RL mm_pi,mm_log10pi,dqhice_dTice |
76 |
|
|
|
77 |
|
|
C powers of temperature |
78 |
|
|
_RL t1, t2, t3, t4 |
79 |
|
|
|
80 |
|
|
C local copies of global variables |
81 |
|
|
_RL tsurfLoc (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
82 |
|
|
_RL atempLoc (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
83 |
|
|
_RL lwdownLoc (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
84 |
|
|
_RL ALB (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
85 |
|
|
_RL tsurfLocOld |
86 |
|
|
|
87 |
|
|
c Ian Saturation Vapor Pressure |
88 |
|
|
_RL aa1,aa2,bb1,bb2,Ppascals,cc0,cc1,cc2,cc3t,dFiDTs1 |
89 |
|
|
|
90 |
|
|
aa1 = 2663.5 |
91 |
|
|
aa2 = 12.537 |
92 |
|
|
bb1 = 0.622 |
93 |
|
|
bb2 = 1.0 - bb1 |
94 |
|
|
Ppascals = 1000.*100. |
95 |
|
|
cc0 = 10**aa2 |
96 |
|
|
cc1 = cc0*aa1*bb1*Ppascals*log(10.0) |
97 |
|
|
cc2 = cc0*bb2 |
98 |
|
|
|
99 |
|
|
C FREEZING TEMPERATURE OF SEAWATER |
100 |
|
|
TB=273.15 _d + 00 - 1.96 _d + 00 |
101 |
|
|
C SENSIBLE HEAT CONSTANT |
102 |
|
|
D1=SEAICE_sensHeat |
103 |
|
|
C ICE LATENT HEAT CONSTANT |
104 |
|
|
D1I=SEAICE_latentIce |
105 |
|
|
C STEFAN BOLTZMAN CONSTANT TIMES 0.97 EMISSIVITY |
106 |
|
|
D3=SEAICE_emissivity |
107 |
|
|
C MELTING TEMPERATURE OF ICE |
108 |
|
|
TMELT=273.15 _d +00 |
109 |
|
|
|
110 |
|
|
C ICE CONDUCTIVITY |
111 |
|
|
XKI=2.0340 |
112 |
|
|
C SNOW CONDUCTIVITY |
113 |
|
|
XKS=SEAICE_snowConduct |
114 |
|
|
C CUTOFF SNOW THICKNESS |
115 |
|
|
HCUT=SEAICE_snowThick |
116 |
|
|
C PENETRATION SHORTWAVE RADIATION FACTOR |
117 |
|
|
XIO=SEAICE_shortwave |
118 |
|
|
|
119 |
|
|
DO J=1,sNy |
120 |
|
|
DO I=1,sNx |
121 |
|
|
IcePenetratingShortwaveFlux (I,J) = 0. _d 0 |
122 |
|
|
IcePenetratingShortwaveFluxFraction (I,J) = 0. _d 0 |
123 |
|
|
AbsorbedShortwaveFlux (I,J) = 0. _d 0 |
124 |
|
|
|
125 |
|
|
qhice_mm (I,J) = 0.0 _d 0 |
126 |
|
|
F_ia (I,J) = 0.0 _d 0 |
127 |
|
|
F_io_net (I,J) = 0.0 _d 0 |
128 |
|
|
F_ia_net (I,J) = 0.0 _d 0 |
129 |
|
|
|
130 |
|
|
F_swi (I,J) = 0.0 _d 0 |
131 |
|
|
F_lwd (I,J) = 0.0 _d 0 |
132 |
|
|
F_lwu (I,J) = 0.0 _d 0 |
133 |
|
|
F_lh (I,J) = 0.0 _d 0 |
134 |
|
|
F_sens (I,J) = 0.0 _d 0 |
135 |
|
|
|
136 |
|
|
c set the surface temperature to zero if there is no ice there. |
137 |
|
|
IF (HICE_ACTUAL(I,J) .NE. 0.0) THEN |
138 |
|
|
tsurfLoc (I,J) = MIN(TMELT, TSURF(I,J,bi,bj)) |
139 |
|
|
ELSE |
140 |
|
|
tsurfLoc(I,J) = TMELT |
141 |
|
|
ENDIF |
142 |
|
|
|
143 |
|
|
TSURF(I,J,bi,bj) = tsurfLoc(I,J) |
144 |
|
|
|
145 |
|
|
atempLoc (I,J) = MAX(TMELT + MIN_ATEMP,ATEMP(I,J,bi,bj)) |
146 |
|
|
lwdownLoc(I,J) = LWDOWN(I,J,bi,bj) |
147 |
|
|
|
148 |
|
|
ENDDO |
149 |
|
|
ENDDO |
150 |
|
|
|
151 |
|
|
C COME HERE AT START OF ITERATION |
152 |
|
|
|
153 |
|
|
DO J=1,sNy |
154 |
|
|
DO I=1,sNx |
155 |
|
|
|
156 |
|
|
IF (HICE_ACTUAL(I,J) .NE. 0.0) THEN |
157 |
|
|
|
158 |
|
|
C DECIDE ON ALBEDO |
159 |
|
|
IF (tsurfLoc(I,J) .GE. TMELT) THEN |
160 |
|
|
IF (HSNOW_ACTUAL(I,J) .EQ. 0.0) THEN |
161 |
|
|
ALB(I,J) = SEAICE_wetIceAlb |
162 |
|
|
ELSE ! some snow |
163 |
|
|
ALB(I,J) = SEAICE_wetSnowAlb |
164 |
|
|
ENDIF |
165 |
|
|
ELSE ! no surface melting |
166 |
|
|
IF (HSNOW_ACTUAL(I,J) .EQ. 0.0) THEN |
167 |
|
|
ALB(I,J) = SEAICE_dryIceAlb |
168 |
|
|
ELSE ! some snow |
169 |
|
|
ALB(I,J) = SEAICE_drySnowAlb |
170 |
|
|
ENDIF |
171 |
|
|
ENDIF |
172 |
|
|
|
173 |
|
|
F_lwd(I,J) = - 0.97 _d 0 * lwdownLoc(I,J) |
174 |
|
|
|
175 |
|
|
IF (HSNOW_ACTUAL(I,J) .GT. 0.0) THEN |
176 |
|
|
IcePenetratingShortwaveFluxFraction(I,J) = ZERO |
177 |
|
|
ELSE |
178 |
|
|
IcePenetratingShortwaveFluxFraction(I,J) = |
179 |
|
|
& XIO*EXP(-1.5 _d 0 * HICE_ACTUAL(I,J)) |
180 |
|
|
ENDIF |
181 |
|
|
|
182 |
|
|
AbsorbedShortwaveFlux(I,J) = -(ONE - ALB(I,J))* |
183 |
|
|
& (1.0 - IcePenetratingShortwaveFluxFraction(I,J)) |
184 |
|
|
& *SWDOWN(I,J,bi,bj) |
185 |
|
|
|
186 |
|
|
IcePenetratingShortwaveFlux(I,J) = -(ONE - ALB(I,J))* |
187 |
|
|
& IcePenetratingShortwaveFluxFraction(I,J) |
188 |
|
|
& *SWDOWN(I,J,bi,bj) |
189 |
|
|
|
190 |
|
|
F_swi(I,J) = AbsorbedShortwaveFlux(I,J) |
191 |
|
|
|
192 |
|
|
c set a min ice as 5 cm to limit arbitrarily large conduction. |
193 |
|
|
HICE_ACTUAL(I,J) = max(HICE_ACTUAL(I,J),0.05) |
194 |
|
|
|
195 |
|
|
effConduct = XKI * XKS / |
196 |
|
|
& (XKS * HICE_ACTUAL(I,J) + XKI * HSNOW_ACTUAL(I,J)) |
197 |
|
|
|
198 |
|
|
DO ITER=1,IMAX_TICE |
199 |
|
|
|
200 |
|
|
t1 = tsurfLoc(I,J) |
201 |
|
|
t2 = t1*t1 |
202 |
|
|
t3 = t2*t1 |
203 |
|
|
t4 = t2*t2 |
204 |
|
|
|
205 |
|
|
tsurfLocOld = t1 |
206 |
|
|
|
207 |
|
|
c log 10 of the sat vap pressure |
208 |
|
|
mm_log10pi = -aa1 / t1 + aa2 |
209 |
|
|
c saturation vapor pressure |
210 |
|
|
mm_pi = 10**(mm_log10pi) |
211 |
|
|
c over ice specific humidity |
212 |
|
|
qhice_mm(I,J) = bb1*mm_pi / (Ppascals - (1.0 - bb1) * mm_pi) |
213 |
|
|
|
214 |
|
|
c constant for sat vap pressure derivative w.r.t tice |
215 |
|
|
cc3t = 10**(aa1 / t1) |
216 |
|
|
c the actual derivative |
217 |
|
|
dqhice_dTice = cc1 * cc3t /( (cc2-cc3t*Ppascals)**2 * t2) |
218 |
|
|
|
219 |
|
|
c the full derivative |
220 |
|
|
dFiDTs1 = 4.0 * D3*t3 + effConduct + D1*UG(I,J) + |
221 |
|
|
& D1I*UG(I,J)*dqhice_dTice |
222 |
|
|
|
223 |
|
|
|
224 |
|
|
F_lh(I,J) = D1I * UG(I,J) * (qhice_mm(I,J)-AQH(I,J,bi,bj)) |
225 |
|
|
F_c(I,J) = -effConduct * (TB - t1) |
226 |
|
|
F_lwu(I,J) = t4 * D3 |
227 |
|
|
F_sens(I,J) = D1 * UG(I,J) * (t1 - atempLoc(I,J)) |
228 |
|
|
|
229 |
|
|
F_ia(I,J) = F_lwd(I,J) + F_swi(I,J) + F_lwu(I,J) + |
230 |
|
|
& F_c(I,J) + F_sens(I,J) + F_lh(I,J) |
231 |
|
|
|
232 |
|
|
tsurfLoc(I,J) = tsurfLoc(I,J) - F_ia(I,J) / dFiDTs1 |
233 |
|
|
|
234 |
|
|
#ifdef SEAICE_DEBUG |
235 |
|
|
print *,'ice-iter tsurfLc,|dif|', I,J, ITER,tsurfLoc(I,J), |
236 |
|
|
& log10(abs(tsurfLoc(I,J) - tsurfLocOld)) |
237 |
|
|
#endif |
238 |
|
|
ENDDO !/* Iterations */ |
239 |
|
|
|
240 |
|
|
tsurfLoc(I,J) = MIN(tsurfLoc(I,J),TMELT) |
241 |
|
|
TSURF(I,J,bi,bj) = tsurfLoc(I,J) |
242 |
|
|
|
243 |
|
|
t1 = tsurfLoc(I,J) |
244 |
|
|
t2 = t1*t1 |
245 |
|
|
t3 = t2*t1 |
246 |
|
|
t4 = t2*t2 |
247 |
|
|
|
248 |
|
|
c log 10 of the sat vap pressure |
249 |
|
|
mm_log10pi = -aa1 / t1 + aa2 |
250 |
|
|
c saturation vapor pressure |
251 |
|
|
mm_pi = 10**(mm_log10pi) |
252 |
|
|
c over ice specific humidity |
253 |
|
|
qhice_mm(I,J) = bb1*mm_pi / (Ppascals - (1.0 - bb1) * mm_pi) |
254 |
|
|
|
255 |
|
|
F_lh(I,J) = D1I * UG(I,J) * (qhice_mm(I,J)-AQH(I,J,bi,bj)) |
256 |
|
|
F_c(I,J) = -effConduct * (TB - t1) |
257 |
|
|
F_lwu(I,J) = t4 * D3 |
258 |
|
|
F_sens(I,J) = D1 * UG(I,J) * (t1 - atempLoc(I,J)) |
259 |
|
|
|
260 |
|
|
c exlude conductive flux, the actual flux with the atmosphere. |
261 |
|
|
F_ia(I,J) = F_lwd(I,J) + F_swi(I,J) + F_lwu(I,J) + |
262 |
|
|
& F_sens(I,J) + F_lh(I,J) |
263 |
|
|
|
264 |
|
|
IF (F_c(I,J) .LT. 0.0) THEN |
265 |
|
|
F_io_net(I,J) = -F_c(I,J) |
266 |
|
|
F_ia_net(I,J) = 0.0 |
267 |
|
|
ELSE |
268 |
|
|
F_io_net(I,J) = 0.0 |
269 |
|
|
F_ia_net(I,J) = F_lwd(I,J) + F_swi(I,J) + F_lwu(I,J) + |
270 |
|
|
& F_sens(I,J) + F_lh(I,J) |
271 |
|
|
ENDIF !/* conductive fluxes up or down */ |
272 |
|
|
|
273 |
|
|
|
274 |
|
|
#ifdef SEAICE_DEBUG |
275 |
|
|
print '(A,2i4,3(1x,1P2E15.3))', |
276 |
|
|
& 'ibi i j T(SURF, surfLoc,atmos)',I,J, |
277 |
|
|
& TSURF(I,J,bi,bj), tsurfLoc(I,J),atempLoc(I,J) |
278 |
|
|
|
279 |
|
|
print '(A,2i4,3(1x,1P2E15.3))', |
280 |
|
|
& 'ibi i j QSW(Tot, Abs, Pen) ',I,J, |
281 |
|
|
& SWDOWN(I,J,bi,bj), AbsorbedShortwaveFlux(I,J), |
282 |
|
|
& IcePenetratingShortwaveFlux(I,J) |
283 |
|
|
|
284 |
|
|
print '(A,2i4,3(1x,1P2E15.3))', |
285 |
|
|
& 'ibi i j IcePenSWFluxFrac, Alb ',I,J, |
286 |
|
|
^ IcePenetratingShortwaveFluxFraction(I,J), ALB(I,J) |
287 |
|
|
|
288 |
|
|
print '(A,2i4,3(1x,1P2E15.3))', |
289 |
|
|
& 'ibi i j qh(ATM ICE) ',I,J, |
290 |
|
|
& AQH(I,J,bi,bj),qhice_mm(I,J) |
291 |
|
|
|
292 |
|
|
print '(A,2i4,3(1x,1P2E15.3))', |
293 |
|
|
& 'ibi i j F(lwd,swi,lwu) ',I,J, |
294 |
|
|
& F_lwd(I,J), F_swi(I,J), F_lwu(I,J) |
295 |
|
|
|
296 |
|
|
print '(A,2i4,3(1x,1P2E15.3))', |
297 |
|
|
& 'ibi i j F(c,lh,sens) ',I,J, |
298 |
|
|
& F_c(I,J), F_lh(I,J), F_sens(I,J) |
299 |
|
|
|
300 |
|
|
print '(A,2i4,3(1x,1P2E15.3))', |
301 |
|
|
& 'ibi i j F(io_net,ia_net,ia) ',I,J, |
302 |
|
|
& F_io_net(I,J), F_ia_net(I,J), F_ia(I,J) |
303 |
|
|
#endif |
304 |
|
|
|
305 |
|
|
ENDIF !/* HICE_ACTUAL > 0 */ |
306 |
|
|
|
307 |
|
|
ENDDO !/* i */ |
308 |
|
|
ENDDO !/* j */ |
309 |
|
|
|
310 |
|
|
RETURN |
311 |
|
|
END |