| 1 |
dgoldberg |
1.4 |
C $Header: /u/gcmpack/MITgcm_contrib/ksnow/press_release/code/calc_div_ghat.F,v 1.3 2017/02/04 18:55:11 dgoldberg Exp $ |
| 2 |
ksnow |
1.1 |
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "CPP_OPTIONS.h" |
| 5 |
|
|
|
| 6 |
|
|
CBOP |
| 7 |
|
|
C !ROUTINE: CALC_DIV_GHAT |
| 8 |
|
|
C !INTERFACE: |
| 9 |
|
|
SUBROUTINE CALC_DIV_GHAT( |
| 10 |
|
|
I bi,bj,k, |
| 11 |
|
|
U cg2d_b, cg3d_b, |
| 12 |
|
|
I myThid) |
| 13 |
|
|
C !DESCRIPTION: \bv |
| 14 |
|
|
C *==========================================================* |
| 15 |
|
|
C | S/R CALC_DIV_GHAT |
| 16 |
|
|
C | o Form the right hand-side of the surface pressure eqn. |
| 17 |
|
|
C *==========================================================* |
| 18 |
|
|
C | Right hand side of pressure equation is divergence |
| 19 |
|
|
C | of veclocity tendency (GHAT) term along with a relaxation |
| 20 |
|
|
C | term equal to the barotropic flow field divergence. |
| 21 |
|
|
C *==========================================================* |
| 22 |
|
|
C \ev |
| 23 |
|
|
|
| 24 |
|
|
C !USES: |
| 25 |
|
|
IMPLICIT NONE |
| 26 |
|
|
C == Global variables == |
| 27 |
|
|
#include "SIZE.h" |
| 28 |
|
|
#include "EEPARAMS.h" |
| 29 |
|
|
#include "PARAMS.h" |
| 30 |
|
|
#include "GRID.h" |
| 31 |
|
|
#include "DYNVARS.h" |
| 32 |
|
|
#ifdef ALLOW_ADDFLUID |
| 33 |
|
|
# include "FFIELDS.h" |
| 34 |
|
|
#endif |
| 35 |
|
|
|
| 36 |
|
|
C !INPUT/OUTPUT PARAMETERS: |
| 37 |
|
|
C == Routine arguments == |
| 38 |
|
|
C bi, bj :: tile indices |
| 39 |
|
|
C k :: Index of layer. |
| 40 |
|
|
C cg2d_b :: Conjugate Gradient 2-D solver : Right-hand side vector |
| 41 |
|
|
C cg3d_b :: Conjugate Gradient 3-D solver : Right-hand side vector |
| 42 |
|
|
C myThid :: Instance number for this call of CALC_DIV_GHAT |
| 43 |
|
|
INTEGER bi,bj |
| 44 |
|
|
INTEGER k |
| 45 |
|
|
_RL cg2d_b(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
| 46 |
|
|
#ifdef ALLOW_NONHYDROSTATIC |
| 47 |
|
|
_RL cg3d_b(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 48 |
|
|
#else |
| 49 |
|
|
_RL cg3d_b(1) |
| 50 |
|
|
#endif |
| 51 |
|
|
INTEGER myThid |
| 52 |
ksnow |
1.2 |
#ifdef ALLOW_PRESSURE_RELEASE_CODE |
| 53 |
|
|
_RL drag_fac |
| 54 |
|
|
#endif |
| 55 |
ksnow |
1.1 |
|
| 56 |
|
|
C !LOCAL VARIABLES: |
| 57 |
|
|
C == Local variables == |
| 58 |
|
|
C i,j :: Loop counters |
| 59 |
|
|
C xA, yA :: Cell vertical face areas |
| 60 |
|
|
C pf :: Intermediate array for building RHS source term. |
| 61 |
|
|
INTEGER i,j |
| 62 |
|
|
_RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 63 |
|
|
_RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 64 |
|
|
_RL pf (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 65 |
|
|
CEOP |
| 66 |
|
|
|
| 67 |
|
|
C Calculate vertical face areas |
| 68 |
|
|
DO j=1,sNy+1 |
| 69 |
|
|
DO i=1,sNx+1 |
| 70 |
|
|
xA(i,j) = _dyG(i,j,bi,bj)*deepFacC(k) |
| 71 |
|
|
& *drF(k)*_hFacW(i,j,k,bi,bj)*rhoFacC(k) |
| 72 |
|
|
yA(i,j) = _dxG(i,j,bi,bj)*deepFacC(k) |
| 73 |
|
|
& *drF(k)*_hFacS(i,j,k,bi,bj)*rhoFacC(k) |
| 74 |
|
|
ENDDO |
| 75 |
|
|
ENDDO |
| 76 |
|
|
|
| 77 |
|
|
C-- Pressure equation source term |
| 78 |
|
|
C Term is the vertical integral of the divergence of the |
| 79 |
|
|
C time tendency terms along with a relaxation term that |
| 80 |
|
|
C pulls div(U) + dh/dt back toward zero. |
| 81 |
|
|
|
| 82 |
|
|
IF (implicDiv2Dflow.EQ.1.) THEN |
| 83 |
|
|
C Fully Implicit treatment of the Barotropic Flow Divergence |
| 84 |
|
|
DO j=1,sNy |
| 85 |
|
|
DO i=1,sNx+1 |
| 86 |
ksnow |
1.2 |
#ifdef ALLOW_PRESSURE_RELEASE_CODE |
| 87 |
|
|
IF (depthColW(i,j,bi,bj).lt.cg2dminColumnEps) THEN |
| 88 |
|
|
drag_fac = _recip_hFacW(i,j,k,bi,bj)**2*recip_drF(k)**2* |
| 89 |
dgoldberg |
1.4 |
& pReleaseDamp * viscArNr(k) * |
| 90 |
ksnow |
1.2 |
& 1./(1+exp(-10./cg2dminColumnEps* |
| 91 |
|
|
& (-1.)*(depthColW(i,j,bi,bj)-cg2dminColumnEps/2))) |
| 92 |
|
|
ELSE |
| 93 |
|
|
drag_fac = 0. _d 0 |
| 94 |
|
|
ENDIF |
| 95 |
|
|
#endif |
| 96 |
ksnow |
1.1 |
pf(i,j) = xA(i,j)*gU(i,j,k,bi,bj) / deltaTMom |
| 97 |
ksnow |
1.2 |
#ifdef ALLOW_PRESSURE_RELEASE_CODE |
| 98 |
|
|
& / (1 + drag_fac*deltaTmom) |
| 99 |
ksnow |
1.1 |
#endif |
| 100 |
ksnow |
1.2 |
|
| 101 |
ksnow |
1.1 |
ENDDO |
| 102 |
|
|
ENDDO |
| 103 |
|
|
ELSEIF (exactConserv) THEN |
| 104 |
|
|
c ELSEIF (nonlinFreeSurf.GT.0) THEN |
| 105 |
|
|
C Implicit treatment of the Barotropic Flow Divergence |
| 106 |
|
|
DO j=1,sNy |
| 107 |
|
|
DO i=1,sNx+1 |
| 108 |
ksnow |
1.2 |
#ifdef ALLOW_PRESSURE_RELEASE_CODE |
| 109 |
|
|
IF (depthColW(i,j,bi,bj).lt.cg2dminColumnEps) THEN |
| 110 |
|
|
drag_fac = _recip_hFacW(i,j,k,bi,bj)**2*recip_drF(k)**2* |
| 111 |
dgoldberg |
1.4 |
& pReleaseDamp * viscArNr(k) * |
| 112 |
ksnow |
1.2 |
& 1./(1+exp(-10./cg2dminColumnEps* |
| 113 |
|
|
& (-1.)*(depthColW(i,j,bi,bj)-cg2dminColumnEps/2))) |
| 114 |
|
|
ELSE |
| 115 |
|
|
drag_fac = 0. _d 0 |
| 116 |
|
|
ENDIF |
| 117 |
|
|
#endif |
| 118 |
ksnow |
1.1 |
pf(i,j) = implicDiv2Dflow |
| 119 |
|
|
& *xA(i,j)*gU(i,j,k,bi,bj) / deltaTMom |
| 120 |
ksnow |
1.2 |
#ifdef ALLOW_PRESSURE_RELEASE_CODE |
| 121 |
|
|
& / (1 + drag_fac*deltaTmom) |
| 122 |
ksnow |
1.1 |
#endif |
| 123 |
ksnow |
1.2 |
|
| 124 |
ksnow |
1.1 |
ENDDO |
| 125 |
|
|
ENDDO |
| 126 |
|
|
ELSE |
| 127 |
|
|
C Explicit+Implicit part of the Barotropic Flow Divergence |
| 128 |
|
|
C => Filtering of uVel,vVel is necessary |
| 129 |
|
|
C-- Now the filter are applied in the_correction_step(). |
| 130 |
|
|
C We have left this code here to indicate where the filters used to be |
| 131 |
|
|
C in the algorithm before JMC moved them to after the pressure solver. |
| 132 |
|
|
c#ifdef ALLOW_ZONAL_FILT |
| 133 |
|
|
c IF (zonal_filt_lat.LT.90.) THEN |
| 134 |
|
|
c CALL ZONAL_FILTER( |
| 135 |
|
|
c U uVel( 1-OLx,1-OLy,k,bi,bj), |
| 136 |
|
|
c I hFacW(1-OLx,1-OLy,k,bi,bj), |
| 137 |
|
|
c I 0, sNy+1, 1, bi, bj, 1, myThid ) |
| 138 |
|
|
c CALL ZONAL_FILTER( |
| 139 |
|
|
c U vVel( 1-OLx,1-OLy,k,bi,bj), |
| 140 |
|
|
c I hFacS(1-OLx,1-OLy,k,bi,bj), |
| 141 |
|
|
c I 0, sNy+1, 1, bi, bj, 2, myThid ) |
| 142 |
|
|
c ENDIF |
| 143 |
|
|
c#endif |
| 144 |
|
|
DO j=1,sNy |
| 145 |
|
|
DO i=1,sNx+1 |
| 146 |
|
|
pf(i,j) = ( implicDiv2Dflow * gU(i,j,k,bi,bj) |
| 147 |
|
|
& + (1. _d 0-implicDiv2Dflow)* uVel(i,j,k,bi,bj) |
| 148 |
|
|
& ) * xA(i,j) / deltaTMom |
| 149 |
|
|
ENDDO |
| 150 |
|
|
ENDDO |
| 151 |
|
|
ENDIF |
| 152 |
|
|
DO j=1,sNy |
| 153 |
|
|
DO i=1,sNx |
| 154 |
|
|
cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) + |
| 155 |
|
|
& pf(i+1,j)-pf(i,j) |
| 156 |
|
|
ENDDO |
| 157 |
|
|
ENDDO |
| 158 |
|
|
|
| 159 |
|
|
#ifdef ALLOW_NONHYDROSTATIC |
| 160 |
|
|
IF (use3Dsolver) THEN |
| 161 |
|
|
DO j=1,sNy |
| 162 |
|
|
DO i=1,sNx |
| 163 |
|
|
cg3d_b(i,j,k,bi,bj) = ( pf(i+1,j)-pf(i,j) ) |
| 164 |
|
|
ENDDO |
| 165 |
|
|
ENDDO |
| 166 |
|
|
ENDIF |
| 167 |
|
|
#endif |
| 168 |
|
|
|
| 169 |
|
|
IF (implicDiv2Dflow.EQ.1.) THEN |
| 170 |
|
|
C Fully Implicit treatment of the Barotropic Flow Divergence |
| 171 |
|
|
DO j=1,sNy+1 |
| 172 |
|
|
DO i=1,sNx |
| 173 |
ksnow |
1.2 |
#ifdef ALLOW_PRESSURE_RELEASE_CODE |
| 174 |
|
|
IF (depthColS(i,j,bi,bj).lt.cg2dminColumnEps) THEN |
| 175 |
|
|
drag_fac = _recip_hFacS(i,j,k,bi,bj)**2*recip_drF(k)**2* |
| 176 |
dgoldberg |
1.4 |
& pReleaseDamp * viscArNr(k) * |
| 177 |
ksnow |
1.2 |
& 1./(1+exp(-10./cg2dminColumnEps* |
| 178 |
|
|
& (-1.)*(depthColS(i,j,bi,bj)-cg2dminColumnEps/2))) |
| 179 |
|
|
ELSE |
| 180 |
|
|
drag_fac = 0. _d 0 |
| 181 |
|
|
ENDIF |
| 182 |
|
|
#endif |
| 183 |
ksnow |
1.1 |
pf(i,j) = yA(i,j)*gV(i,j,k,bi,bj) / deltatmom |
| 184 |
ksnow |
1.2 |
#ifdef ALLOW_PRESSURE_RELEASE_CODE |
| 185 |
|
|
& / (1 + drag_fac*deltaTmom) |
| 186 |
ksnow |
1.1 |
#endif |
| 187 |
|
|
ENDDO |
| 188 |
|
|
ENDDO |
| 189 |
|
|
ELSEIF (exactConserv) THEN |
| 190 |
|
|
c ELSEIF (nonlinFreeSurf.GT.0) THEN |
| 191 |
|
|
C Implicit treatment of the Barotropic Flow Divergence |
| 192 |
|
|
DO j=1,sNy+1 |
| 193 |
|
|
DO i=1,sNx |
| 194 |
ksnow |
1.2 |
#ifdef ALLOW_PRESSURE_RELEASE_CODE |
| 195 |
|
|
IF (depthColS(i,j,bi,bj).lt.cg2dminColumnEps) THEN |
| 196 |
|
|
drag_fac = _recip_hFacS(i,j,k,bi,bj)**2*recip_drF(k)**2* |
| 197 |
dgoldberg |
1.4 |
& pReleaseDamp * viscArNr(k) * |
| 198 |
ksnow |
1.2 |
& 1./(1+exp(-10./cg2dminColumnEps* |
| 199 |
|
|
& (-1.)*(depthColS(i,j,bi,bj)-cg2dminColumnEps/2))) |
| 200 |
|
|
ELSE |
| 201 |
|
|
drag_fac = 0. _d 0 |
| 202 |
|
|
ENDIF |
| 203 |
|
|
#endif |
| 204 |
ksnow |
1.1 |
pf(i,j) = implicDiv2Dflow |
| 205 |
|
|
& *yA(i,j)*gV(i,j,k,bi,bj) / deltatmom |
| 206 |
ksnow |
1.2 |
#ifdef ALLOW_PRESSURE_RELEASE_CODE |
| 207 |
|
|
& / (1 + drag_fac*deltaTmom) |
| 208 |
ksnow |
1.1 |
#endif |
| 209 |
|
|
ENDDO |
| 210 |
|
|
ENDDO |
| 211 |
|
|
ELSE |
| 212 |
|
|
C Explicit+Implicit part of the Barotropic Flow Divergence |
| 213 |
|
|
DO j=1,sNy+1 |
| 214 |
|
|
DO i=1,sNx |
| 215 |
|
|
pf(i,j) = ( implicDiv2Dflow * gV(i,j,k,bi,bj) |
| 216 |
|
|
& + (1. _d 0-implicDiv2Dflow)* vVel(i,j,k,bi,bj) |
| 217 |
|
|
& ) * yA(i,j) / deltaTMom |
| 218 |
|
|
ENDDO |
| 219 |
|
|
ENDDO |
| 220 |
|
|
ENDIF |
| 221 |
|
|
DO j=1,sNy |
| 222 |
|
|
DO i=1,sNx |
| 223 |
|
|
cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) + |
| 224 |
|
|
& pf(i,j+1)-pf(i,j) |
| 225 |
|
|
ENDDO |
| 226 |
|
|
ENDDO |
| 227 |
|
|
|
| 228 |
|
|
#ifdef ALLOW_NONHYDROSTATIC |
| 229 |
|
|
IF (use3Dsolver) THEN |
| 230 |
|
|
DO j=1,sNy |
| 231 |
|
|
DO i=1,sNx |
| 232 |
|
|
cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj) |
| 233 |
|
|
& + ( pf(i,j+1)-pf(i,j) ) |
| 234 |
|
|
ENDDO |
| 235 |
|
|
ENDDO |
| 236 |
|
|
ENDIF |
| 237 |
|
|
#endif |
| 238 |
|
|
|
| 239 |
|
|
#ifdef ALLOW_ADDFLUID |
| 240 |
|
|
IF ( selectAddFluid.GE.1 ) THEN |
| 241 |
|
|
DO j=1,sNy |
| 242 |
|
|
DO i=1,sNx |
| 243 |
|
|
cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) |
| 244 |
|
|
& - addMass(i,j,k,bi,bj)*mass2rUnit/deltaTMom |
| 245 |
|
|
ENDDO |
| 246 |
|
|
ENDDO |
| 247 |
|
|
#ifdef ALLOW_NONHYDROSTATIC |
| 248 |
|
|
IF (use3Dsolver) THEN |
| 249 |
|
|
DO j=1,sNy |
| 250 |
|
|
DO i=1,sNx |
| 251 |
|
|
cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj) |
| 252 |
|
|
& - addMass(i,j,k,bi,bj)*mass2rUnit/deltaTMom |
| 253 |
|
|
ENDDO |
| 254 |
|
|
ENDDO |
| 255 |
|
|
ENDIF |
| 256 |
|
|
#endif |
| 257 |
|
|
ENDIF |
| 258 |
|
|
#endif /* ALLOW_ADDFLUID */ |
| 259 |
|
|
|
| 260 |
|
|
RETURN |
| 261 |
|
|
END |