| 1 |
C $Header: /u/gcmpack/MITgcm_contrib/verification_other/shelfice_remeshing/code/shelfice_update_masks_JJ.F,v 1.2 2016/01/05 16:04:36 dgoldberg Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "SHELFICE_OPTIONS.h" |
| 5 |
#ifdef ALLOW_CTRL |
| 6 |
# include "CTRL_OPTIONS.h" |
| 7 |
#endif |
| 8 |
|
| 9 |
CBOP |
| 10 |
C !ROUTINE: SHELFICE_UPDATE_MASKS |
| 11 |
C !INTERFACE: |
| 12 |
SUBROUTINE SHELFICE_UPDATE_MASKS_JJ( |
| 13 |
I rF, recip_drF, |
| 14 |
U hFacC, |
| 15 |
I myThid ) |
| 16 |
C !DESCRIPTION: \bv |
| 17 |
C *==========================================================* |
| 18 |
C | SUBROUTINE SHELFICE_UPDATE_MASKS |
| 19 |
C | o modify topography factor hFacC according to ice shelf |
| 20 |
C | topography |
| 21 |
C *==========================================================* |
| 22 |
C \ev |
| 23 |
|
| 24 |
C !USES: |
| 25 |
IMPLICIT NONE |
| 26 |
C === Global variables === |
| 27 |
#include "SIZE.h" |
| 28 |
#include "EEPARAMS.h" |
| 29 |
#include "PARAMS.h" |
| 30 |
#include "DYNVARS.h" |
| 31 |
#include "SURFACE.h" |
| 32 |
#ifdef ALLOW_SHELFICE |
| 33 |
# include "SHELFICE.h" |
| 34 |
#endif /* ALLOW_SHELFICE */ |
| 35 |
|
| 36 |
C !INPUT/OUTPUT PARAMETERS: |
| 37 |
C == Routine arguments == |
| 38 |
C rF :: R-coordinate of face of cell (units of r). |
| 39 |
C recip_drF :: Recipricol of cell face separation along Z axis ( units of r ). |
| 40 |
C hFacC :: Fraction of cell in vertical which is open (see GRID.h) |
| 41 |
C myThid :: Number of this instance of SHELFICE_UPDATE_MASKS |
| 42 |
_RS rF (1:Nr+1) |
| 43 |
_RS recip_drF (1:Nr) |
| 44 |
_RS hFacC (1-OLx:sNx+OLx,1-OLy:sNy+OLy,1:Nr,nSx,nSy) |
| 45 |
|
| 46 |
INTEGER myThid |
| 47 |
|
| 48 |
#ifdef ALLOW_SHELFICE |
| 49 |
C !LOCAL VARIABLES: |
| 50 |
C == Local variables == |
| 51 |
C bi,bj :: tile indices |
| 52 |
C I,J,K :: Loop counters |
| 53 |
INTEGER bi, bj |
| 54 |
INTEGER I, J, K |
| 55 |
_RL hFacCtmp |
| 56 |
_RL hFacMnSz |
| 57 |
|
| 58 |
C- Update etaN |
| 59 |
DO bj = myByLo(myThid), myByHi(myThid) |
| 60 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
| 61 |
DO J = 1,sNy |
| 62 |
DO I = 1,sNx |
| 63 |
IF ( R_shelfice(I,J,bi,bj) .LT. 0.0) THEN |
| 64 |
IF (etah(I,J,bi,bj) .GT. SHELFICESplitThreshold ) THEN |
| 65 |
K = MAX(1,kTopC(I,J,bi,bj)) |
| 66 |
etaN(I,J,bi,bj) = etaN(I,J,bi,bj) - 1/recip_drF(K) |
| 67 |
etaH(I,J,bi,bj) = etaH(I,J,bi,bj) - 1/recip_drF(K) |
| 68 |
R_shelfIce(I,J,bi,bj) = R_shelfIce(I,J,bi,bj)+1/recip_drF(K) |
| 69 |
uVel(I,J,K-1,bi,bj)=uVel(I,J,K,bi,bj) |
| 70 |
uVel(I+1,J,K-1,bi,bj)=uVel(I+1,J,K,bi,bj) |
| 71 |
vVel(I,J,K-1,bi,bj)=vVel(I,J,K,bi,bj) |
| 72 |
vVel(I,J+1,K-1,bi,bj)=vVel(I,J+1,K,bi,bj) |
| 73 |
|
| 74 |
gvnm1(I,J,K-1,bi,bj)=gvnm1(I,J,K,bi,bj) |
| 75 |
gvnm1(I,J+1,K-1,bi,bj)=gvnm1(I,J+1,K,bi,bj) |
| 76 |
gunm1(I,J,K-1,bi,bj)=gunm1(I,J,K,bi,bj) |
| 77 |
gunm1(I+1,J,K-1,bi,bj)=gunm1(I,J,K,bi,bj) |
| 78 |
|
| 79 |
salt(I,J,K-1,bi,bj)=salt(I,J,K,bi,bj) |
| 80 |
theta(I,J,K-1,bi,bj)=theta(I,J,K,bi,bj) |
| 81 |
hfacC(I,J,K,bi,bj)=1.0 |
| 82 |
Rmin_surf(I,J,bi,bj) = Rmin_surf(I,J,bi,bj)+1/recip_drF(K) |
| 83 |
|
| 84 |
ENDIF |
| 85 |
IF (R_shelfice(i,j,bi,bj) .NE. R_grounding(i,j,bi,bj))THEN |
| 86 |
IF (etah(I,J,bi,bj) .LT. SHELFICEMergeThreshold ) THEN |
| 87 |
K = MAX(1,kTopC(I,J,bi,bj)) |
| 88 |
|
| 89 |
salt(I,J,K+1,bi,bj)=((salt(I,J,K,bi,bj)*(1/recip_drF(K)+ |
| 90 |
& etaN(I,J,bi,bj)))+(salt(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/( |
| 91 |
& 1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
| 92 |
|
| 93 |
theta(I,J,K+1,bi,bj)=((theta(I,J,K,bi,bj)*(1/recip_drF(K)+ |
| 94 |
& etaN(I,J,bi,bj)))+(theta(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/( |
| 95 |
& 1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
| 96 |
|
| 97 |
vVel(I,J,K+1,bi,bj)=((vVel(I,J,K,bi,bj)*(1/recip_drF(K)+ |
| 98 |
& etaN(I,J,bi,bj)))+(vVel(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/( |
| 99 |
& 1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
| 100 |
|
| 101 |
vVel(I,J+1,K+1,bi,bj)=((vVel(I,J+1,K,bi,bj)*(1/recip_drF(K)+ |
| 102 |
& etaN(I,J,bi,bj)))+(vVel(I,J+1,K+1,bi,bj)*1/recip_drF(K+1)))/ |
| 103 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
| 104 |
|
| 105 |
uVel(I,J,K+1,bi,bj)=((uVel(I,J,K,bi,bj)*(1/recip_drF(K)+ |
| 106 |
& etaN(I,J,bi,bj)))+(uVel(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/( |
| 107 |
& 1/recip_ drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
| 108 |
|
| 109 |
uVel(I+1,J,K+1,bi,bj)=((uVel(I+1,J,K,bi,bj)*(1/recip_drF(K)+ |
| 110 |
& etaN(I,J,bi,bj)))+(uVel(I+1,J,K+1,bi,bj)*1/recip_drF(K+1)))/ |
| 111 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
| 112 |
|
| 113 |
etaN(I,J,bi,bj) = etaN(I,J,bi,bj) +1/recip_drF(K) |
| 114 |
etaH(I,J,bi,bj) = etaH(I,J,bi,bj) +1/recip_drF(K) |
| 115 |
R_shelfice(I,J,bi,bj) = R_shelfice(I,J,bi,bj) -1/recip_drF(K) |
| 116 |
Rmin_surf(I,J,bi,bj) = Rmin_surf(I,J,bi,bj) -1/recip_drF(K) |
| 117 |
|
| 118 |
gunm1(I+1,J,K+1,bi,bj)=((gunm1(I+1,J,K,bi,bj)*(1/recip_drF(K)+ |
| 119 |
& etaN(I,J,bi,bj)))+(gunm1(I+1,J,K+1,bi,bj)*1/recip_drF(K+1)))/ |
| 120 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
| 121 |
|
| 122 |
gunm1(I,J,K+1,bi,bj)=((gunm1(I,J,K,bi,bj)*(1/recip_drF(K)+ |
| 123 |
& etaN(I,J,bi,bj)))+(gunm1(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/ |
| 124 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
| 125 |
|
| 126 |
gvnm1(I,J+1,K+1,bi,bj)=((gvnm1(I,J+1,K,bi,bj)*(1/recip_drF(K)+ |
| 127 |
& etaN(I,J,bi,bj)))+(gvnm1(I,J+1,K+1,bi,bj)*1/recip_drF(K+1)))/ |
| 128 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
| 129 |
|
| 130 |
|
| 131 |
gvnm1(I,J,K+1,bi,bj)=((gvnm1(I,J,K,bi,bj)*(1/recip_drF(K)+ |
| 132 |
& etaN(I,J,bi,bj)))+(gvnm1(I,J,K+1,bi,bj)*1/recip_drF(K+1)))/ |
| 133 |
& (1/recip_drF(K)+1/recip_drF(K+1)+etaN(I,J,bi,bj)) |
| 134 |
|
| 135 |
hfacC(I,J,K,bi,bj)=1.0 |
| 136 |
ENDIF |
| 137 |
ENDIF |
| 138 |
ENDIF |
| 139 |
ENDDO |
| 140 |
ENDDO |
| 141 |
ENDDO |
| 142 |
ENDDO |
| 143 |
|
| 144 |
|
| 145 |
DO bj = myByLo(myThid), myByHi(myThid) |
| 146 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
| 147 |
DO J = 1,sNy |
| 148 |
DO I = 1,sNx |
| 149 |
etaH(I,J,bi,bj)=etaN(I,J,bi,bj) |
| 150 |
etaHnm1(I,J,bi,bj)=etaH(I,J,bi,bj) |
| 151 |
ENDDO |
| 152 |
ENDDO |
| 153 |
ENDDO |
| 154 |
ENDDO |
| 155 |
|
| 156 |
|
| 157 |
|
| 158 |
DO bj = myByLo(myThid), myByHi(myThid) |
| 159 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
| 160 |
DO J = 1,sNy |
| 161 |
DO I = 1,sNx |
| 162 |
K = MAX(1,kTopC(I,J,bi,bj)) |
| 163 |
hfac_surfc(I,J,bi,bj)= ((etaH(I,J,bi,bJ) +(1/recip_drF(K))) |
| 164 |
& *recip_drF(K)) |
| 165 |
ENDDO |
| 166 |
ENDDO |
| 167 |
ENDDO |
| 168 |
ENDDO |
| 169 |
|
| 170 |
|
| 171 |
CALL EXCH_XYZ_RL(salt,myThid) |
| 172 |
CALL EXCH_XYZ_RL(theta,myThid) |
| 173 |
CALL EXCH_XYZ_RL(uVel,myThid) |
| 174 |
CALL EXCH_XYZ_RL(vVel,myThid) |
| 175 |
CALL EXCH_XYZ_RL(gunm1,myThid) |
| 176 |
CALL EXCH_XYZ_RL(gvnm1,myThid) |
| 177 |
CALL EXCH_XYZ_RL(hFacC,myThid) |
| 178 |
|
| 179 |
CALL EXCH_XY_RL(EtaN,myThid) |
| 180 |
CALL EXCH_XY_RL(EtaH,myThid) |
| 181 |
CALL EXCH_XY_RL(EtaHnm1,myThid) |
| 182 |
CALL EXCH_XY_RL(R_shelfice,myThid) |
| 183 |
CALL EXCH_XY_RL(Rmin_surf,myThid) |
| 184 |
CALL EXCH_XY_RL(hFac_surfC,myThid) |
| 185 |
|
| 186 |
|
| 187 |
C- fill in the overlap (+ BARRIER): |
| 188 |
_EXCH_XY_RS(R_shelfIce, myThid ) |
| 189 |
|
| 190 |
C-- Calculate lopping factor hFacC : Remove part outside of the domain |
| 191 |
C taking into account the Reference (=at rest) Surface Position Ro_shelfIce |
| 192 |
DO bj=myByLo(myThid), myByHi(myThid) |
| 193 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
| 194 |
|
| 195 |
C-- compute contributions of shelf ice to looping factors |
| 196 |
DO K=1, Nr |
| 197 |
hFacMnSz=max( hFacMin, min(hFacMinDr*recip_drF(k),1. _d 0) ) |
| 198 |
DO J=1-OLy,sNy+OLy |
| 199 |
DO I=1-OLx,sNx+OLx |
| 200 |
C o Non-dimensional distance between grid boundary and model surface |
| 201 |
hFacCtmp = (rF(k)-R_shelfIce(I,J,bi,bj))*recip_drF(K) |
| 202 |
C o Reduce the previous fraction : substract the outside part. |
| 203 |
hFacCtmp = hFacC(I,J,K,bi,bj) - max( hFacCtmp, 0. _d 0) |
| 204 |
C o set to zero if empty Column : |
| 205 |
hFacCtmp = max( hFacCtmp, 0. _d 0) |
| 206 |
C o Impose minimum fraction and/or size (dimensional) |
| 207 |
IF (hFacCtmp.LT.hFacMnSz) THEN |
| 208 |
IF (hFacCtmp.LT.hFacMnSz*0.5) THEN |
| 209 |
hFacC(I,J,K,bi,bj)=0. |
| 210 |
ELSE |
| 211 |
hFacC(I,J,K,bi,bj)=hFacMnSz |
| 212 |
ENDIF |
| 213 |
ELSE |
| 214 |
hFacC(I,J,K,bi,bj)=hFacCtmp |
| 215 |
ENDIF |
| 216 |
ENDDO |
| 217 |
ENDDO |
| 218 |
ENDDO |
| 219 |
|
| 220 |
#ifdef ALLOW_SHIFWFLX_CONTROL |
| 221 |
C maskSHI is a hack to play along with the general ctrl-package |
| 222 |
C infrastructure, where only the k=1 layer of a 3D mask is used |
| 223 |
C for 2D fields. We cannot use maskInC instead, because routines |
| 224 |
C like ctrl_get_gen and ctrl_set_unpack_xy require 3D masks. |
| 225 |
DO K=1,Nr |
| 226 |
DO J=1-OLy,sNy+OLy |
| 227 |
DO I=1-OLx,sNx+OLx |
| 228 |
maskSHI(I,J,K,bi,bj) = 0. _d 0 |
| 229 |
ENDDO |
| 230 |
ENDDO |
| 231 |
ENDDO |
| 232 |
DO K=1,Nr |
| 233 |
DO J=1-OLy,sNy+OLy |
| 234 |
DO I=1-OLx,sNx+OLx |
| 235 |
IF ( ABS(R_shelfice(I,J,bi,bj)) .GT. 0. _d 0 |
| 236 |
& .AND. hFacC(I,J,K,bi,bj) .NE. 0. _d 0 ) THEN |
| 237 |
maskSHI(I,J,K,bi,bj) = 1. _d 0 |
| 238 |
maskSHI(I,J,1,bi,bj) = 1. _d 0 |
| 239 |
ENDIF |
| 240 |
ENDDO |
| 241 |
ENDDO |
| 242 |
ENDDO |
| 243 |
#endif /* ALLOW_SHIFWFLX_CONTROL */ |
| 244 |
|
| 245 |
C - end bi,bj loops. |
| 246 |
ENDDO |
| 247 |
ENDDO |
| 248 |
#endif /* ALLOW_SHELFICE */ |
| 249 |
RETURN |
| 250 |
END |