1 |
jscott |
1.1 |
#include "ctrparam.h" |
2 |
|
|
|
3 |
|
|
! ============================================================ |
4 |
|
|
! |
5 |
|
|
! CHEMDIFF.F: Subroutine for calculating horizontal |
6 |
|
|
! diffusion of MIT Global Chemistry Model |
7 |
|
|
! |
8 |
|
|
! ------------------------------------------------------------ |
9 |
|
|
! |
10 |
|
|
! Author: Chien Wang |
11 |
|
|
! MIT Joint Program on Science and Policy |
12 |
|
|
! of Global Change |
13 |
|
|
! |
14 |
|
|
! ---------------------------------------------------------- |
15 |
|
|
! |
16 |
|
|
! Revision History: |
17 |
|
|
! |
18 |
|
|
! When Who What |
19 |
|
|
! ---- ---------- ------- |
20 |
|
|
! 013096 Chien Wang rev. |
21 |
|
|
! 080100 Chien Wang repack based on CliChem3 & add cpp |
22 |
|
|
! 051804 Chien Wang rev. |
23 |
|
|
! |
24 |
|
|
! ========================================================== |
25 |
|
|
|
26 |
|
|
Subroutine chemdiff(ifdiff,x00,x11,dta) |
27 |
|
|
|
28 |
|
|
#include "chem_para" |
29 |
|
|
#include "chem_com" |
30 |
|
|
#include "BD2G04.COM" |
31 |
|
|
|
32 |
|
|
dimension x00 (nlon,nlat,nlev) |
33 |
|
|
dimension x11 (nlon,nlat,nlev) |
34 |
|
|
|
35 |
|
|
dimension dcdy(nlat,nlev) |
36 |
|
|
|
37 |
|
|
#if ( defined CPL_CHEM ) |
38 |
|
|
|
39 |
|
|
c------------------------------------------------------- |
40 |
|
|
c Definitions of parameters: |
41 |
|
|
c |
42 |
|
|
istart=1 |
43 |
|
|
iend =nlon |
44 |
|
|
|
45 |
|
|
c |
46 |
|
|
c 013096 |
47 |
|
|
c fktdif span from 2.e6 in the first three years to |
48 |
|
|
c 5.e5 or 1.e6 in twenty years and maintain this value |
49 |
|
|
c thereafter: |
50 |
|
|
c |
51 |
|
|
c xxx = float(myyear - 3)/20.0 |
52 |
|
|
c xxx = amin1(1.0,amax1(0.0,xxx)) |
53 |
|
|
c fktdif = (20.0 - xxx * 10.0)*1.e5 ! m2/s |
54 |
|
|
|
55 |
|
|
c fktdif = 4.e6 !m2/s |
56 |
|
|
|
57 |
|
|
c if(ifdiff.eq.1)then |
58 |
|
|
c fktdif = 2.e6 |
59 |
|
|
c else if(ifdiff.eq.2)then |
60 |
|
|
c fktdif = 3.e6 |
61 |
|
|
c endif |
62 |
|
|
|
63 |
|
|
c 111596: |
64 |
|
|
c fktdif = float(ifdiff)*1.e6 |
65 |
|
|
fktdif = float(ifdiff)*1.e5 |
66 |
|
|
|
67 |
|
|
c===== |
68 |
|
|
c Calculate dcdy: |
69 |
|
|
c |
70 |
|
|
do i=istart,iend |
71 |
|
|
do j=2,nlat |
72 |
|
|
do k=1,nlev |
73 |
|
|
dcdy(j,k)=(x11(i,j,k)-x11(i,j-1,k)) |
74 |
|
|
& /dyv(j) |
75 |
|
|
end do |
76 |
|
|
end do |
77 |
|
|
end do |
78 |
|
|
|
79 |
|
|
c===== |
80 |
|
|
c Calculate meridional eddy diffusion: |
81 |
|
|
c |
82 |
|
|
do k=1,nlev |
83 |
|
|
paver = 0.5*(p00(1,1)+p00(1,2)) |
84 |
|
|
fluxl =-fktdif |
85 |
|
|
& /dyv(2)*dcdy(2,k)*dta |
86 |
|
|
& * paver |
87 |
|
|
fluxl=max(-0.5*x00(1,2,k), min(0.5*x00(1,1,k),fluxl)) |
88 |
|
|
do j=2,nlat1 |
89 |
|
|
paver = 0.5*(p00(1,j)+p00(1,j+1)) |
90 |
|
|
fluxr =-fktdif |
91 |
|
|
& /dyv(j+1)*dcdy(j+1,k)*dta |
92 |
|
|
& * paver |
93 |
|
|
fluxr=max(-0.5*x00(1,j+1,k),min(0.5*x00(1,j,k),fluxr)) |
94 |
|
|
x00(1,j,k)=x00(1,j,k)-(fluxr-fluxl) |
95 |
|
|
fluxl=fluxr |
96 |
|
|
end do |
97 |
|
|
end do |
98 |
|
|
|
99 |
|
|
c call chemcheck(x00) |
100 |
|
|
|
101 |
|
|
#endif |
102 |
|
|
|
103 |
|
|
return |
104 |
|
|
end |
105 |
|
|
|