1 |
#include "ctrparam.h" |
2 |
|
3 |
! ============================================================ |
4 |
! |
5 |
! CHEMDIFF.F: Subroutine for calculating horizontal |
6 |
! diffusion of MIT Global Chemistry Model |
7 |
! |
8 |
! ------------------------------------------------------------ |
9 |
! |
10 |
! Author: Chien Wang |
11 |
! MIT Joint Program on Science and Policy |
12 |
! of Global Change |
13 |
! |
14 |
! ---------------------------------------------------------- |
15 |
! |
16 |
! Revision History: |
17 |
! |
18 |
! When Who What |
19 |
! ---- ---------- ------- |
20 |
! 013096 Chien Wang rev. |
21 |
! 080100 Chien Wang repack based on CliChem3 & add cpp |
22 |
! 051804 Chien Wang rev. |
23 |
! |
24 |
! ========================================================== |
25 |
|
26 |
Subroutine chemdiff(ifdiff,x00,x11,dta) |
27 |
|
28 |
#include "chem_para" |
29 |
#include "chem_com" |
30 |
#include "BD2G04.COM" |
31 |
|
32 |
dimension x00 (nlon,nlat,nlev) |
33 |
dimension x11 (nlon,nlat,nlev) |
34 |
|
35 |
dimension dcdy(nlat,nlev) |
36 |
|
37 |
#if ( defined CPL_CHEM ) |
38 |
|
39 |
c------------------------------------------------------- |
40 |
c Definitions of parameters: |
41 |
c |
42 |
istart=1 |
43 |
iend =nlon |
44 |
|
45 |
c |
46 |
c 013096 |
47 |
c fktdif span from 2.e6 in the first three years to |
48 |
c 5.e5 or 1.e6 in twenty years and maintain this value |
49 |
c thereafter: |
50 |
c |
51 |
c xxx = float(myyear - 3)/20.0 |
52 |
c xxx = amin1(1.0,amax1(0.0,xxx)) |
53 |
c fktdif = (20.0 - xxx * 10.0)*1.e5 ! m2/s |
54 |
|
55 |
c fktdif = 4.e6 !m2/s |
56 |
|
57 |
c if(ifdiff.eq.1)then |
58 |
c fktdif = 2.e6 |
59 |
c else if(ifdiff.eq.2)then |
60 |
c fktdif = 3.e6 |
61 |
c endif |
62 |
|
63 |
c 111596: |
64 |
c fktdif = float(ifdiff)*1.e6 |
65 |
fktdif = float(ifdiff)*1.e5 |
66 |
|
67 |
c===== |
68 |
c Calculate dcdy: |
69 |
c |
70 |
do i=istart,iend |
71 |
do j=2,nlat |
72 |
do k=1,nlev |
73 |
dcdy(j,k)=(x11(i,j,k)-x11(i,j-1,k)) |
74 |
& /dyv(j) |
75 |
end do |
76 |
end do |
77 |
end do |
78 |
|
79 |
c===== |
80 |
c Calculate meridional eddy diffusion: |
81 |
c |
82 |
do k=1,nlev |
83 |
paver = 0.5*(p00(1,1)+p00(1,2)) |
84 |
fluxl =-fktdif |
85 |
& /dyv(2)*dcdy(2,k)*dta |
86 |
& * paver |
87 |
fluxl=max(-0.5*x00(1,2,k), min(0.5*x00(1,1,k),fluxl)) |
88 |
do j=2,nlat1 |
89 |
paver = 0.5*(p00(1,j)+p00(1,j+1)) |
90 |
fluxr =-fktdif |
91 |
& /dyv(j+1)*dcdy(j+1,k)*dta |
92 |
& * paver |
93 |
fluxr=max(-0.5*x00(1,j+1,k),min(0.5*x00(1,j,k),fluxr)) |
94 |
x00(1,j,k)=x00(1,j,k)-(fluxr-fluxl) |
95 |
fluxl=fluxr |
96 |
end do |
97 |
end do |
98 |
|
99 |
c call chemcheck(x00) |
100 |
|
101 |
#endif |
102 |
|
103 |
return |
104 |
end |
105 |
|