| 2 |
#include "ATM2D_OPTIONS.h" |
#include "ATM2D_OPTIONS.h" |
| 3 |
|
|
| 4 |
C !INTERFACE: |
C !INTERFACE: |
| 5 |
SUBROUTINE CALC_1DTO2D( inMonth, myThid ) |
SUBROUTINE CALC_1DTO2D( myThid ) |
| 6 |
C *==========================================================* |
C *==========================================================* |
| 7 |
C | - Takes 1D atmos data, regrid to 2D ocean grid | |
C | - Takes 1D atmos data, regrid to 2D ocean grid. This | |
| 8 |
c | | |
C | involves totalling runoff into bands and redistributing| |
| 9 |
|
C | and using derivates dF/dT and dH/dT to compute | |
| 10 |
|
C | local variations in evap and heat flux. | |
| 11 |
C *==========================================================* |
C *==========================================================* |
| 12 |
IMPLICIT NONE |
IMPLICIT NONE |
| 13 |
|
|
| 24 |
|
|
| 25 |
C !INPUT/OUTPUT PARAMETERS: |
C !INPUT/OUTPUT PARAMETERS: |
| 26 |
C === Routine arguments === |
C === Routine arguments === |
|
C inMonth - current month (or forcing period) |
|
| 27 |
C myThid - Thread no. that called this routine. |
C myThid - Thread no. that called this routine. |
|
INTEGER inMonth |
|
| 28 |
INTEGER myThid |
INTEGER myThid |
| 29 |
|
|
| 30 |
C LOCAL VARIABLES: |
C LOCAL VARIABLES: |
| 31 |
INTEGER i,j |
INTEGER i,j ! loop counters across ocean grid |
| 32 |
INTEGER ib,ibj1,ibj2 |
INTEGER ib,ibj1,ibj2 ! runoff band variables |
| 33 |
_RL run_b(sNy) |
_RL run_b(sNy) ! total runoff in a band |
| 34 |
|
|
| 35 |
CALL INIT_2DFLD(myThid) |
CALL INIT_2DFLD(myThid) |
| 36 |
|
|
| 40 |
IF (ib.GT.1) ibj1= rband(ib-1)+1 |
IF (ib.GT.1) ibj1= rband(ib-1)+1 |
| 41 |
ibj2=sNy |
ibj2=sNy |
| 42 |
IF (ib.LT.numBands) ibj2= rband(ib) |
IF (ib.LT.numBands) ibj2= rband(ib) |
| 43 |
run_b(ib)=0.D0 |
run_b(ib)=0. _d 0 |
| 44 |
DO j=ibj1,ibj2 |
DO j=ibj1,ibj2 |
| 45 |
run_b(ib)=run_b(ib)+atm_runoff(atm_oc_ind(j))*atm_oc_wgt(j) + |
run_b(ib)=run_b(ib)+atm_runoff(atm_oc_ind(j))*atm_oc_wgt(j) + |
| 46 |
& atm_runoff(atm_oc_ind(j)+1)*(1.D0-atm_oc_wgt(j)) |
& atm_runoff(atm_oc_ind(j)+1)*(1. _d 0-atm_oc_wgt(j)) |
| 47 |
ENDDO |
ENDDO |
| 48 |
ENDDO |
ENDDO |
| 49 |
|
|
| 57 |
|
|
| 58 |
CALL CALC_WGHT2D(i,j,atm_oc_ind(j),atm_oc_wgt(j)) |
CALL CALC_WGHT2D(i,j,atm_oc_ind(j),atm_oc_wgt(j)) |
| 59 |
|
|
| 60 |
IF (atm_oc_wgt(j).LT.1.D0) |
IF (atm_oc_wgt(j).LT.1. _d 0) |
| 61 |
& CALL CALC_WGHT2D(i,j,atm_oc_ind(j)+1,1.D0-atm_oc_wgt(j)) |
& CALL CALC_WGHT2D(i, j, atm_oc_ind(j)+1, |
| 62 |
|
& 1. _d 0-atm_oc_wgt(j)) |
| 63 |
|
|
| 64 |
C Tabulate following diagnostic fluxes from atmos model only |
C Tabulate following diagnostic fluxes from atmos model only |
|
|
|
| 65 |
qnet_atm(i,j)= qnet_atm(i,j) + |
qnet_atm(i,j)= qnet_atm(i,j) + |
| 66 |
& qneti_2D(i,j)*dtatmo*iceMask(i,j,1,1) + |
& qneti_2D(i,j)*dtatmo*iceMask(i,j,1,1) + |
| 67 |
& qneto_2D(i,j)*dtatmo*(1.D0-iceMask(i,j,1,1)) |
& qneto_2D(i,j)*dtatmo*(1. _d 0-iceMask(i,j,1,1)) |
| 68 |
evap_atm(i,j)= evap_atm(i,j) + |
evap_atm(i,j)= evap_atm(i,j) + |
| 69 |
& evapi_2D(i,j)*dtatmo*iceMask(i,j,1,1) + |
& evapi_2D(i,j)*dtatmo*iceMask(i,j,1,1) + |
| 70 |
& evapo_2D(i,j)*dtatmo*(1.D0-iceMask(i,j,1,1)) |
& evapo_2D(i,j)*dtatmo*(1. _d 0-iceMask(i,j,1,1)) |
| 71 |
precip_atm(i,j)= precip_atm(i,j) + |
precip_atm(i,j)= precip_atm(i,j) + |
| 72 |
& precipi_2D(i,j)*dtatmo*iceMask(i,j,1,1) + |
& precipi_2D(i,j)*dtatmo*iceMask(i,j,1,1) + |
| 73 |
& precipo_2D(i,j)*dtatmo*(1.D0-iceMask(i,j,1,1)) |
& precipo_2D(i,j)*dtatmo*(1. _d 0-iceMask(i,j,1,1)) |
| 74 |
runoff_atm(i,j)= runoff_atm(i,j) + |
runoff_atm(i,j)= runoff_atm(i,j) + |
| 75 |
& runoff_2D(i,j)*dtatmo |
& runoff_2D(i,j)*dtatmo |
|
C time_cum = time_cum + dtatmo |
|
| 76 |
ENDIF |
ENDIF |
| 77 |
|
|
| 78 |
ENDDO |
ENDDO |
| 79 |
ENDDO |
ENDDO |
| 80 |
|
|
| 81 |
PRINT *,'*** bottom calc_1to2d; evapo_2D',evapo_2D(JBUGI,JBUGJ) |
C PRINT *,'*** bottom calc_1to2d; evapo_2D',evapo_2D(JBUGI,JBUGJ) |
| 82 |
PRINT *,'*** bottom calc_1to2d; precipo_2D',precipo_2D(JBUGI,JBUGJ) |
C PRINT *,'*** bottom calc_1to2d; precipo_2D',precipo_2D(JBUGI,JBUGJ) |
| 83 |
PRINT *,'*** bottom calc_1to2d; runoff_2D',runoff_2D(JBUGI,JBUGJ) |
C PRINT *,'*** bottom calc_1to2d; runoff_2D',runoff_2D(JBUGI,JBUGJ) |
| 84 |
PRINT *,'*** bottom calc_1to2d; qneto_2D',qneto_2D(JBUGI,JBUGJ) |
C PRINT *,'*** bottom calc_1to2d; qneto_2D',qneto_2D(JBUGI,JBUGJ) |
| 85 |
|
|
| 86 |
RETURN |
RETURN |
| 87 |
END |
END |
| 88 |
|
|
| 95 |
C !INTERFACE: |
C !INTERFACE: |
| 96 |
SUBROUTINE CALC_WGHT2D( i, j, ind, wgt) |
SUBROUTINE CALC_WGHT2D( i, j, ind, wgt) |
| 97 |
C *==========================================================* |
C *==========================================================* |
| 98 |
C | Use atmos grid cell 1D value and weight to convert to 2D | |
C | Use atmos grid cell 1D value and weight to convert to 2D.| |
| 99 |
C | Variations from zonal mean computed used derivative dF/dT| |
C | Variations from zonal mean computed used derivative dH/dT| |
| 100 |
C | and dL/dT for heat flux and evap terms. | |
C | and dF/dT for heat flux and evap terms. | |
| 101 |
C | | |
C | | |
| 102 |
C | Fluxes/values over seaice computed only if seaice present| |
C | Fluxes/values over seaice computed only if seaice present| |
| 103 |
C *==========================================================* |
C *==========================================================* |
| 115 |
|
|
| 116 |
C !INPUT/OUTPUT PARAMETERS: |
C !INPUT/OUTPUT PARAMETERS: |
| 117 |
C === Routine arguments === |
C === Routine arguments === |
| 118 |
C index - index into the atmos grid array |
C i,j - coordinates of point on ocean grid |
| 119 |
|
C ind - index into the atmos grid array |
| 120 |
C wght - weight of this atmos cell for total |
C wght - weight of this atmos cell for total |
| 121 |
INTEGER i, j |
INTEGER i, j |
| 122 |
INTEGER ind |
INTEGER ind |
| 132 |
|
|
| 133 |
qneto_2D(i,j)= qneto_2D(i,j) + atm_qnet_ocn(ind)*wgt |
qneto_2D(i,j)= qneto_2D(i,j) + atm_qnet_ocn(ind)*wgt |
| 134 |
evapo_2D(i,j)= evapo_2D(i,j) + atm_evap_ocn(ind)*wgt |
evapo_2D(i,j)= evapo_2D(i,j) + atm_evap_ocn(ind)*wgt |
| 135 |
IF (evapo_2D(i,j).GT.0.D0) THEN !convert negative evap. to precip |
IF (evapo_2D(i,j).GT.0. _d 0) THEN !convert negative evap. to precip |
| 136 |
precipo_2D(i,j)= precipo_2D(i,j) - evapo_2D(i,j) |
precipo_2D(i,j)= precipo_2D(i,j) - evapo_2D(i,j) |
| 137 |
evapo_2D(i,j)=0.D0 |
evapo_2D(i,j)=0. _d 0 |
| 138 |
ENDIF |
ENDIF |
| 139 |
|
|
| 140 |
IF (iceMask(i,j,1,1).GT.0.D0) THEN |
IF (iceMask(i,j,1,1) .GT. 0. _d 0) THEN |
| 141 |
qneti_2D(i,j)= qneti_2D(i,j) + atm_qnet_ice(ind)*wgt |
qneti_2D(i,j)= qneti_2D(i,j) + atm_qnet_ice(ind)*wgt |
| 142 |
precipi_2D(i,j)= precipi_2D(i,j) + atm_precip(ind)*wgt |
precipi_2D(i,j)= precipi_2D(i,j) + atm_precip(ind)*wgt |
| 143 |
evapi_2D(i,j)= evapi_2D(i,j) + atm_evap_ice(ind)*wgt |
evapi_2D(i,j)= evapi_2D(i,j) + atm_evap_ice(ind)*wgt |
| 144 |
IF (evapi_2D(i,j).GT.0.D0) THEN !convert negative evap. to precip |
IF (evapi_2D(i,j).GT.0. _d 0) THEN !convert negative evap. to precip |
| 145 |
precipi_2D(i,j)= precipi_2D(i,j) - evapi_2D(i,j) |
precipi_2D(i,j)= precipi_2D(i,j) - evapi_2D(i,j) |
| 146 |
evapi_2D(i,j)=0.D0 |
evapi_2D(i,j)=0. _d 0 |
| 147 |
ENDIF |
ENDIF |
| 148 |
dFdT_ice_2D(i,j)= dFdT_ice_2D(i,j) + atm_dFdT_ice(ind)*wgt |
dFdT_ice_2D(i,j)= dFdT_ice_2D(i,j) + atm_dFdT_ice(ind)*wgt |
| 149 |
Tair_2D(i,j)= Tair_2D(i,j) + atm_Tair(ind)*wgt |
Tair_2D(i,j)= Tair_2D(i,j) + atm_Tair(ind)*wgt |
| 155 |
& (sstFromOcn(i,j)-ctocn(ind)*wgt) |
& (sstFromOcn(i,j)-ctocn(ind)*wgt) |
| 156 |
evapo_2D(i,j)= evapo_2D(i,j) + atm_dLdt_ocnq(ind)* |
evapo_2D(i,j)= evapo_2D(i,j) + atm_dLdt_ocnq(ind)* |
| 157 |
& (sstFromOcn(i,j)-ctocn(ind)*wgt) |
& (sstFromOcn(i,j)-ctocn(ind)*wgt) |
| 158 |
IF (iceMask(i,j,1,1).GT.0.D0) THEN |
IF (iceMask(i,j,1,1) .GT. 0. _d 0) THEN |
| 159 |
qneti_2D(i,j)=qneti_2D(i,j)+atm_dFdt_iceq(ind)* |
qneti_2D(i,j)=qneti_2D(i,j)+atm_dFdt_iceq(ind)* |
| 160 |
& (Tsrf(i,j,1,1)-ctice(ind)*wgt) |
& (Tsrf(i,j,1,1)-ctice(ind)*wgt) |
| 161 |
evapi_2D(i,j)=evapi_2D(i,j)+atm_dLdt_iceq(ind)* |
evapi_2D(i,j)=evapi_2D(i,j)+atm_dLdt_iceq(ind)* |
| 166 |
& (sstFromOcn(i,j)-ctocn(ind)*wgt) |
& (sstFromOcn(i,j)-ctocn(ind)*wgt) |
| 167 |
evapo_2D(i,j)= evapo_2D(i,j) + atm_dLdt_ocn(ind)* |
evapo_2D(i,j)= evapo_2D(i,j) + atm_dLdt_ocn(ind)* |
| 168 |
& (sstFromOcn(i,j)-ctocn(ind)*wgt) |
& (sstFromOcn(i,j)-ctocn(ind)*wgt) |
| 169 |
IF (iceMask(i,j,1,1).GT.0.D0) THEN |
IF (iceMask(i,j,1,1) .GT. 0. _d 0) THEN |
| 170 |
qneti_2D(i,j)= qneti_2D(i,j) + atm_dFdt_ice(ind)* |
qneti_2D(i,j)= qneti_2D(i,j) + atm_dFdt_ice(ind)* |
| 171 |
& (Tsrf(i,j,1,1)-ctice(ind)*wgt) |
& (Tsrf(i,j,1,1)-ctice(ind)*wgt) |
| 172 |
evapi_2D(i,j)= evapi_2D(i,j)+atm_dLdt_ice(ind)* |
evapi_2D(i,j)= evapi_2D(i,j)+atm_dLdt_ice(ind)* |
| 186 |
C !INTERFACE: |
C !INTERFACE: |
| 187 |
SUBROUTINE INIT_2DFLD( myThid) |
SUBROUTINE INIT_2DFLD( myThid) |
| 188 |
C *==========================================================* |
C *==========================================================* |
| 189 |
C | | |
C | Zero out the 2D fields; called prior to doing any of the | |
| 190 |
c | | |
C | 1D->2D calculation. | |
| 191 |
C *==========================================================* |
C *==========================================================* |
| 192 |
IMPLICIT NONE |
IMPLICIT NONE |
| 193 |
|
|
| 207 |
DO i=1,sNx |
DO i=1,sNx |
| 208 |
DO j=1,sNy |
DO j=1,sNy |
| 209 |
|
|
| 210 |
precipo_2D(i,j)= 0.D0 |
precipo_2D(i,j)= 0. _d 0 |
| 211 |
precipi_2D(i,j)= 0.D0 |
precipi_2D(i,j)= 0. _d 0 |
| 212 |
solarnet_ocn_2D(i,j)= 0.D0 |
solarnet_ocn_2D(i,j)= 0. _d 0 |
| 213 |
slp_2D(i,j)= 0.D0 |
slp_2D(i,j)= 0. _d 0 |
| 214 |
pCO2_2D(i,j)= 0.D0 |
pCO2_2D(i,j)= 0. _d 0 |
| 215 |
wspeed_2D(i,j)= 0.D0 |
wspeed_2D(i,j)= 0. _d 0 |
| 216 |
fu_2D(i,j)= 0.D0 |
fu_2D(i,j)= 0. _d 0 |
| 217 |
fv_2D(i,j)= 0.D0 |
fv_2D(i,j)= 0. _d 0 |
| 218 |
qneto_2D(i,j)= 0.D0 |
qneto_2D(i,j)= 0. _d 0 |
| 219 |
evapo_2D(i,j)= 0.D0 |
evapo_2D(i,j)= 0. _d 0 |
| 220 |
qneti_2D(i,j)= 0.D0 |
qneti_2D(i,j)= 0. _d 0 |
| 221 |
evapi_2D(i,j)= 0.D0 |
evapi_2D(i,j)= 0. _d 0 |
| 222 |
dFdT_ice_2D(i,j)= 0.D0 |
dFdT_ice_2D(i,j)= 0. _d 0 |
| 223 |
Tair_2D(i,j)= 0.D0 |
Tair_2D(i,j)= 0. _d 0 |
| 224 |
solarinc_2D(i,j)= 0.D0 |
solarinc_2D(i,j)= 0. _d 0 |
| 225 |
runoff_2D(i,j)= 0.D0 |
runoff_2D(i,j)= 0. _d 0 |
| 226 |
|
|
| 227 |
ENDDO |
ENDDO |
| 228 |
ENDDO |
ENDDO |