1 |
C $Header: /u/u0/gcmpack/MITgcm/model/src/external_forcing.F,v 1.19 2003/06/19 15:00:45 heimbach Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "CPP_OPTIONS.h" |
5 |
#ifdef ALLOW_OBCS |
6 |
# include "OBCS_OPTIONS.h" |
7 |
#endif |
8 |
|
9 |
CBOP |
10 |
C !ROUTINE: EXTERNAL_FORCING_U |
11 |
C !INTERFACE: |
12 |
SUBROUTINE EXTERNAL_FORCING_U( |
13 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
14 |
I myCurrentTime,myThid) |
15 |
C !DESCRIPTION: \bv |
16 |
C *==========================================================* |
17 |
C | S/R EXTERNAL_FORCING_U |
18 |
C | o Contains problem specific forcing for zonal velocity. |
19 |
C *==========================================================* |
20 |
C | Adds terms to gU for forcing by external sources |
21 |
C | e.g. wind stress, bottom friction etc.................. |
22 |
C *==========================================================* |
23 |
C \ev |
24 |
|
25 |
C !USES: |
26 |
IMPLICIT NONE |
27 |
C == Global data == |
28 |
#include "SIZE.h" |
29 |
#include "EEPARAMS.h" |
30 |
#include "PARAMS.h" |
31 |
#include "GRID.h" |
32 |
#include "DYNVARS.h" |
33 |
#include "FFIELDS.h" |
34 |
|
35 |
C !INPUT/OUTPUT PARAMETERS: |
36 |
C == Routine arguments == |
37 |
C iMin - Working range of tile for applying forcing. |
38 |
C iMax |
39 |
C jMin |
40 |
C jMax |
41 |
C kLev |
42 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
43 |
_RL myCurrentTime |
44 |
INTEGER myThid |
45 |
|
46 |
C !LOCAL VARIABLES: |
47 |
C == Local variables == |
48 |
C Loop counters |
49 |
INTEGER I, J |
50 |
C number of surface interface layer |
51 |
INTEGER kSurface |
52 |
C Cheap sponge layer |
53 |
_RS recip_tauSp(5) |
54 |
INTEGER spWidth |
55 |
_RS curRecipTau |
56 |
INTEGER jFromNBndy, jFromSBndy, |
57 |
& jNorthBndy, jSouthBndy, jG |
58 |
CEOP |
59 |
|
60 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
61 |
kSurface = Nr |
62 |
else |
63 |
kSurface = 1 |
64 |
endif |
65 |
|
66 |
C-- Forcing term |
67 |
C Add windstress momentum impulse into the top-layer |
68 |
IF ( kLev .EQ. kSurface ) THEN |
69 |
DO j=jMin,jMax |
70 |
DO i=iMin,iMax |
71 |
gU(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) |
72 |
& +foFacMom*surfaceTendencyU(i,j,bi,bj)*0.0100D0 |
73 |
& *_maskW(i,j,kLev,bi,bj) |
74 |
ENDDO |
75 |
ENDDO |
76 |
ENDIF |
77 |
|
78 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
79 |
C Damping time scale decreases away from boundary so that |
80 |
C tau = 1 day, 5days, 10days, 20days, 60days |
81 |
spWidth = 5 |
82 |
recip_tauSp(1) = 1./(86400.*1. ) |
83 |
recip_tauSp(2) = 1./(86400.*5. ) |
84 |
recip_tauSp(3) = 1./(86400.*10.) |
85 |
recip_tauSp(4) = 1./(86400.*20.) |
86 |
recip_tauSp(5) = 1./(86400.*60.) |
87 |
jSouthBndy = 5 |
88 |
jNorthBndy = ny-5+1 |
89 |
DO j=jMin,jMax |
90 |
DO i=iMin,iMax |
91 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
92 |
jFromNBndy = jNorthBndy-jG |
93 |
jFromSBndy = jSouthBndy-jG |
94 |
curRecipTau=0. |
95 |
IF ( jFromNBndy .LE. 0 ) THEN |
96 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
97 |
ENDIF |
98 |
IF ( jFromSBndy .GE. 0 ) THEN |
99 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
100 |
ENDIF |
101 |
gu(i,j,kLev,bi,bj) = gU(i,j,kLev,bi,bj) |
102 |
& -curRecipTau*uVel(i,j,Klev,bi,bj) |
103 |
ENDDO |
104 |
ENDDO |
105 |
|
106 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
107 |
IF (useOBCS) THEN |
108 |
CALL OBCS_SPONGE_U( |
109 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
110 |
I myCurrentTime,myThid) |
111 |
ENDIF |
112 |
#endif |
113 |
|
114 |
RETURN |
115 |
END |
116 |
CBOP |
117 |
C !ROUTINE: EXTERNAL_FORCING_V |
118 |
C !INTERFACE: |
119 |
SUBROUTINE EXTERNAL_FORCING_V( |
120 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
121 |
I myCurrentTime,myThid) |
122 |
C !DESCRIPTION: \bv |
123 |
C *==========================================================* |
124 |
C | S/R EXTERNAL_FORCING_V |
125 |
C | o Contains problem specific forcing for merid velocity. |
126 |
C *==========================================================* |
127 |
C | Adds terms to gV for forcing by external sources |
128 |
C | e.g. wind stress, bottom friction etc.................. |
129 |
C *==========================================================* |
130 |
C \ev |
131 |
|
132 |
C !USES: |
133 |
IMPLICIT NONE |
134 |
C == Global data == |
135 |
#include "SIZE.h" |
136 |
#include "EEPARAMS.h" |
137 |
#include "PARAMS.h" |
138 |
#include "GRID.h" |
139 |
#include "DYNVARS.h" |
140 |
#include "FFIELDS.h" |
141 |
|
142 |
C !INPUT/OUTPUT PARAMETERS: |
143 |
C == Routine arguments == |
144 |
C iMin - Working range of tile for applying forcing. |
145 |
C iMax |
146 |
C jMin |
147 |
C jMax |
148 |
C kLev |
149 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
150 |
_RL myCurrentTime |
151 |
INTEGER myThid |
152 |
|
153 |
C !LOCAL VARIABLES: |
154 |
C == Local variables == |
155 |
C Loop counters |
156 |
INTEGER I, J |
157 |
C number of surface interface layer |
158 |
INTEGER kSurface |
159 |
|
160 |
C == Cheap sponge layer == |
161 |
_RS recip_tauSp(5) |
162 |
INTEGER spWidth |
163 |
_RS curRecipTau |
164 |
INTEGER jFromNBndy, jFromSBndy, |
165 |
& jNorthBndy, jSouthBndy, jG |
166 |
|
167 |
|
168 |
CEOP |
169 |
|
170 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
171 |
kSurface = Nr |
172 |
else |
173 |
kSurface = 1 |
174 |
endif |
175 |
|
176 |
C-- Forcing term |
177 |
C Add windstress momentum impulse into the top-layer |
178 |
IF ( kLev .EQ. kSurface ) THEN |
179 |
DO j=jMin,jMax |
180 |
DO i=iMin,iMax |
181 |
gV(i,j,kLev,bi,bj) = gV(i,j,kLev,bi,bj) |
182 |
& +foFacMom*surfaceTendencyV(i,j,bi,bj)*0.0100D0 |
183 |
& *_maskS(i,j,kLev,bi,bj) |
184 |
ENDDO |
185 |
ENDDO |
186 |
ENDIF |
187 |
|
188 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
189 |
IF (useOBCS) THEN |
190 |
CALL OBCS_SPONGE_V( |
191 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
192 |
I myCurrentTime,myThid) |
193 |
ENDIF |
194 |
#endif |
195 |
|
196 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
197 |
C Damping time scale decreases away from boundary so that |
198 |
C tau = 1 day, 5days, 10days, 20days, 60days |
199 |
spWidth = 5 |
200 |
recip_tauSp(1) = 1./(86400.*1. ) |
201 |
recip_tauSp(2) = 1./(86400.*5. ) |
202 |
recip_tauSp(3) = 1./(86400.*10.) |
203 |
recip_tauSp(4) = 1./(86400.*20.) |
204 |
recip_tauSp(5) = 1./(86400.*60.) |
205 |
jSouthBndy = 5 |
206 |
jNorthBndy = ny-5+1 |
207 |
DO j=jMin,jMax |
208 |
DO i=iMin,iMax |
209 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
210 |
jFromNBndy = jNorthBndy-jG |
211 |
jFromSBndy = jSouthBndy-jG |
212 |
curRecipTau=0. |
213 |
IF ( jFromNBndy .LE. 0 ) THEN |
214 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
215 |
ENDIF |
216 |
IF ( jFromSBndy .GE. 0 ) THEN |
217 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
218 |
ENDIF |
219 |
gV(i,j,kLev,bi,bj) = gV(i,j,kLev,bi,bj) |
220 |
& -curRecipTau*vVel(i,j,Klev,bi,bj) |
221 |
ENDDO |
222 |
ENDDO |
223 |
|
224 |
RETURN |
225 |
END |
226 |
CBOP |
227 |
C !ROUTINE: EXTERNAL_FORCING_T |
228 |
C !INTERFACE: |
229 |
SUBROUTINE EXTERNAL_FORCING_T( |
230 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
231 |
I myCurrentTime,myThid) |
232 |
C !DESCRIPTION: \bv |
233 |
C *==========================================================* |
234 |
C | S/R EXTERNAL_FORCING_T |
235 |
C | o Contains problem specific forcing for temperature. |
236 |
C *==========================================================* |
237 |
C | Adds terms to gT for forcing by external sources |
238 |
C | e.g. heat flux, climatalogical relaxation.............. |
239 |
C *==========================================================* |
240 |
C \ev |
241 |
|
242 |
C !USES: |
243 |
IMPLICIT NONE |
244 |
C == Global data == |
245 |
#include "SIZE.h" |
246 |
#include "EEPARAMS.h" |
247 |
#include "PARAMS.h" |
248 |
#include "GRID.h" |
249 |
#include "DYNVARS.h" |
250 |
#include "FFIELDS.h" |
251 |
#ifdef SHORTWAVE_HEATING |
252 |
integer two |
253 |
_RL minusone |
254 |
parameter (two=2,minusone=-1.) |
255 |
_RL swfracb(two) |
256 |
#endif |
257 |
|
258 |
C !INPUT/OUTPUT PARAMETERS: |
259 |
C == Routine arguments == |
260 |
C iMin - Working range of tile for applying forcing. |
261 |
C iMax |
262 |
C jMin |
263 |
C jMax |
264 |
C kLev |
265 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
266 |
_RL myCurrentTime |
267 |
INTEGER myThid |
268 |
CEndOfInterface |
269 |
|
270 |
C !LOCAL VARIABLES: |
271 |
C == Local variables == |
272 |
C Loop counters |
273 |
INTEGER I, J |
274 |
C number of surface interface layer |
275 |
INTEGER kSurface |
276 |
C Cheap sponge layer |
277 |
_RS recip_tauSp(5) |
278 |
INTEGER spWidth |
279 |
_RS curRecipTau |
280 |
INTEGER jFromNBndy, jFromSBndy, |
281 |
& jNorthBndy, jSouthBndy, jG |
282 |
|
283 |
CEOP |
284 |
|
285 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
286 |
kSurface = Nr |
287 |
else |
288 |
kSurface = 1 |
289 |
endif |
290 |
|
291 |
C-- Forcing term |
292 |
C Add heat in top-layer |
293 |
IF ( kLev .EQ. kSurface ) THEN |
294 |
DO j=jMin,jMax |
295 |
DO i=iMin,iMax |
296 |
gT(i,j,kLev,bi,bj)=gT(i,j,kLev,bi,bj) |
297 |
& +maskC(i,j,kLev,bi,bj)*surfaceTendencyT(i,j,bi,bj) |
298 |
ENDDO |
299 |
ENDDO |
300 |
ENDIF |
301 |
|
302 |
#ifdef SHORTWAVE_HEATING |
303 |
C Penetrating SW radiation |
304 |
swfracb(1)=abs(rF(klev)) |
305 |
swfracb(2)=abs(rF(klev+1)) |
306 |
call SWFRAC( |
307 |
I two,minusone, |
308 |
I myCurrentTime,myThid, |
309 |
U swfracb) |
310 |
DO j=jMin,jMax |
311 |
DO i=iMin,iMax |
312 |
gT(i,j,klev,bi,bj) = gT(i,j,klev,bi,bj) |
313 |
& -maskC(i,j,klev,bi,bj)*Qsw(i,j,bi,bj)*(swfracb(1)-swfracb(2)) |
314 |
& *recip_Cp*recip_rhoConst*recip_drF(klev) |
315 |
ENDDO |
316 |
ENDDO |
317 |
#endif |
318 |
|
319 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
320 |
IF (useOBCS) THEN |
321 |
CALL OBCS_SPONGE_T( |
322 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
323 |
I myCurrentTime,myThid) |
324 |
ENDIF |
325 |
#endif |
326 |
|
327 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
328 |
C Damping time scale decreases away from boundary so that |
329 |
C tau = 1 day, 5days, 10days, 20days, 60days |
330 |
spWidth = 5 |
331 |
recip_tauSp(1) = 1./(86400.*1. ) |
332 |
recip_tauSp(2) = 1./(86400.*5. ) |
333 |
recip_tauSp(3) = 1./(86400.*10.) |
334 |
recip_tauSp(4) = 1./(86400.*20.) |
335 |
recip_tauSp(5) = 1./(86400.*60.) |
336 |
jSouthBndy = 5 |
337 |
jNorthBndy = ny-5+1 |
338 |
DO j=jMin,jMax |
339 |
DO i=iMin,iMax |
340 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
341 |
jFromNBndy = jNorthBndy-jG |
342 |
jFromSBndy = jSouthBndy-jG |
343 |
curRecipTau=0. |
344 |
IF ( jFromNBndy .LE. 0 ) THEN |
345 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
346 |
ENDIF |
347 |
IF ( jFromSBndy .GE. 0 ) THEN |
348 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
349 |
ENDIF |
350 |
gT(i,j,kLev,bi,bj) = gT(i,j,kLev,bi,bj) |
351 |
& -curRecipTau*(theta(i,j,Klev,bi,bj)-thetaRef(i,j,kLev,bi,bj)) |
352 |
C & *0.0000D0 |
353 |
ENDDO |
354 |
ENDDO |
355 |
|
356 |
|
357 |
RETURN |
358 |
END |
359 |
CBOP |
360 |
C !ROUTINE: EXTERNAL_FORCING_S |
361 |
C !INTERFACE: |
362 |
SUBROUTINE EXTERNAL_FORCING_S( |
363 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
364 |
I myCurrentTime,myThid) |
365 |
|
366 |
C !DESCRIPTION: \bv |
367 |
C *==========================================================* |
368 |
C | S/R EXTERNAL_FORCING_S |
369 |
C | o Contains problem specific forcing for merid velocity. |
370 |
C *==========================================================* |
371 |
C | Adds terms to gS for forcing by external sources |
372 |
C | e.g. fresh-water flux, climatalogical relaxation....... |
373 |
C *==========================================================* |
374 |
C \ev |
375 |
|
376 |
C !USES: |
377 |
IMPLICIT NONE |
378 |
C == Global data == |
379 |
#include "SIZE.h" |
380 |
#include "EEPARAMS.h" |
381 |
#include "PARAMS.h" |
382 |
#include "GRID.h" |
383 |
#include "DYNVARS.h" |
384 |
#include "FFIELDS.h" |
385 |
|
386 |
C !INPUT/OUTPUT PARAMETERS: |
387 |
C == Routine arguments == |
388 |
C iMin - Working range of tile for applying forcing. |
389 |
C iMax |
390 |
C jMin |
391 |
C jMax |
392 |
C kLev |
393 |
INTEGER iMin, iMax, jMin, jMax, kLev, bi, bj |
394 |
_RL myCurrentTime |
395 |
INTEGER myThid |
396 |
|
397 |
C !LOCAL VARIABLES: |
398 |
C == Local variables == |
399 |
C Loop counters |
400 |
INTEGER I, J |
401 |
C number of surface interface layer |
402 |
INTEGER kSurface |
403 |
C Cheap sponge layer |
404 |
_RS recip_tauSp(5) |
405 |
INTEGER spWidth |
406 |
_RS curRecipTau |
407 |
INTEGER jFromNBndy, jFromSBndy, |
408 |
& jNorthBndy, jSouthBndy, jG |
409 |
|
410 |
CEOP |
411 |
|
412 |
if ( buoyancyRelation .eq. 'OCEANICP' ) then |
413 |
kSurface = Nr |
414 |
else |
415 |
kSurface = 1 |
416 |
endif |
417 |
|
418 |
|
419 |
C-- Forcing term |
420 |
C Add fresh-water in top-layer |
421 |
IF ( kLev .EQ. kSurface ) THEN |
422 |
DO j=jMin,jMax |
423 |
DO i=iMin,iMax |
424 |
gS(i,j,kLev,bi,bj)=gS(i,j,kLev,bi,bj) |
425 |
& +maskC(i,j,kLev,bi,bj)*surfaceTendencyS(i,j,bi,bj) |
426 |
ENDDO |
427 |
ENDDO |
428 |
ENDIF |
429 |
|
430 |
#if (defined (ALLOW_OBCS) && defined (ALLOW_OBCS_SPONGE)) |
431 |
IF (useOBCS) THEN |
432 |
CALL OBCS_SPONGE_S( |
433 |
I iMin, iMax, jMin, jMax,bi,bj,kLev, |
434 |
I myCurrentTime,myThid) |
435 |
ENDIF |
436 |
#endif |
437 |
|
438 |
C-- Create a sponge layer where flow is linearly damped over entire water column |
439 |
C Damping time scale decreases away from boundary so that |
440 |
C tau = 1 day, 5days, 10days, 20days, 60days |
441 |
spWidth = 5 |
442 |
recip_tauSp(1) = 1./(86400.*1. ) |
443 |
recip_tauSp(2) = 1./(86400.*5. ) |
444 |
recip_tauSp(3) = 1./(86400.*10.) |
445 |
recip_tauSp(4) = 1./(86400.*20.) |
446 |
recip_tauSp(5) = 1./(86400.*60.) |
447 |
jSouthBndy = 5 |
448 |
jNorthBndy = ny-5+1 |
449 |
DO j=jMin,jMax |
450 |
DO i=iMin,iMax |
451 |
jG = myYGlobalLo+(bj-1)*sNy+j-1 |
452 |
jFromNBndy = jNorthBndy-jG |
453 |
jFromSBndy = jSouthBndy-jG |
454 |
curRecipTau=0. |
455 |
IF ( jFromNBndy .LE. 0 ) THEN |
456 |
curRecipTau = recip_tauSp(jFromNBndy+5) |
457 |
ENDIF |
458 |
IF ( jFromSBndy .GE. 0 ) THEN |
459 |
curRecipTau = recip_tauSp(-(jFromSBndy-5)) |
460 |
ENDIF |
461 |
gS(i,j,kLev,bi,bj) = gS(i,j,kLev,bi,bj) |
462 |
& -curRecipTau*(salt(i,j,Klev,bi,bj)-saltRef(i,j,kLev,bi,bj)) |
463 |
C & *0.0000D0 |
464 |
ENDDO |
465 |
ENDDO |
466 |
|
467 |
RETURN |
468 |
END |