1 |
jscott |
1.1 |
|
2 |
|
|
#include "ctrparam.h" |
3 |
|
|
|
4 |
|
|
! ============================================================ |
5 |
|
|
! |
6 |
|
|
! CHEMEDDY.F: Subroutine for calculating zonal-average eddy |
7 |
|
|
! diffusion of MIT Global Chemistry Model |
8 |
|
|
! |
9 |
|
|
! ------------------------------------------------------------ |
10 |
|
|
! |
11 |
|
|
! Author: Chien Wang |
12 |
|
|
! MIT Joint Program on Science and Policy |
13 |
|
|
! of Global Change |
14 |
|
|
! |
15 |
|
|
! ---------------------------------------------------------- |
16 |
|
|
! |
17 |
|
|
! Revision History: |
18 |
|
|
! |
19 |
|
|
! When Who What |
20 |
|
|
! ---- ---------- ------- |
21 |
|
|
! 013096 Chien Wang rev. |
22 |
|
|
! 080100 Chien Wang repack based on CliChem3 & add cpp |
23 |
|
|
! 051804 Chien Wang rev. for 46x11 |
24 |
|
|
! |
25 |
|
|
! ========================================================== |
26 |
|
|
|
27 |
|
|
Subroutine chemeddy(ifdiff,x00,x11,dta) |
28 |
|
|
|
29 |
|
|
#include "chem_para" |
30 |
|
|
#include "chem_com" |
31 |
|
|
#include "BD2G04.COM" |
32 |
|
|
|
33 |
|
|
dimension x00 (nlon,nlat,nlev) |
34 |
|
|
dimension x11 (nlon,nlat,nlev) |
35 |
|
|
|
36 |
|
|
dimension vc (nlat,nlev) |
37 |
|
|
dimension beta5(nlat) |
38 |
|
|
|
39 |
|
|
dimension dcdy(nlat,nlev) |
40 |
|
|
dimension dcdz(nlat,nlev) |
41 |
|
|
dimension dcdc(nlat,nlev) |
42 |
|
|
|
43 |
|
|
! ---------------------------------------------------------- |
44 |
|
|
|
45 |
|
|
#if ( defined CPL_CHEM ) |
46 |
|
|
|
47 |
|
|
c------------------------------------------------------- |
48 |
|
|
c Definitions of parameters: |
49 |
|
|
c |
50 |
|
|
|
51 |
|
|
istart=1 |
52 |
|
|
iend =nlon |
53 |
|
|
|
54 |
|
|
beta5(1)=0.0 |
55 |
|
|
do j=2,nlat1 |
56 |
|
|
beta5(j)=0.573*sqrt(beta2(j))/(1.-0.427*beta2(j)**0.302) |
57 |
|
|
end do |
58 |
|
|
beta5(nlat)=0.0 |
59 |
|
|
|
60 |
|
|
c===== |
61 |
|
|
c Calculate dcdy and dcdz: |
62 |
|
|
c |
63 |
|
|
do 5 i=istart,iend |
64 |
|
|
do 5 j=2,nlat |
65 |
|
|
do 5 k=1,nlev |
66 |
|
|
dcdy(j,k)=(x11(i,j,k)-x11(i,j-1,k))/dyv(j) |
67 |
|
|
5 continue |
68 |
|
|
|
69 |
|
|
do 6 i=istart,iend |
70 |
|
|
do 6 j=1,nlat |
71 |
|
|
do 6 k=1,nlev1 |
72 |
|
|
dcdz(j,k)=-(x11(i,j,k+1)-x11(i,j,k))*deltap(j,k) |
73 |
|
|
6 continue |
74 |
|
|
|
75 |
|
|
do 61 i=istart,iend |
76 |
|
|
do 61 j=1,nlat |
77 |
|
|
do 62 k=2,nlev |
78 |
|
|
dcdz(j,k)=dcdz(j,k-1)*dp2dz(j,k-1) |
79 |
|
|
62 continue |
80 |
|
|
dcdz(j,1)=dcdz(j,2) |
81 |
|
|
61 continue |
82 |
|
|
|
83 |
|
|
do 7 j=2,nlat1 |
84 |
|
|
do 7 k=2,nlev1 |
85 |
|
|
dcdc(j,k)=dcdz(j,k)*4.0 |
86 |
|
|
& /(dcdy(j,k) +dcdy(j+1,k) |
87 |
|
|
& +dcdy(j,k+1)+dcdy(j+1,k+1)+1.e-20) |
88 |
|
|
7 continue |
89 |
|
|
|
90 |
|
|
do 8 j=2,nlat1 |
91 |
|
|
alamor =beta5(j)/beta2(j) |
92 |
|
|
alamor2 =alamor /beta2(j) |
93 |
|
|
oneoalam1=1./(1.+beta5(j)) |
94 |
|
|
do 8 k=2,nlev1 |
95 |
|
|
dcdc(j,k)=oneoalam1*beta1(j)*beta3(j,k) |
96 |
|
|
& *(1.0+alamor |
97 |
|
|
& +beta3(j,k)*0.25*beta1(j)*dcdc(j,k) |
98 |
|
|
& *(1.+alamor2)) |
99 |
|
|
8 continue |
100 |
|
|
|
101 |
|
|
c===== |
102 |
|
|
c Calculate meridional eddy diffusion: |
103 |
|
|
c |
104 |
|
|
do 10 k=1,nlev |
105 |
|
|
paver = 0.5*(p00(1,1)+p00(1,2)) |
106 |
|
|
fluxl =-fkt(2,k) |
107 |
|
|
& /dyv(2)*dcdy(2,k)*dta |
108 |
|
|
& * paver |
109 |
|
|
fluxl=max(-0.5*x00(1,2,k),min(0.5*x00(1,1, k),fluxl)) |
110 |
|
|
vc(2,k)=fluxl/(paver+1.e-20) |
111 |
|
|
do 11 j=2,nlat1 |
112 |
|
|
paver = 0.5*(p00(1,j)+p00(1,j+1)) |
113 |
|
|
fluxr =-fkt(j+1,k) |
114 |
|
|
& /dyv(j+1)*dcdy(j+1,k)*dta |
115 |
|
|
& * paver |
116 |
|
|
fluxr=max(-0.5*x00(1,j+1,k),min(0.5*x00(1,j,k),fluxr)) |
117 |
|
|
vc (j+1,k)=fluxr/(paver+1.e-20) |
118 |
|
|
x00(1,j,k)=x00(1,j,k)-(fluxr-fluxl) |
119 |
|
|
fluxl=fluxr |
120 |
|
|
11 continue |
121 |
|
|
10 continue |
122 |
|
|
|
123 |
|
|
c===== |
124 |
|
|
c Calculate vertical eddy diffusion: |
125 |
|
|
c |
126 |
|
|
c 112696 changed also in eddypa.f for beta4 |
127 |
|
|
c |
128 |
|
|
do 12 j=2,nlat1 |
129 |
|
|
fluxb=0.0 |
130 |
|
|
do 14 k=1,n_tropopause ! ktrop = 7 for both 9 and 11 layer model |
131 |
|
|
fluxt=0.25*(vc(j,k)+vc(j,k+1)+vc(j+1,k)+vc(j+1,k+1)) |
132 |
|
|
& *dcdc(j,k+1) |
133 |
|
|
& *beta4(j,k+1) |
134 |
|
|
& *p00(1,j) |
135 |
|
|
|
136 |
|
|
c fluxt=max(-0.5*x00(1,j,k) *dsig(k), |
137 |
|
|
c & min( 0.5*x00(1,j,k+1)*dsig(k+1),fluxt)) |
138 |
|
|
c if(fluxt*dcdz(j,k+1).lt.0.0) fluxt=0.0 |
139 |
|
|
c x00(1,j,k)=x00(1,j,k)+(fluxt-fluxb)/dsig(k) |
140 |
|
|
|
141 |
|
|
fluxt=max(-0.5*x00(1,j,k+1)*dsig(k+1), |
142 |
|
|
& min( 0.5*x00(1,j,k) *dsig(k),fluxt)) |
143 |
|
|
if(fluxt*dcdz(j,k+1).gt.0.0) fluxt=0.0 |
144 |
|
|
x00(1,j,k)=x00(1,j,k)-(fluxt-fluxb)/dsig(k) |
145 |
|
|
fluxb=fluxt |
146 |
|
|
14 continue |
147 |
|
|
12 continue |
148 |
|
|
|
149 |
|
|
c write(6,*)"FKT = " |
150 |
|
|
c write(6,*)fkt |
151 |
|
|
c write(6,*)"VC = " |
152 |
|
|
c write(6,*)vc |
153 |
|
|
c write(6,*)"DCDY = " |
154 |
|
|
c write(6,*)dcdy |
155 |
|
|
c |
156 |
|
|
c 040895 test: |
157 |
|
|
c |
158 |
|
|
|
159 |
|
|
1996 continue |
160 |
|
|
|
161 |
|
|
c ====== |
162 |
|
|
c 013096 |
163 |
|
|
c Apply horizontal diffussion to some tracers |
164 |
|
|
c to reduce initialization errors in the |
165 |
|
|
c global distribution: |
166 |
|
|
c |
167 |
|
|
if(ifdiff.ne.0) call chemdiff(ifdiff,x00,x11,dta) |
168 |
|
|
|
169 |
|
|
call chemcheck(x00) |
170 |
|
|
|
171 |
|
|
#endif |
172 |
|
|
|
173 |
|
|
return |
174 |
|
|
end |
175 |
|
|
|