1 |
|
2 |
#include "ctrparam.h" |
3 |
|
4 |
! ============================================================ |
5 |
! |
6 |
! CHEMSHAP2D.F: A revised version of SHAP2D.F which is a |
7 |
! subroutine for applying Shapiro (2d) |
8 |
! smoothing of MIT Global Chemistry Model |
9 |
! |
10 |
! ------------------------------------------------------------ |
11 |
! |
12 |
! Author: Chien Wang |
13 |
! MIT Joint Program on Science and Policy |
14 |
! of Global Change |
15 |
! |
16 |
! ---------------------------------------------------------- |
17 |
! |
18 |
! Revision History: |
19 |
! |
20 |
! When Who What |
21 |
! ---- ---------- ------- |
22 |
! 080494 Chien Wang rev. |
23 |
! 080200 Chien Wang repack based on CliChem3 & add cpp |
24 |
! |
25 |
! ========================================================== |
26 |
|
27 |
subroutine chemshap2d (MFILTR,NORDER,XXX,IM,JM,J1,ITYPE) 8590. |
28 |
|
29 |
COMMON/WORK2/X1JI(72,46),X2JI(72,46),X3JI(72,46),X1(72),X2(72), |
30 |
* X3(72),X4(72),XM1(72),XJMP1(72) |
31 |
|
32 |
! ---------------------------------------------------------- |
33 |
|
34 |
#if ( defined CPL_CHEM ) |
35 |
|
36 |
C VARIABLE ITYPE DETERMINES TYPE OF BOUNDARY CONDITIONS |
37 |
C ITYPE=1 FOR PS,T AND Q ( XM1=X2) |
38 |
C ITYPE=2 FOR U (XM1=X1) |
39 |
C ITYPE=3 FOR V (XM1=-X1) |
40 |
|
41 |
JMM1=JM-1 |
42 |
J2=J1+1 |
43 |
IMBY2=1 |
44 |
DO 145 N=1,NORDER |
45 |
|
46 |
DO 146 K=1,IM |
47 |
X1(K)=X1JI(K,J1) |
48 |
X2(K)=X1JI(K,J2) |
49 |
X3(K)=X1JI(K,JMM1) |
50 |
X4(K)=X1JI(K,JM) |
51 |
IF(ITYPE.EQ.1)THEN |
52 |
XM1(K)=X1JI(K,J2) |
53 |
XJMP1(K)=X1JI(K,JMM1) |
54 |
ELSEIF(ITYPE.EQ.2)THEN |
55 |
XM1(K)=X1JI(K,J1) |
56 |
XJMP1(K)=X1JI(K,JM) |
57 |
ELSE |
58 |
XM1(K)=-X1JI(K,J1) |
59 |
XJMP1(K)=-X1JI(K,JM) |
60 |
ENDIF |
61 |
146 CONTINUE |
62 |
|
63 |
DO 142 I=1,IM |
64 |
X1IM1=X1JI(I,J1) |
65 |
DO 142 J=J2,JMM1 |
66 |
X1I=X1JI(I,J) |
67 |
X1JI(I,J)=X1IM1-X1I-X1I+X1JI(I,J+1) |
68 |
X1IM1=X1I |
69 |
142 CONTINUE |
70 |
|
71 |
SUM1=0. |
72 |
SUMJM=0. |
73 |
DO 144 K=1,IMBY2 |
74 |
ccc SUM1 =SUM1 +X2(K)-X1(K)-X1(K)+X2(K) |
75 |
SUM1 =SUM1 +XM1(K)-X1(K)-X1(K)+X2(K) |
76 |
ccc SUMJM=SUMJM+X3(K)-X4(K)-X4(K)+X3(K) |
77 |
SUMJM=SUMJM+X3(K)-X4(K)-X4(K)+XJMP1(K) |
78 |
144 CONTINUE |
79 |
|
80 |
X1SUM =SUM1 /IMBY2 |
81 |
XJMSUM =SUMJM/IMBY2 |
82 |
c DO 147 K=1,IM |
83 |
c X1JI(K,JM)=XJMSUM |
84 |
c 147 X1JI(K,J1)= X1SUM |
85 |
|
86 |
145 CONTINUE |
87 |
|
88 |
DO 160 I=1,IM |
89 |
c DO 160 J=J1,JM |
90 |
do 160 j=j2,jmm1 |
91 |
X1JI(I,J)=(X3JI(I,J)-X1JI(I,J)/XXX) |
92 |
160 CONTINUE |
93 |
|
94 |
#endif |
95 |
|
96 |
RETURN |
97 |
END |