1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_init_varia.F,v 1.6 2007/04/27 15:50:14 jmc Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SEAICE_OPTIONS.h" |
5 |
|
6 |
CStartOfInterface |
7 |
SUBROUTINE SEAICE_INIT_VARIA( myThid ) |
8 |
C /==========================================================\ |
9 |
C | SUBROUTINE SEAICE_INIT_VARIA | |
10 |
C | o Initialization of sea ice model. | |
11 |
C |==========================================================| |
12 |
C \==========================================================/ |
13 |
IMPLICIT NONE |
14 |
|
15 |
C === Global variables === |
16 |
#include "SIZE.h" |
17 |
#include "EEPARAMS.h" |
18 |
#include "PARAMS.h" |
19 |
#include "GRID.h" |
20 |
#include "SEAICE.h" |
21 |
CML#include "SEAICE_GRID.h" |
22 |
#include "SEAICE_DIAGS.h" |
23 |
#include "SEAICE_PARAMS.h" |
24 |
#include "FFIELDS.h" |
25 |
#ifdef ALLOW_EXCH2 |
26 |
#include "W2_EXCH2_TOPOLOGY.h" |
27 |
#include "W2_EXCH2_PARAMS.h" |
28 |
#endif /* ALLOW_EXCH2 */ |
29 |
|
30 |
C === Routine arguments === |
31 |
C myThid - Thread no. that called this routine. |
32 |
INTEGER myThid |
33 |
CEndOfInterface |
34 |
|
35 |
C === Local variables === |
36 |
C i,j,k,bi,bj - Loop counters |
37 |
|
38 |
INTEGER i, j, k, bi, bj |
39 |
_RS mask_uice |
40 |
INTEGER myIter, myTile |
41 |
cif( Helper variable for determining the fraction of sw radiation |
42 |
cif( penetrating the model's shallowest layer |
43 |
_RL swfracba(two) |
44 |
_RL FACTORM,dummyTime |
45 |
INTEGER IMAX |
46 |
|
47 |
IMAX = 2 |
48 |
FACTORM = -1.0 |
49 |
dummyTime = 1.0 |
50 |
|
51 |
swfracba(1) = abs(rF(1)) |
52 |
swfracba(2) = abs(rF(2)) |
53 |
CALL SWFRAC( |
54 |
I IMAX,FACTORM, |
55 |
I dummyTime,myThid, |
56 |
U swfracba) |
57 |
|
58 |
SWFRACB = swfracba(2) |
59 |
|
60 |
cph( |
61 |
cph make sure TAF sees proper initialisation |
62 |
cph to avoid partial recomputation issues |
63 |
DO bj=myByLo(myThid),myByHi(myThid) |
64 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
65 |
c |
66 |
DO K=1,3 |
67 |
DO J=1-OLy,sNy+OLy |
68 |
DO I=1-OLx,sNx+OLx |
69 |
HEFF(I,J,k,bi,bj)=ZERO |
70 |
AREA(I,J,k,bi,bj)=ZERO |
71 |
UICE(I,J,k,bi,bj)=ZERO |
72 |
VICE(I,J,k,bi,bj)=ZERO |
73 |
ENDDO |
74 |
ENDDO |
75 |
ENDDO |
76 |
c |
77 |
DO J=1-OLy,sNy+OLy |
78 |
DO I=1-OLx,sNx+OLx |
79 |
HSNOW(I,J,bi,bj)=ZERO |
80 |
ZETA(I,J,bi,bj)=ZERO |
81 |
ENDDO |
82 |
ENDDO |
83 |
c |
84 |
ENDDO |
85 |
ENDDO |
86 |
cph) |
87 |
|
88 |
C-- Initialize grid info |
89 |
DO bj=myByLo(myThid),myByHi(myThid) |
90 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
91 |
DO j=1-OLy,sNy+OLy |
92 |
DO i=1-OLx,sNx+OLx |
93 |
HEFFM(i,j,bi,bj)=ONE |
94 |
IF (_hFacC(i,j,1,bi,bj).eq.0.) HEFFM(i,j,bi,bj)=ZERO |
95 |
ENDDO |
96 |
ENDDO |
97 |
DO J=1-OLy+1,sNy+OLy |
98 |
DO I=1-OLx+1,sNx+OLx |
99 |
#ifndef SEAICE_CGRID |
100 |
UVM(i,j,bi,bj)=ZERO |
101 |
mask_uice=HEFFM(I,J, bi,bj)+HEFFM(I-1,J-1,bi,bj) |
102 |
& +HEFFM(I,J-1,bi,bj)+HEFFM(I-1,J, bi,bj) |
103 |
IF(mask_uice.GT.3.5) UVM(I,J,bi,bj)=ONE |
104 |
#else |
105 |
seaiceMaskU(I,J,bi,bj)= 0.0 _d 0 |
106 |
seaiceMaskV(I,J,bi,bj)= 0.0 _d 0 |
107 |
mask_uice=HEFFM(I,J,bi,bj)+HEFFM(I-1,J ,bi,bj) |
108 |
IF(mask_uice.GT.1.5) seaiceMaskU(I,J,bi,bj)=ONE |
109 |
mask_uice=HEFFM(I,J,bi,bj)+HEFFM(I ,J-1,bi,bj) |
110 |
IF(mask_uice.GT.1.5) seaiceMaskV(I,J,bi,bj)=ONE |
111 |
#endif /* not SEAICE_CGRID */ |
112 |
ENDDO |
113 |
ENDDO |
114 |
|
115 |
#ifdef ALLOW_EXCH2 |
116 |
#ifdef SEAICE_CGRID |
117 |
#else |
118 |
C-- Special stuff for cubed sphere: assume grid is rectangular and |
119 |
C set UV mask to zero except for Arctic and Antarctic cube faces. |
120 |
IF (useCubedSphereExchange) THEN |
121 |
myTile = W2_myTileList(bi) |
122 |
IF ( exch2_myFace(myTile) .EQ. 1 .OR. |
123 |
& exch2_myFace(myTile) .EQ. 2 .OR. |
124 |
& exch2_myFace(myTile) .EQ. 4 .OR. |
125 |
& exch2_myFace(myTile) .EQ. 5 ) THEN |
126 |
DO J=1-OLy,sNy+OLy |
127 |
DO I=1-OLx,sNx+OLx |
128 |
UVM(i,j,bi,bj)=ZERO |
129 |
ENDDO |
130 |
ENDDO |
131 |
ELSEIF ( exch2_isWedge(myTile) .EQ. 1 ) THEN |
132 |
I=1 |
133 |
DO J=1-OLy,sNy+OLy |
134 |
UVM(i,j,bi,bj)=ZERO |
135 |
ENDDO |
136 |
ELSEIF ( exch2_isSedge(myTile) .EQ. 1 ) THEN |
137 |
J=1 |
138 |
DO I=1-OLx,sNx+OLx |
139 |
UVM(i,j,bi,bj)=ZERO |
140 |
ENDDO |
141 |
ENDIF |
142 |
ENDIF |
143 |
#endif |
144 |
#endif /* ALLOW_EXCH2 */ |
145 |
|
146 |
DO j=1-OLy,sNy+OLy |
147 |
DO i=1-OLx,sNx+OLx |
148 |
TICE(I,J,bi,bj)=273.0 _d 0 |
149 |
#ifdef SEAICE_MULTICATEGORY |
150 |
DO k=1,MULTDIM |
151 |
TICES(I,J,k,bi,bj)=273.0 _d 0 |
152 |
ENDDO |
153 |
#endif /* SEAICE_MULTICATEGORY */ |
154 |
UICEC (I,J,bi,bj)=ZERO |
155 |
VICEC (I,J,bi,bj)=ZERO |
156 |
DWATN (I,J,bi,bj)=ZERO |
157 |
#ifndef SEAICE_CGRID |
158 |
DAIRN (I,J,bi,bj)=ZERO |
159 |
AMASS (I,J,bi,bj)=1000.0 _d 0 |
160 |
#else |
161 |
seaiceMassC(I,J,bi,bj)=1000.0 _d 0 |
162 |
seaiceMassU(I,J,bi,bj)=1000.0 _d 0 |
163 |
seaiceMassV(I,J,bi,bj)=1000.0 _d 0 |
164 |
#endif |
165 |
GWATX (I,J,bi,bj)=ZERO |
166 |
GWATY (I,J,bi,bj)=ZERO |
167 |
ENDDO |
168 |
ENDDO |
169 |
|
170 |
C-- Choose a proxy level for geostrophic velocity, |
171 |
DO j=1-OLy,sNy+OLy |
172 |
DO i=1-OLx,sNx+OLx |
173 |
#ifdef SEAICE_TEST_ICE_STRESS_1 |
174 |
KGEO(I,J,bi,bj) = 1 |
175 |
#else /* SEAICE_TEST_ICE_STRESS_1 */ |
176 |
IF (klowc(i,j,bi,bj) .LT. 2) THEN |
177 |
KGEO(I,J,bi,bj) = 1 |
178 |
ELSE |
179 |
KGEO(I,J,bi,bj) = 2 |
180 |
DO WHILE ( abs(rC(KGEO(I,J,bi,bj))) .LT. 50.0 .AND. |
181 |
& KGEO(I,J,bi,bj) .LT. (klowc(i,j,bi,bj)-1) ) |
182 |
KGEO(I,J,bi,bj) = KGEO(I,J,bi,bj) + 1 |
183 |
ENDDO |
184 |
ENDIF |
185 |
#endif /* SEAICE_TEST_ICE_STRESS_1 */ |
186 |
ENDDO |
187 |
ENDDO |
188 |
|
189 |
ENDDO |
190 |
ENDDO |
191 |
|
192 |
C-- Update overlap regions |
193 |
#ifdef SEAICE_CGRID |
194 |
CALL EXCH_UV_XY_RL(seaiceMaskU,seaiceMaskV,.FALSE.,myThid) |
195 |
#else |
196 |
_EXCH_XY_R8(UVM, myThid) |
197 |
#endif |
198 |
|
199 |
C-- Now lets look at all these beasts |
200 |
IF ( debugLevel .GE. debLevB ) THEN |
201 |
myIter=0 |
202 |
CALL PLOT_FIELD_XYRL( HEFFM , 'Current HEFFM ' , |
203 |
& myIter, myThid ) |
204 |
#ifdef SEAICE_CGRID |
205 |
CALL PLOT_FIELD_XYRL( seaiceMaskU, 'Current seaiceMaskU', |
206 |
& myIter, myThid ) |
207 |
CALL PLOT_FIELD_XYRL( seaiceMaskV, 'Current seaiceMaskV', |
208 |
& myIter, myThid ) |
209 |
#else |
210 |
CALL PLOT_FIELD_XYRL( UVM , 'Current UVM ' , |
211 |
& myIter, myThid ) |
212 |
#endif |
213 |
ENDIF |
214 |
|
215 |
#if (defined (SEAICE_CGRID) && defined (SEAICE_ALLOW_EVP)) |
216 |
DO bj=myByLo(myThid),myByHi(myThid) |
217 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
218 |
DO j=1-OLy,sNy+OLy |
219 |
DO i=1-OLx,sNx+OLx |
220 |
stressDivergenceX(I,J,bi,bj) = 0. _d 0 |
221 |
stressDivergenceY(I,J,bi,bj) = 0. _d 0 |
222 |
seaice_sigma1 (I,J,bi,bj) = 0. _d 0 |
223 |
seaice_sigma2 (I,J,bi,bj) = 0. _d 0 |
224 |
seaice_sigma12(I,J,bi,bj) = 0. _d 0 |
225 |
ENDDO |
226 |
ENDDO |
227 |
ENDDO |
228 |
ENDDO |
229 |
#endif /* SEAICE_ALLOW_EVP and SEAICE_CGRID */ |
230 |
|
231 |
C-- Set model variables to initial/restart conditions |
232 |
IF ( nIter0 .NE. 0 ) THEN |
233 |
|
234 |
CALL SEAICE_READ_PICKUP ( myThid ) |
235 |
|
236 |
ELSE |
237 |
|
238 |
DO bj=myByLo(myThid),myByHi(myThid) |
239 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
240 |
DO j=1-OLy,sNy+OLy |
241 |
DO i=1-OLx,sNx+OLx |
242 |
HSNOW(I,J,bi,bj)=0.2*HEFFM(i,j,bi,bj) |
243 |
YNEG(I,J,bi,bj)=ZERO |
244 |
TMIX(I,J,bi,bj)=TICE(I,J,bi,bj) |
245 |
DO k=1,3 |
246 |
HEFF(I,J,k,bi,bj)=SEAICE_initialHEFF*HEFFM(i,j,bi,bj) |
247 |
UICE(I,J,k,bi,bj)=ZERO |
248 |
VICE(I,J,k,bi,bj)=ZERO |
249 |
ENDDO |
250 |
ENDDO |
251 |
ENDDO |
252 |
ENDDO |
253 |
ENDDO |
254 |
|
255 |
C-- Read initial sea-ice thickness from file if available. |
256 |
IF ( HeffFile .NE. ' ' ) THEN |
257 |
_BEGIN_MASTER( myThid ) |
258 |
CALL READ_FLD_XY_RL( HeffFile, ' ', ZETA, 0, myThid ) |
259 |
_END_MASTER(myThid) |
260 |
_EXCH_XY_R8(ZETA,myThid) |
261 |
DO bj=myByLo(myThid),myByHi(myThid) |
262 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
263 |
DO j=1-OLy,sNy+OLy |
264 |
DO i=1-OLx,sNx+OLx |
265 |
DO k=1,3 |
266 |
HEFF(I,J,k,bi,bj) = MAX(ZETA(i,j,bi,bj),ZERO) |
267 |
ENDDO |
268 |
ENDDO |
269 |
ENDDO |
270 |
ENDDO |
271 |
ENDDO |
272 |
ENDIF |
273 |
|
274 |
DO bj=myByLo(myThid),myByHi(myThid) |
275 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
276 |
DO j=1-OLy,sNy+OLy |
277 |
DO i=1-OLx,sNx+OLx |
278 |
DO k=1,3 |
279 |
IF(HEFF(I,J,k,bi,bj).GT.ZERO) THEN |
280 |
AREA(I,J,k,bi,bj)=ONE |
281 |
ELSE |
282 |
HSNOW(I,J,bi,bj)=ZERO |
283 |
ENDIF |
284 |
ENDDO |
285 |
ENDDO |
286 |
ENDDO |
287 |
ENDDO |
288 |
ENDDO |
289 |
|
290 |
ENDIF |
291 |
|
292 |
C--- Complete initialization |
293 |
DO bj=myByLo(myThid),myByHi(myThid) |
294 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
295 |
DO j=1-OLy,sNy+OLy |
296 |
DO i=1-OLx,sNx+OLx |
297 |
ZETA(I,J,bi,bj)=HEFF(I,J,1,bi,bj)*(1.0 _d 11) |
298 |
ETA(I,J,bi,bj)=ZETA(I,J,bi,bj)/4.0 _d 0 |
299 |
ENDDO |
300 |
ENDDO |
301 |
IF ( useRealFreshWaterFlux .AND. .NOT.useThSIce ) THEN |
302 |
DO j=1-OLy,sNy+OLy |
303 |
DO i=1-OLx,sNx+OLx |
304 |
sIceLoad(i,j,bi,bj) = HEFF(I,J,1,bi,bj)*SEAICE_rhoIce |
305 |
& + HSNOW(I,J,bi,bj)* 330. _d 0 |
306 |
|
307 |
ENDDO |
308 |
ENDDO |
309 |
ENDIF |
310 |
ENDDO |
311 |
ENDDO |
312 |
|
313 |
RETURN |
314 |
END |