1 |
C $Header: /u/gcmpack/MITgcm_contrib/shelfice_remeshing/AUTO/code/ini_masks_etc_JJ.F,v 1.3 2015/10/12 11:34:28 dgoldberg Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "PACKAGES_CONFIG.h" |
5 |
#include "CPP_OPTIONS.h" |
6 |
|
7 |
CBOP |
8 |
C !ROUTINE: INI_MASKS_ETC |
9 |
C !INTERFACE: |
10 |
SUBROUTINE INI_MASKS_ETC_JJ( myThid ) |
11 |
C !DESCRIPTION: \bv |
12 |
C *==========================================================* |
13 |
C | SUBROUTINE INI_MASKS_ETC |
14 |
C | o Initialise masks and topography factors |
15 |
C *==========================================================* |
16 |
C | These arrays are used throughout the code and describe |
17 |
C | the topography of the domain through masks (0s and 1s) |
18 |
C | and fractional height factors (0<hFac<1). The latter |
19 |
C | distinguish between the lopped-cell and full-step |
20 |
C | topographic representations. |
21 |
C *==========================================================* |
22 |
C \ev |
23 |
|
24 |
C !USES: |
25 |
IMPLICIT NONE |
26 |
C === Global variables === |
27 |
#include "SIZE.h" |
28 |
#include "EEPARAMS.h" |
29 |
#include "PARAMS.h" |
30 |
#include "GRID.h" |
31 |
#include "DYNVARS.h" |
32 |
#ifdef NONLIN_FRSURF |
33 |
# include "SURFACE.h" |
34 |
#endif /* NONLIN_FRSURF */ |
35 |
|
36 |
C !INPUT/OUTPUT PARAMETERS: |
37 |
C == Routine arguments == |
38 |
C myThid :: Number of this instance of INI_MASKS_ETC |
39 |
INTEGER myThid |
40 |
|
41 |
C !LOCAL VARIABLES: |
42 |
C == Local variables == |
43 |
C bi,bj :: tile indices |
44 |
C i,j,k :: Loop counters |
45 |
C tmpfld :: Temporary array used to compute & write Total Depth |
46 |
_RS tmpfld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
47 |
|
48 |
_RS rsurftmp(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
49 |
|
50 |
INTEGER bi, bj |
51 |
INTEGER i, j, k, ks |
52 |
_RL hFacCtmp |
53 |
_RL hFacMnSz |
54 |
_RS hhm, hhp |
55 |
CEOP |
56 |
|
57 |
|
58 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
59 |
|
60 |
IF ( selectSigmaCoord.EQ.0 ) THEN |
61 |
C--- r-coordinate with partial-cell or full cell mask |
62 |
|
63 |
C-- Calculate lopping factor hFacC : over-estimate the part inside of the domain |
64 |
C taking into account the lower_R Boundary (Bathymetrie / Top of Atmos) |
65 |
DO bj=myByLo(myThid), myByHi(myThid) |
66 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
67 |
DO k=1, Nr |
68 |
hFacMnSz=max( hFacMin, min(hFacMinDr*recip_drF(k),1. _d 0) ) |
69 |
DO j=1-OLy,sNy+OLy |
70 |
DO i=1-OLx,sNx+OLx |
71 |
C o Non-dimensional distance between grid bound. and domain lower_R bound. |
72 |
hFacCtmp = (rF(k)-R_low(i,j,bi,bj))*recip_drF(k) |
73 |
C o Select between, closed, open or partial (0,1,0-1) |
74 |
hFacCtmp=min( max( hFacCtmp, 0. _d 0) , 1. _d 0) |
75 |
C o Impose minimum fraction and/or size (dimensional) |
76 |
IF (hFacCtmp.LT.hFacMnSz) THEN |
77 |
IF (hFacCtmp.LT.hFacMnSz*0.5) THEN |
78 |
hFacC(i,j,k,bi,bj)=0. |
79 |
ELSE |
80 |
hFacC(i,j,k,bi,bj)=hFacMnSz |
81 |
ENDIF |
82 |
ELSE |
83 |
hFacC(i,j,k,bi,bj)=hFacCtmp |
84 |
ENDIF |
85 |
ENDDO |
86 |
ENDDO |
87 |
ENDDO |
88 |
|
89 |
C- Re-calculate lower-R Boundary position, taking into account hFacC |
90 |
DO j=1-OLy,sNy+OLy |
91 |
DO i=1-OLx,sNx+OLx |
92 |
R_low(i,j,bi,bj) = rF(1) |
93 |
ENDDO |
94 |
ENDDO |
95 |
DO k=Nr,1,-1 |
96 |
DO j=1-OLy,sNy+OLy |
97 |
DO i=1-OLx,sNx+OLx |
98 |
R_low(i,j,bi,bj) = R_low(i,j,bi,bj) |
99 |
& - drF(k)*hFacC(i,j,k,bi,bj) |
100 |
ENDDO |
101 |
ENDDO |
102 |
ENDDO |
103 |
C- end bi,bj loops. |
104 |
ENDDO |
105 |
ENDDO |
106 |
|
107 |
C-- Calculate lopping factor hFacC : Remove part outside of the domain |
108 |
C taking into account the Reference (=at rest) Surface Position Ro_surf |
109 |
DO bj=myByLo(myThid), myByHi(myThid) |
110 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
111 |
DO k=1, Nr |
112 |
hFacMnSz=max( hFacMin, min(hFacMinDr*recip_drF(k),1. _d 0) ) |
113 |
DO j=1-OLy,sNy+OLy |
114 |
DO i=1-OLx,sNx+OLx |
115 |
C JJ HACK |
116 |
Ro_surf(i,j,bi,bj)=0.0 |
117 |
C o Non-dimensional distance between grid boundary and model surface |
118 |
hFacCtmp = (rF(k)-Ro_surf(i,j,bi,bj))*recip_drF(k) |
119 |
C o Reduce the previous fraction : substract the outside part. |
120 |
hFacCtmp = hFacC(i,j,k,bi,bj) - max( hFacCtmp, 0. _d 0) |
121 |
C o set to zero if empty Column : |
122 |
hFacCtmp = max( hFacCtmp, 0. _d 0) |
123 |
C o Impose minimum fraction and/or size (dimensional) |
124 |
IF (hFacCtmp.LT.hFacMnSz) THEN |
125 |
IF (hFacCtmp.LT.hFacMnSz*0.5) THEN |
126 |
hFacC(i,j,k,bi,bj)=0. |
127 |
ELSE |
128 |
hFacC(i,j,k,bi,bj)=hFacMnSz |
129 |
ENDIF |
130 |
ELSE |
131 |
hFacC(i,j,k,bi,bj)=hFacCtmp |
132 |
ENDIF |
133 |
ENDDO |
134 |
ENDDO |
135 |
ENDDO |
136 |
ENDDO |
137 |
ENDDO |
138 |
|
139 |
#ifdef ALLOW_SHELFICE |
140 |
|
141 |
IF ( useShelfIce ) THEN |
142 |
C-- Modify lopping factor hFacC : Remove part outside of the domain |
143 |
C taking into account the Reference (=at rest) Surface Position Ro_shelfIce |
144 |
CALL SHELFICE_UPDATE_MASKS_JJ( |
145 |
I rF, recip_drF, |
146 |
U hFacC, |
147 |
I myThid ) |
148 |
ENDIF |
149 |
#endif /* ALLOW_SHELFICE */ |
150 |
|
151 |
|
152 |
|
153 |
C- Re-calculate Reference surface position, taking into account hFacC |
154 |
C initialize Total column fluid thickness and surface k index |
155 |
C Note: if no fluid (continent) ==> kSurf = Nr+1 |
156 |
DO bj=myByLo(myThid), myByHi(myThid) |
157 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
158 |
DO j=1-OLy,sNy+OLy |
159 |
DO i=1-OLx,sNx+OLx |
160 |
tmpfld(i,j,bi,bj) = 0. |
161 |
kSurfC(i,j,bi,bj) = Nr+1 |
162 |
c maskH(i,j,bi,bj) = 0. |
163 |
Ro_surf(i,j,bi,bj) = R_low(i,j,bi,bj) |
164 |
DO k=Nr,1,-1 |
165 |
Ro_surf(i,j,bi,bj) = Ro_surf(i,j,bi,bj) |
166 |
& + drF(k)*hFacC(i,j,k,bi,bj) |
167 |
IF (hFacC(i,j,k,bi,bj).NE.0.) THEN |
168 |
kSurfC(i,j,bi,bj) = k |
169 |
c maskH(i,j,bi,bj) = 1. |
170 |
tmpfld(i,j,bi,bj) = tmpfld(i,j,bi,bj) + 1. |
171 |
ENDIF |
172 |
ENDDO |
173 |
kLowC(i,j,bi,bj) = 0 |
174 |
DO k= 1, Nr |
175 |
IF (hFacC(i,j,k,bi,bj).NE.0) THEN |
176 |
kLowC(i,j,bi,bj) = k |
177 |
ENDIF |
178 |
ENDDO |
179 |
maskInC(i,j,bi,bj)= 0. |
180 |
IF ( kSurfC(i,j,bi,bj).LE.Nr ) maskInC(i,j,bi,bj)= 1. |
181 |
ENDDO |
182 |
ENDDO |
183 |
C- end bi,bj loops. |
184 |
ENDDO |
185 |
ENDDO |
186 |
|
187 |
|
188 |
IF ( printDomain ) THEN |
189 |
c CALL PLOT_FIELD_XYRS( tmpfld, |
190 |
c & 'Model Depths K Index' , -1, myThid ) |
191 |
CALL PLOT_FIELD_XYRS(R_low, |
192 |
& 'Model R_low (ini_masks_etc)', -1, myThid ) |
193 |
CALL PLOT_FIELD_XYRS(Ro_surf, |
194 |
& 'Model Ro_surf (ini_masks_etc)', -1, myThid ) |
195 |
ENDIF |
196 |
|
197 |
C-- Calculate quantities derived from XY depth map |
198 |
DO bj = myByLo(myThid), myByHi(myThid) |
199 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
200 |
DO j=1-OLy,sNy+OLy |
201 |
DO i=1-OLx,sNx+OLx |
202 |
C Total fluid column thickness (r_unit) : |
203 |
c Rcolumn(i,j,bi,bj)= Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj) |
204 |
tmpfld(i,j,bi,bj) = Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj) |
205 |
C Inverse of fluid column thickness (1/r_unit) |
206 |
IF ( tmpfld(i,j,bi,bj) .LE. 0. ) THEN |
207 |
recip_Rcol(i,j,bi,bj) = 0. |
208 |
ELSE |
209 |
recip_Rcol(i,j,bi,bj) = 1. _d 0 / tmpfld(i,j,bi,bj) |
210 |
ENDIF |
211 |
ENDDO |
212 |
ENDDO |
213 |
ENDDO |
214 |
ENDDO |
215 |
|
216 |
C-- hFacW and hFacS (at U and V points) |
217 |
DO bj=myByLo(myThid), myByHi(myThid) |
218 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
219 |
DO k=1, Nr |
220 |
DO j=1-OLy,sNy+OLy |
221 |
hFacW(1-OLx,j,k,bi,bj)= 0. |
222 |
DO i=2-OLx,sNx+OLx |
223 |
hFacW(i,j,k,bi,bj)= |
224 |
& MIN(hFacC(i,j,k,bi,bj),hFacC(i-1,j,k,bi,bj)) |
225 |
ENDDO |
226 |
ENDDO |
227 |
DO i=1-OLx,sNx+OLx |
228 |
hFacS(i,1-OLy,k,bi,bj)= 0. |
229 |
ENDDO |
230 |
DO j=2-OLy,sNy+oly |
231 |
DO i=1-OLx,sNx+OLx |
232 |
hFacS(i,j,k,bi,bj)= |
233 |
& MIN(hFacC(i,j,k,bi,bj),hFacC(i,j-1,k,bi,bj)) |
234 |
ENDDO |
235 |
ENDDO |
236 |
ENDDO |
237 |
C rLow & reference rSurf at Western & Southern edges (U and V points) |
238 |
i = 1-OLx |
239 |
DO j=1-OLy,sNy+OLy |
240 |
rLowW (i,j,bi,bj) = 0. |
241 |
rSurfW(i,j,bi,bj) = 0. |
242 |
ENDDO |
243 |
j = 1-OLy |
244 |
DO i=1-OLx,sNx+OLx |
245 |
rLowS (i,j,bi,bj) = 0. |
246 |
rSurfS(i,j,bi,bj) = 0. |
247 |
ENDDO |
248 |
DO j=1-OLy,sNy+OLy |
249 |
DO i=2-OLx,sNx+OLx |
250 |
rLowW(i,j,bi,bj) = |
251 |
& MAX( R_low(i-1,j,bi,bj), R_low(i,j,bi,bj) ) |
252 |
rSurfW(i,j,bi,bj) = |
253 |
& MIN( Ro_surf(i-1,j,bi,bj), Ro_surf(i,j,bi,bj) ) |
254 |
rSurfW(i,j,bi,bj) = |
255 |
& MAX( rSurfW(i,j,bi,bj), rLowW(i,j,bi,bj) ) |
256 |
ENDDO |
257 |
ENDDO |
258 |
DO j=2-OLy,sNy+OLy |
259 |
DO i=1-OLx,sNx+OLx |
260 |
rLowS(i,j,bi,bj) = |
261 |
& MAX( R_low(i,j-1,bi,bj), R_low(i,j,bi,bj) ) |
262 |
rSurfS(i,j,bi,bj) = |
263 |
& MIN( Ro_surf(i,j-1,bi,bj), Ro_surf(i,j,bi,bj) ) |
264 |
rSurfS(i,j,bi,bj) = |
265 |
& MAX( rSurfS(i,j,bi,bj), rLowS(i,j,bi,bj) ) |
266 |
ENDDO |
267 |
ENDDO |
268 |
C- end bi,bj loops. |
269 |
ENDDO |
270 |
ENDDO |
271 |
CALL EXCH_UV_XYZ_RS(hFacW,hFacS,.FALSE.,myThid) |
272 |
CALL EXCH_UV_XY_RS( rSurfW, rSurfS, .FALSE., myThid ) |
273 |
CALL EXCH_UV_XY_RS( rLowW, rLowS, .FALSE., myThid ) |
274 |
|
275 |
C-- Addtional closing of Western and Southern grid-cell edges: for example, |
276 |
C a) might add some "thin walls" in specific location |
277 |
C-- b) close non-periodic N & S boundaries of lat-lon grid at the N/S poles. |
278 |
CALL ADD_WALLS2MASKS( myThid ) |
279 |
|
280 |
C-- Calculate surface k index for interface W & S (U & V points) |
281 |
DO bj=myByLo(myThid), myByHi(myThid) |
282 |
DO bi=myBxLo(myThid), myBxHi(myThid) |
283 |
DO j=1-OLy,sNy+OLy |
284 |
DO i=1-OLx,sNx+OLx |
285 |
kSurfW(i,j,bi,bj) = Nr+1 |
286 |
kSurfS(i,j,bi,bj) = Nr+1 |
287 |
DO k=Nr,1,-1 |
288 |
IF (hFacW(i,j,k,bi,bj).NE.0.) kSurfW(i,j,bi,bj) = k |
289 |
IF (hFacS(i,j,k,bi,bj).NE.0.) kSurfS(i,j,bi,bj) = k |
290 |
ENDDO |
291 |
maskInW(i,j,bi,bj)= 0. |
292 |
IF ( kSurfW(i,j,bi,bj).LE.Nr ) maskInW(i,j,bi,bj)= 1. |
293 |
maskInS(i,j,bi,bj)= 0. |
294 |
IF ( kSurfS(i,j,bi,bj).LE.Nr ) maskInS(i,j,bi,bj)= 1. |
295 |
ENDDO |
296 |
ENDDO |
297 |
ENDDO |
298 |
ENDDO |
299 |
|
300 |
ELSE |
301 |
#ifndef DISABLE_SIGMA_CODE |
302 |
C--- Sigma and Hybrid-Sigma set-up: |
303 |
CALL INI_SIGMA_HFAC( myThid ) |
304 |
#endif /* DISABLE_SIGMA_CODE */ |
305 |
ENDIF |
306 |
|
307 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
308 |
|
309 |
C-- Write to disk: Total Column Thickness & hFac(C,W,S): |
310 |
C This I/O is now done in write_grid.F |
311 |
c CALL WRITE_FLD_XY_RS( 'Depth',' ',tmpfld,0,myThid) |
312 |
c CALL WRITE_FLD_XYZ_RS( 'hFacC',' ',hFacC,0,myThid) |
313 |
c CALL WRITE_FLD_XYZ_RS( 'hFacW',' ',hFacW,0,myThid) |
314 |
c CALL WRITE_FLD_XYZ_RS( 'hFacS',' ',hFacS,0,myThid) |
315 |
|
316 |
IF ( printDomain ) THEN |
317 |
CALL PLOT_FIELD_XYZRS( hFacC, 'hFacC' , Nr, 0, myThid ) |
318 |
CALL PLOT_FIELD_XYZRS( hFacW, 'hFacW' , Nr, 0, myThid ) |
319 |
CALL PLOT_FIELD_XYZRS( hFacS, 'hFacS' , Nr, 0, myThid ) |
320 |
ENDIF |
321 |
|
322 |
C-- Masks and reciprocals of hFac[CWS] |
323 |
DO bj = myByLo(myThid), myByHi(myThid) |
324 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
325 |
DO k=1,Nr |
326 |
DO j=1-OLy,sNy+OLy |
327 |
DO i=1-OLx,sNx+OLx |
328 |
IF (hFacC(i,j,k,bi,bj) .NE. 0. ) THEN |
329 |
recip_hFacC(i,j,k,bi,bj) = 1. _d 0 / hFacC(i,j,k,bi,bj) |
330 |
maskC(i,j,k,bi,bj) = 1. |
331 |
ELSE |
332 |
recip_hFacC(i,j,k,bi,bj) = 0. |
333 |
maskC(i,j,k,bi,bj) = 0. |
334 |
ENDIF |
335 |
IF (hFacW(i,j,k,bi,bj) .NE. 0. ) THEN |
336 |
recip_hFacW(i,j,k,bi,bj) = 1. _d 0 / hFacW(i,j,k,bi,bj) |
337 |
maskW(i,j,k,bi,bj) = 1. |
338 |
ELSE |
339 |
recip_hFacW(i,j,k,bi,bj) = 0. |
340 |
maskW(i,j,k,bi,bj) = 0. |
341 |
ENDIF |
342 |
IF (hFacS(i,j,k,bi,bj) .NE. 0. ) THEN |
343 |
recip_hFacS(i,j,k,bi,bj) = 1. _d 0 / hFacS(i,j,k,bi,bj) |
344 |
maskS(i,j,k,bi,bj) = 1. |
345 |
ELSE |
346 |
recip_hFacS(i,j,k,bi,bj) = 0. |
347 |
maskS(i,j,k,bi,bj) = 0. |
348 |
ENDIF |
349 |
ENDDO |
350 |
ENDDO |
351 |
ENDDO |
352 |
#ifdef NONLIN_FRSURF |
353 |
C-- Save initial geometrical hFac factor into h0Fac (fixed in time): |
354 |
C Note: In case 1 pkg modifies hFac (from packages_init_fixed, called |
355 |
C later in sequence of calls) this pkg would need also to update h0Fac. |
356 |
DO k=1,Nr |
357 |
DO j=1-OLy,sNy+OLy |
358 |
DO i=1-OLx,sNx+OLx |
359 |
h0FacC(i,j,k,bi,bj) = _hFacC(i,j,k,bi,bj) |
360 |
h0FacW(i,j,k,bi,bj) = _hFacW(i,j,k,bi,bj) |
361 |
h0FacS(i,j,k,bi,bj) = _hFacS(i,j,k,bi,bj) |
362 |
ENDDO |
363 |
ENDDO |
364 |
ENDDO |
365 |
#endif /* NONLIN_FRSURF */ |
366 |
C- end bi,bj loops. |
367 |
ENDDO |
368 |
ENDDO |
369 |
|
370 |
|
371 |
DO bj = myByLo(myThid), myByHi(myThid) |
372 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
373 |
DO k=1,Nr |
374 |
DO j=1-OLy,sNy+OLy |
375 |
DO i=1-OLx,sNx+OLx |
376 |
uVel(i,j,k,bi,bj)=uVel(i,j,k,bi,bj)*maskW(i,j,k,bi,bj) |
377 |
vVel(i,j,k,bi,bj)=vVel(i,j,k,bi,bj)*maskS(i,j,k,bi,bj) |
378 |
wVel(i,j,k,bi,bj)=0.0 |
379 |
salt(i,j,k,bi,bj)=salt(i,j,k,bi,bj)*maskC(i,j,k,bi,bj) |
380 |
theta(i,j,k,bi,bj)=theta(i,j,k,bi,bj)*maskC(i,j,k,bi,bj) |
381 |
|
382 |
ENDDO |
383 |
ENDDO |
384 |
ENDDO |
385 |
ENDDO |
386 |
ENDDO |
387 |
|
388 |
|
389 |
|
390 |
DO bj = myByLo(myThid), myByHi(myThid) |
391 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
392 |
|
393 |
DO j=1,sNy |
394 |
DO i=1,sNx+1 |
395 |
ks = kSurfW(i,j,bi,bj) |
396 |
c IF (ks.LE.Nr) THEN |
397 |
c- allows hFacW to be larger than surrounding hFacC=1 @ edge of a step with |
398 |
C different kSurfC on either side (topo in p-coords, ice-shelf in z-coords) |
399 |
hhm = Ro_surf(i-1,j,bi,bj)+etaN(i-1,j,bi,bj) |
400 |
|
401 |
hhp = Ro_surf(i,j,bi,bj)+etaN(i,j,bi,bj) |
402 |
|
403 |
C- make sure hFacW is not larger than the 2 surrounding hFacC |
404 |
c hhm = rF(ks) |
405 |
c IF(ks.EQ.kSurfC(i-1,j,bi,bj)) hhm = rSurftmp(i-1,j) |
406 |
c hhp = rF(ks) |
407 |
c IF(ks.EQ.kSurfC(i,j,bi,bj)) hhp = rSurftmp(i,j) |
408 |
hFac_surfW(i,j,bi,bj) = h0FacW(i,j,ks,bi,bj) |
409 |
& + ( MIN(hhm,hhp) |
410 |
& - MIN( Ro_surf(i-1,j,bi,bj), Ro_surf(i,j,bi,bj) ) |
411 |
& )*recip_drF(ks)*maskW(i,j,ks,bi,bj) |
412 |
c ENDIF |
413 |
ENDDO |
414 |
ENDDO |
415 |
|
416 |
|
417 |
DO j=1,sNy+1 |
418 |
DO i=1,sNx |
419 |
ks = kSurfS(i,j,bi,bj) |
420 |
c IF (ks.LE.Nr) THEN |
421 |
C- allows hFacS to be larger than surrounding hFacC=1 @ edge of a step with |
422 |
C different kSurfC on either side (topo in p-coords, ice-shelf in z-coords) |
423 |
hhm = Ro_surf(i,j-1,bi,bj)+etaN(i,j-1,bi,bj) |
424 |
|
425 |
hhp = Ro_surf(i,j,bi,bj)+etaN(i,j,bi,bj) |
426 |
|
427 |
C- make sure hFacS is not larger than the 2 surrounding hFacC |
428 |
c hhm = rF(ks) |
429 |
c IF(ks.EQ.kSurfC(i,j-1,bi,bj)) hhm = rSurftmp(i,j-1) |
430 |
c hhp = rF(ks) |
431 |
c IF(ks.EQ.kSurfC(i,j,bi,bj)) hhp = rSurftmp(i,j) |
432 |
hFac_surfS(i,j,bi,bj) = h0FacS(i,j,ks,bi,bj) |
433 |
& + ( MIN(hhm,hhp) |
434 |
& - MIN( Ro_surf(i,j-1,bi,bj), Ro_surf(i,j,bi,bj) ) |
435 |
& )*recip_drF(ks)*maskS(i,j,ks,bi,bj) |
436 |
c ENDIF |
437 |
|
438 |
|
439 |
ENDDO |
440 |
ENDDO |
441 |
ENDDO |
442 |
ENDDO |
443 |
|
444 |
|
445 |
c #if |
446 |
C-- Calculate "recip_hFacU" = reciprocal hfac distance/volume for W cells |
447 |
C NOTE: not used ; computed locally in CALC_GW |
448 |
c #endif |
449 |
|
450 |
RETURN |
451 |
END |