1 |
|
2 |
#include "ctrparam.h" |
3 |
|
4 |
! ============================================================ |
5 |
! |
6 |
! PDADV.F: Subroutines of Modified Bott advection scheme |
7 |
! |
8 |
! ------------------------------------------------------------ |
9 |
! |
10 |
! Author: Chien Wang |
11 |
! MIT Joint Program on Science and Policy |
12 |
! of Global Change |
13 |
! |
14 |
! ---------------------------------------------------------- |
15 |
! |
16 |
! Revision History: |
17 |
! |
18 |
! When Who What |
19 |
! ---- ---------- ------- |
20 |
! 080200 Chien Wang repack based on CliChem3 & add cpp |
21 |
! |
22 |
! ========================================================== |
23 |
|
24 |
C ************************************** |
25 |
C ************************************** |
26 |
SUBROUTINE pdadv1(C,W4,W2,W1,N) |
27 |
C ************************************** |
28 |
C ************************************** |
29 |
C |
30 |
C ****************************************************************** |
31 |
C |
32 |
C This is a subroutine for the first part of Bott's advection scheme. |
33 |
C |
34 |
C Andreas Bott 1989: A Positive Definite Advection scheme obtained |
35 |
C by Nonlinear Renormalization of the advective fluxes |
36 |
C Mon. Wea. Rev. 117 1006-15 |
37 |
C |
38 |
C Fourth Order: with coefficients from Mon. Wea. Rev. 117 2633-36 |
39 |
C |
40 |
C Input: C=U*DT/DX[N+1] Output: W4[3:N1,5],W2[2;3;n1;n,3] and |
41 |
C W1[1;2;n;n+1,2] |
42 |
C On the Staggered Grid: C(i')----Q(i)----C(i'+1) |
43 |
C |
44 |
C ****************************************************************** |
45 |
|
46 |
PARAMETER ( C0=1.0/1920.0,C1=1.0/384.00,C2=1.0/384.0 |
47 |
& , C3=1.0/768.00,C4=1.0/3840.0,EP=1.0E-15 ) |
48 |
c parameter (cc0=1.,cc1=1./16.,cc2=1./48.) |
49 |
parameter (cc0=-1./24.,cc1=1./16.,cc2=1./48.) |
50 |
c parameter (cc0=-1./24.,cc1=1./16.,cc2=1./16.) |
51 |
|
52 |
DIMENSION C(N+1),W4(N,5),W2(N,3),W1(4,2) |
53 |
|
54 |
! ----------------------------------------------------------- |
55 |
|
56 |
#if ( defined CPL_CHEM ) |
57 |
|
58 |
n1=n-1 |
59 |
n2=n-2 |
60 |
n3=n-3 |
61 |
|
62 |
do 1 i=1,n |
63 |
do 2 j=1,5 |
64 |
w4(i,j)=0.0 |
65 |
2 continue |
66 |
do 3 j=1,3 |
67 |
w2(i,j)=0.0 |
68 |
3 continue |
69 |
1 continue |
70 |
|
71 |
C |
72 |
C GET THE COEFFICIENTS DEPENDENT ON C ONLY |
73 |
C |
74 |
w1(1,1)=abs(c(1)) |
75 |
w1(1,2)=0.0 |
76 |
w1(2,1)=abs(c(2)) |
77 |
w1(2,2)=2.0*w1(2,1)*(1.-w1(2,1)) |
78 |
w1(3,1)=abs(c(n)) |
79 |
w1(3,2)=2.0*w1(3,1)*(1.-w1(3,1)) |
80 |
w1(4,1)=abs(c(n+1)) |
81 |
w1(4,2)=0.0 |
82 |
|
83 |
rr1=abs(c(2)) |
84 |
rr2=1.-(rr1+rr1) |
85 |
r1=rr2**2 |
86 |
r2=r1*rr2 |
87 |
w2(2,1)=rr1*cc0 |
88 |
w2(2,2)=(1.-r1)*cc1 |
89 |
w2(2,3)=(1.-r2)*cc2 |
90 |
|
91 |
rr1=abs(c(3)) |
92 |
rr2=1.-(rr1+rr1) |
93 |
r1=rr2**2 |
94 |
r2=r1*rr2 |
95 |
w2(3,1)=rr1*cc0 |
96 |
w2(3,2)=(1.-r1)*cc1 |
97 |
w2(3,3)=(1.-r2)*cc2 |
98 |
|
99 |
rr1=abs(c(4)) |
100 |
rr2=1.-(rr1+rr1) |
101 |
r1=rr2**2 |
102 |
r2=r1*rr2 |
103 |
w2(4,1)=rr1*cc0 |
104 |
w2(4,2)=(1.-r1)*cc1 |
105 |
w2(4,3)=(1.-r2)*cc2 |
106 |
|
107 |
rr1=abs(c(n2)) |
108 |
rr2=1.-(rr1+rr1) |
109 |
r1=rr2**2 |
110 |
r2=r1*rr2 |
111 |
w2(n2,1)=rr1*cc0 |
112 |
w2(n2,2)=(1.-r1)*cc1 |
113 |
w2(n2,3)=(1.-r2)*cc2 |
114 |
|
115 |
rr1=abs(c(n1)) |
116 |
rr2=1.-(rr1+rr1) |
117 |
r1=rr2**2 |
118 |
r2=r1*rr2 |
119 |
w2(n1,1)=rr1*cc0 |
120 |
w2(n1,2)=(1.-r1)*cc1 |
121 |
w2(n1,3)=(1.-r2)*cc2 |
122 |
|
123 |
rr1=abs(c(n)) |
124 |
rr2=1.-(rr1+rr1) |
125 |
r1=rr2**2 |
126 |
r2=r1*rr2 |
127 |
w2(n,1)=rr1*cc0 |
128 |
w2(n,2)=(1.-r1)*cc1 |
129 |
w2(n,3)=(1.-r2)*cc2 |
130 |
|
131 |
DO 100 I = 3 ,N1 |
132 |
|
133 |
rr1 = ABS( C(I) ) |
134 |
rr2 = 1.0 - (rr1+rr1) |
135 |
R1 = Rr2*Rr2 |
136 |
R2 = R1*Rr2 |
137 |
R3 = R2*Rr2 |
138 |
R4 = R3*Rr2 |
139 |
|
140 |
W4(I,1) = rr1 *C0 |
141 |
W4(I,2) = (1.0-R1)*C1 |
142 |
W4(I,3) = (1.0-R2)*C2 |
143 |
W4(I,4) = (1.0-R3)*C3 |
144 |
W4(I,5) = (1.0-R4)*C4 |
145 |
|
146 |
100 CONTINUE |
147 |
C |
148 |
|
149 |
#endif |
150 |
|
151 |
return |
152 |
end |
153 |
|
154 |
|
155 |
C ************************************** |
156 |
C ************************************** |
157 |
SUBROUTINE pdadv2(C,Q,W4,W2,W1,ww,ww2,N,NOOS) |
158 |
C ************************************** |
159 |
C ************************************** |
160 |
C |
161 |
C ************************************************************* |
162 |
C |
163 |
C This is a subroutine for the second part of Bott's advection |
164 |
C scheme. |
165 |
C |
166 |
C Andreas Bott 1989: A Positive Definite Advection scheme obtained |
167 |
C by Nonlinear Renormalization of the advective fluxes |
168 |
C Mon. Wea. Rev. 117 1006-15 |
169 |
C |
170 |
C Fourth Order: with coefficients from Mon. Wea. Rev. 117 2633-36 |
171 |
C |
172 |
C Input: C=U*DT/DX[N+1] & Q[N] Output: Q[2 N-1] |
173 |
C On the Staggered Grid: C(i')----Q(i)----C(i'+1) |
174 |
C |
175 |
C NOSS = 1: Perform non-oscillatory option |
176 |
C |
177 |
PARAMETER ( C0=1.0/1920.0,C1=1.0/384.00,C2=1.0/384.0 |
178 |
& , C3=1.0/768.00,C4=1.0/3840.0,EP=1.0E-15 ) |
179 |
c parameter ( cc0=1.,cc1=1./16.,cc2=1./24.) |
180 |
parameter ( cc0=-1./24.,cc1=1./16.,cc2=1./24.) |
181 |
c parameter ( cc0=-1./24.,cc1=1./16.,cc2=1./16.) |
182 |
|
183 |
DIMENSION C(N+1),Q(N),W4(n,5),w2(n,3),w1(4,2), |
184 |
& ww(n+1,5),ww2(n+1,5) |
185 |
C |
186 |
|
187 |
! -------------------------------------------------------- |
188 |
|
189 |
#if ( defined CPL_CHEM ) |
190 |
|
191 |
N1 = N-1 |
192 |
N2 = N-2 |
193 |
N3 = N-3 |
194 |
|
195 |
do 1 i=1,(n+1)*5 |
196 |
ww (i,1)=0.0 |
197 |
ww2(i,1)=0.0 |
198 |
1 continue |
199 |
|
200 |
C |
201 |
C FOR ANY POSITIVE-DEFINITE Q ADVECTION |
202 |
C |
203 |
C 1. First order scheme for i=2 and n: |
204 |
|
205 |
a0=q(1) |
206 |
a1=q(2)-q(1) |
207 |
ww(1,1)=a0 |
208 |
ww(1,2)=a0*w1(1,1) |
209 |
ww(2,3)=a0*w1(2,1)+a1*w1(2,2) |
210 |
|
211 |
a0=q(n) |
212 |
a1=q(n)-q(n1) |
213 |
ww(n,1)=a0 |
214 |
ww(n,2)=a0*w1(3,1)-a1*w1(3,2) |
215 |
ww(n+1,3)=a0*w1(4,1) |
216 |
|
217 |
C 2. Second order scheme for i=2,3,n1,n: |
218 |
|
219 |
ww2(1,1)=ww(1,1) |
220 |
ww2(1,2)=ww(1,2) |
221 |
ww2(2,3)=ww(2,3) |
222 |
|
223 |
a0=q(3)-26.*q(2)+q(1) |
224 |
a1=q(3)-q(1) |
225 |
a2=q(3)-2.*q(2)+q(1) |
226 |
ww2(2,1)=cc0*a0+cc2*a2 |
227 |
ww2(2,2)=a0*w2(2,1)-a1*w2(2,2)+a2*w2(2,3) |
228 |
ww2(3,3)=a0*w2(3,1)+a1*w2(3,2)+a2*w2(3,3) |
229 |
|
230 |
a0=q(4)-26.*q(3)+q(2) |
231 |
a1=q(4)-q(2) |
232 |
a2=q(4)-2.*q(3)+q(2) |
233 |
ww2(3,1)=cc0*a0+cc2*a2 |
234 |
ww2(3,2)=a0*w2(3,1)-a1*w2(3,2)+a2*w2(3,3) |
235 |
ww2(4,3)=a0*w2(4,1)+a1*w2(4,2)+a2*w2(4,3) |
236 |
|
237 |
a0=q(n1)-26.*q(n2)+q(n3) |
238 |
a1=q(n1)-q(n3) |
239 |
a2=q(n1)-2.0*q(n2)+q(n3) |
240 |
ww2(n2,1)=cc0*a0+cc2*a2 |
241 |
ww2(n2,2)=a0*w2(n2,1)-a1*w2(n2,2)+a2*w2(n2,3) |
242 |
ww2(n1,3)=a0*w2(n1,1)+a1*w2(n1,2)+a2*w2(n1,3) |
243 |
|
244 |
a0=q(n)-26.*q(n1)+q(n2) |
245 |
a1=q(n)-q(n2) |
246 |
a2=q(n)-2.*q(n1)+q(n2) |
247 |
ww2(n1,1)=cc0*a0+cc2*a2 |
248 |
ww2(n1,2)=a0*w2(n1,1)-a1*w2(n1,2)+a2*w2(n1,3) |
249 |
ww2(n,3) =a0*w2( n,1)+a1*w2( n,2)+a2*w2( n,3) |
250 |
|
251 |
ww2(n,1) =ww(n,1) |
252 |
ww2(n,2) =ww(n,2) |
253 |
ww2(n+1,3)=ww(n+1,3) |
254 |
|
255 |
C 3. Fourth order scheme for i=3,n1: |
256 |
|
257 |
ww(2,1)=ww2(2,1) |
258 |
ww(2,2)=ww2(2,2) |
259 |
ww(3,3)=ww2(3,3) |
260 |
|
261 |
ww(n1,1)=ww2(n1,1) |
262 |
ww(n1,2)=ww2(n1,2) |
263 |
ww(n, 3)=ww2(n, 3) |
264 |
|
265 |
DO 200 I = 3 ,N2 |
266 |
QL2 = Q(I-2) |
267 |
QL1 = Q(I-1) |
268 |
Q00 = Q(I) |
269 |
QR1 = Q(I+1) |
270 |
QR2 = Q(I+2) |
271 |
QP1 = QR1+QL1 |
272 |
QP2 = QR2+QL2 |
273 |
QM1 = QR1-QL1 |
274 |
QM2 = QR2-QL2 |
275 |
C COEFFICIENTS: AREA PRESERVING FLUX FORM |
276 |
A0 = 9.0*QP2 - 116.0*QP1 + 2134.0*Q00 |
277 |
A1 =-5.0*QM2 + 34.0*QM1 |
278 |
A2 = -QP2 + 12.0*QP1 - 22.0*Q00 |
279 |
A3 = QM2 - 2.0*QM1 |
280 |
A4 = QP2 - 4.0*QP1 + 6.0*Q00 |
281 |
C INTEGRALS: FOR THE USE OF IN/OUT FLUX OF THE GRID |
282 |
ww(I,1) = C0*(A0+10.0*A2+A4) |
283 |
c ww(I,1) = Q00 |
284 |
ww(I,2) = A0*W4(I,1)-A1*W4(I,2)+A2*W4(I,3) |
285 |
& - A3*W4(I,4)+A4*W4(I,5) |
286 |
ww(I+1,3) = A0*W4(I+1,1)+A1*W4(I+1,2)+A2*W4(I+1,3) |
287 |
& +A3*W4(I+1,4)+A4*W4(I+1,5) |
288 |
200 CONTINUE |
289 |
C |
290 |
C RESTRICT THE INTEGRALS TO PRESERVE THE SIGN |
291 |
C |
292 |
I = 1 |
293 |
IF( C(I).GT.0.0 ) THEN |
294 |
ww(I,2) = 0.0 |
295 |
ELSE IF( C(I).LT.0.0 ) THEN |
296 |
ww(I,2) = max( 0.0 , ww(I,2) ) |
297 |
ENDIF |
298 |
DO 210 I = 2 ,N |
299 |
IF( C(I).GT.0.0 ) THEN |
300 |
ww(I,2) = 0.0 |
301 |
ww(I,3) = max( 0.0 , ww(I,3) ) |
302 |
ww2(i,2)= 0.0 |
303 |
ww2(i,3)= max( 0.0, ww2(i,3)) |
304 |
ELSE IF( C(I).LT.0.0 ) THEN |
305 |
ww(I,2) = max( 0.0 , ww(I,2) ) |
306 |
ww(I,3) = 0.0 |
307 |
ww2(i,2)= max( 0.0, ww2(i,2) ) |
308 |
ww2(i,3)= 0.0 |
309 |
ENDIF |
310 |
210 CONTINUE |
311 |
I = N+1 |
312 |
IF( C(I).GT.0.0 ) THEN |
313 |
ww(I,3) = max( 0.0 , ww(I,3) ) |
314 |
ELSE IF( C(I).LT.0.0 ) THEN |
315 |
ww(I,3) = 0.0 |
316 |
ENDIF |
317 |
DO 220 I = 1 ,N |
318 |
ww(I,1) = max( ww(I,2)+ww(I+1,3)+EP , ww(I,1) ) |
319 |
ww2(i,1) = max(ww2(i,2)+ww2(i+1,3)+ep,ww2(i,1)) |
320 |
220 CONTINUE |
321 |
C |
322 |
C GET THE WEIGHTING FACTOR |
323 |
C |
324 |
DO 230 I = 1 ,N |
325 |
ww(I,1) = Q(I) / ww(I,1) |
326 |
ww2(i,1) = q(i) /ww2(i,1) |
327 |
230 CONTINUE |
328 |
C <= ww(I,2) |
329 |
C GET THE IN/OUT FLUX OF THE GRID I --- I+1/2 |
330 |
C ww(I,3) => |
331 |
DO 250 I = 1 ,N+1 |
332 |
if(i.ne.n+1) ww(I,2) = ww(I,2)*ww(I,1) |
333 |
if(i.ne.1) ww(I,3) = ww(I,3)*ww(I-1,1) |
334 |
if(i.ne.n+1) ww2(i,2) = ww2(i,2)*ww2(i,1) |
335 |
if(i.ne.1) ww2(i,3) = ww2(i,3)*ww2(i-1,1) |
336 |
250 CONTINUE |
337 |
C |
338 |
IF( NOOS.NE.1 ) THEN |
339 |
C COMPUTE THE TOTAL ADVECTION TENDENCY |
340 |
|
341 |
c DO 300 I = 2 ,N1 |
342 |
q(2) =ww2(3,2)-ww2(3,3)-ww2(2,2) +ww2(2,3) |
343 |
q(n1)=ww2(n,2)-ww2(n,3)-ww2(n1,2)+ww2(n1,3) |
344 |
DO 300 I = 3 ,N2 |
345 |
c q(i) = ww(i+1,2)-ww(i+1,3)-ww(i,2)+ww(i,3) !tendency |
346 |
q(i) = ww(i+1,2)-ww(i+1,3)-ww(i,2)+ww(i,3)+q(i) !value |
347 |
300 CONTINUE |
348 |
C |
349 |
ELSE |
350 |
C |
351 |
C NON-OSCILLATORY OPTION: FCT LIMITER |
352 |
C P.K.Smolarkiewicz & W.W.Grabowski, 1990: The multidimensional |
353 |
C positive definite advection transport algorithm: Nonoscillatory |
354 |
C option, J. Comput. Phys., 86, 355-375 |
355 |
C |
356 |
C GET THE DONOR-CELL FLUXES (Low-order) |
357 |
|
358 |
DO 400 I = 2 ,N |
359 |
IF( C(I).GT.0.0 ) THEN |
360 |
ww(I,1) = Q(I-1) |
361 |
ELSE |
362 |
ww(I,1) =-Q(I) |
363 |
ENDIF |
364 |
400 CONTINUE |
365 |
|
366 |
c ww(1,1)=max(-q(1)*c(1),0.0) |
367 |
ww(1,1)=abs(q(1)*c(1)) |
368 |
if(c(1).gt.0.0)then |
369 |
ww(1,4)=0.0 |
370 |
ww(1,5)=ww(1,1) |
371 |
else |
372 |
ww(1,4)=ww(1,1) |
373 |
ww(1,5)=0.0 |
374 |
endif |
375 |
|
376 |
DO 405 I = 2 ,N |
377 |
ww(I,1) = ww(I,1) * C(I) |
378 |
ww(I,4) = 0.0 |
379 |
ww(I,5) = 0.0 |
380 |
405 CONTINUE |
381 |
|
382 |
c ww(n+1,1)=max(q(n)*c(n+1),0.0) |
383 |
ww(n+1,1)=abs(q(n)*c(n+1)) |
384 |
if(c(n+1).gt.0.0)then |
385 |
ww(n+1,4)=0.0 |
386 |
ww(n+1,5)=ww(n+1,1) |
387 |
else |
388 |
ww(n+1,4)=ww(n+1,1) |
389 |
ww(n+1,5)=0.0 |
390 |
endif |
391 |
|
392 |
DO 410 I = 2 ,N |
393 |
IF( C(I).GT.0.0 ) THEN |
394 |
ww(I,5)= ww(I,1) |
395 |
ELSE |
396 |
ww(I,4) = ww(I,1) |
397 |
ENDIF |
398 |
410 CONTINUE |
399 |
|
400 |
DO 415 I = 1 ,N |
401 |
ww(I,1) = ww(I+1,4) - ww(I+1,5) - ww(I,4) + ww(I,5) |
402 |
415 CONTINUE |
403 |
|
404 |
DO 420 I = 1 ,N |
405 |
ww(I,1) = ww(I,1) + Q(I) |
406 |
c ww(I,1) = ww(I,1) |
407 |
420 CONTINUE |
408 |
|
409 |
C GET THE A-FLUX = F(High-order)-F(Low-order) |
410 |
DO 430 I = 1 ,N |
411 |
ww(I,4) = ww(I,2) - ww(I,4) |
412 |
ww(I,5) = ww(I,3) - ww(I,5) |
413 |
430 CONTINUE |
414 |
DO 435 I = 1 ,N |
415 |
ww(I,2) = max( 0.0,ww(I,4) ) - min(0.0, ww(I,5) ) |
416 |
ww(I,3) = max( 0.0,ww(I,5) ) - min(0.0, ww(I,4) ) |
417 |
435 CONTINUE |
418 |
|
419 |
ww(1,4)=min(ww(1,1),ww(2,1),q(1),q(2)) |
420 |
ww(1,5)=max(ww(1,1),ww(2,1),q(1),q(2)) |
421 |
DO 440 I = 2 ,N1 |
422 |
J = I-1 |
423 |
K = I+1 |
424 |
ww(I,4) = min(ww(J,1),ww(I,1),ww(K,1),Q(J),Q(I),Q(K)) |
425 |
ww(I,5) = max(ww(J,1),ww(I,1),ww(K,1),Q(J),Q(I),Q(K)) |
426 |
440 CONTINUE |
427 |
ww(n,4)=min(ww(n1,1),ww(n,1),q(n1),q(n)) |
428 |
ww(n,5)=max(ww(n1,1),ww(n,1),q(n1),q(n)) |
429 |
|
430 |
DO 450 I = 1 ,N |
431 |
ww(I,4) =(ww(I,1)-ww(I,4)) / (ww(I,2)+ww(I+1,3)+EP) |
432 |
ww(I,5) =(ww(I,5)-ww(I,1)) / (ww(I,3)+ww(I+1,2)+EP) |
433 |
Q(I) = ww(I,01) |
434 |
450 CONTINUE |
435 |
|
436 |
DO 460 I = 2 ,N |
437 |
ww(I,1) = min( 1.0,ww(I-1,5),ww(I,4) ) |
438 |
460 CONTINUE |
439 |
DO 465 I = 2 ,N |
440 |
ww(I,2) = ww(I,2) * ww(I,1) |
441 |
465 CONTINUE |
442 |
DO 470 I = 2 ,N |
443 |
ww(I,1) = min( 1.0,ww(I-1,4),ww(I,5) ) |
444 |
470 CONTINUE |
445 |
DO 475 I = 2 ,N |
446 |
ww(I,3) = ww(I,3) * ww(I,1) |
447 |
475 CONTINUE |
448 |
C COMPUTE THE HIGH-ORDER ADVECTION TENDENCY |
449 |
DO 500 I = 2 ,N1 |
450 |
ww(I,1) = ww(I+1,2)-ww(I+1,3)-ww(I,2)+ww(I,3) |
451 |
500 CONTINUE |
452 |
C |
453 |
C COMPUTE THE TOTAL ADVECTION TENDENCY |
454 |
C |
455 |
DO 600 I = 2 ,N1 |
456 |
c q(i) = ww(i,1) !tendency |
457 |
q(i) = ww(i,1)+q(i) !value |
458 |
600 CONTINUE |
459 |
|
460 |
ENDIF |
461 |
|
462 |
#endif |
463 |
|
464 |
RETURN |
465 |
END |
466 |
|