1 |
C $Header: /u/gcmpack/MITgcm_contrib/shelfice_remeshing/AUTO/code/shelfice_thermodynamics.F,v 1.2 2015/10/06 10:38:53 dgoldberg Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SHELFICE_OPTIONS.h" |
5 |
#ifdef ALLOW_AUTODIFF |
6 |
# include "AUTODIFF_OPTIONS.h" |
7 |
#endif |
8 |
#ifdef ALLOW_CTRL |
9 |
# include "CTRL_OPTIONS.h" |
10 |
#endif |
11 |
|
12 |
CBOP |
13 |
C !ROUTINE: SHELFICE_THERMODYNAMICS |
14 |
C !INTERFACE: |
15 |
SUBROUTINE SHELFICE_THERMODYNAMICS( |
16 |
I myTime, myIter, myThid ) |
17 |
C !DESCRIPTION: \bv |
18 |
C *=============================================================* |
19 |
C | S/R SHELFICE_THERMODYNAMICS |
20 |
C | o shelf-ice main routine. |
21 |
C | compute temperature and (virtual) salt flux at the |
22 |
C | shelf-ice ocean interface |
23 |
C | |
24 |
C | stresses at the ice/water interface are computed in separate |
25 |
C | routines that are called from mom_fluxform/mom_vecinv |
26 |
C *=============================================================* |
27 |
C \ev |
28 |
|
29 |
C !USES: |
30 |
IMPLICIT NONE |
31 |
|
32 |
C === Global variables === |
33 |
#include "SIZE.h" |
34 |
#include "EEPARAMS.h" |
35 |
#include "PARAMS.h" |
36 |
#include "GRID.h" |
37 |
#include "DYNVARS.h" |
38 |
#include "FFIELDS.h" |
39 |
#include "SHELFICE.h" |
40 |
#include "SHELFICE_COST.h" |
41 |
#ifdef ALLOW_AUTODIFF |
42 |
# include "CTRL_SIZE.h" |
43 |
# include "ctrl.h" |
44 |
# include "ctrl_dummy.h" |
45 |
#endif /* ALLOW_AUTODIFF */ |
46 |
#ifdef ALLOW_AUTODIFF_TAMC |
47 |
# ifdef SHI_ALLOW_GAMMAFRICT |
48 |
# include "tamc.h" |
49 |
# include "tamc_keys.h" |
50 |
# endif /* SHI_ALLOW_GAMMAFRICT */ |
51 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
52 |
|
53 |
C !INPUT/OUTPUT PARAMETERS: |
54 |
C === Routine arguments === |
55 |
C myIter :: iteration counter for this thread |
56 |
C myTime :: time counter for this thread |
57 |
C myThid :: thread number for this instance of the routine. |
58 |
_RL myTime |
59 |
INTEGER myIter |
60 |
INTEGER myThid |
61 |
|
62 |
#ifdef ALLOW_SHELFICE |
63 |
C !LOCAL VARIABLES : |
64 |
C === Local variables === |
65 |
C I,J,K,Kp1,bi,bj :: loop counters |
66 |
C tLoc, sLoc, pLoc :: local in-situ temperature, salinity, pressure |
67 |
C theta/saltFreeze :: temperature and salinity of water at the |
68 |
C ice-ocean interface (at the freezing point) |
69 |
C freshWaterFlux :: local variable for fresh water melt flux due |
70 |
C to melting in kg/m^2/s |
71 |
C (negative density x melt rate) |
72 |
C convertFW2SaltLoc:: local copy of convertFW2Salt |
73 |
C cFac :: 1 for conservative form, 0, otherwise |
74 |
C rFac :: realFreshWaterFlux factor |
75 |
C dFac :: 0 for diffusive heat flux (Holland and Jenkins, 1999, |
76 |
C eq21) |
77 |
C 1 for advective and diffusive heat flux (eq22, 26, 31) |
78 |
C fwflxFac :: only effective for dFac=1, 1 if we expect a melting |
79 |
C fresh water flux, 0 otherwise |
80 |
C auxiliary variables and abbreviations: |
81 |
C a0, a1, a2, b, c0 |
82 |
C eps1, eps2, eps3, eps3a, eps4, eps5, eps6, eps7, eps8 |
83 |
C aqe, bqe, cqe, discrim, recip_aqe |
84 |
C drKp1, recip_drLoc |
85 |
INTEGER I,J,K,Kp1,kp2 |
86 |
INTEGER bi,bj |
87 |
_RL tLoc(1:sNx,1:sNy) |
88 |
_RL sLoc(1:sNx,1:sNy) |
89 |
_RL pLoc(1:sNx,1:sNy) |
90 |
_RL uLoc(1:sNx,1:sNy) |
91 |
_RL vLoc(1:sNx,1:sNy) |
92 |
_RL u_topdr(1:sNx+1,1:sNy+1,nSx,nSy) |
93 |
_RL v_topdr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
94 |
_RL thetaFreeze, saltFreeze, recip_Cp |
95 |
_RL freshWaterFlux, convertFW2SaltLoc |
96 |
_RL a0, a1, a2, b, c0 |
97 |
_RL eps1, eps2, eps3, eps3a, eps4, eps5, eps6, eps7, eps8 |
98 |
_RL cFac, rFac, dFac, fwflxFac, realfwFac |
99 |
_RL aqe, bqe, cqe, discrim, recip_aqe |
100 |
_RL drKp1, drKp2, recip_drLoc |
101 |
_RL recip_latentHeat |
102 |
_RL tmpFac |
103 |
|
104 |
#ifdef SHI_ALLOW_GAMMAFRICT |
105 |
_RL shiPr, shiSc, shiLo, recip_shiKarman, shiTwoThirds |
106 |
_RL gammaTmoleT, gammaTmoleS, gammaTurb, gammaTurbConst |
107 |
_RL ustar, ustarSq, etastar |
108 |
PARAMETER ( shiTwoThirds = 0.66666666666666666666666666667D0 ) |
109 |
#ifdef ALLOW_DIAGNOSTICS |
110 |
_RL uStarDiag(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
111 |
#endif /* ALLOW_DIAGNOSTICS */ |
112 |
#endif |
113 |
|
114 |
#ifndef ALLOW_OPENAD |
115 |
_RL SW_TEMP |
116 |
EXTERNAL SW_TEMP |
117 |
#endif |
118 |
|
119 |
#ifdef ALLOW_SHIFWFLX_CONTROL |
120 |
_RL xx_shifwflx_loc(1-olx:snx+olx,1-oly:sny+oly,nsx,nsy) |
121 |
#endif |
122 |
CEOP |
123 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
124 |
|
125 |
#ifdef SHI_ALLOW_GAMMAFRICT |
126 |
#ifdef ALLOW_AUTODIFF |
127 |
C re-initialize here again, curtesy to TAF |
128 |
DO bj = myByLo(myThid), myByHi(myThid) |
129 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
130 |
DO J = 1-OLy,sNy+OLy |
131 |
DO I = 1-OLx,sNx+OLx |
132 |
shiTransCoeffT(i,j,bi,bj) = SHELFICEheatTransCoeff |
133 |
shiTransCoeffS(i,j,bi,bj) = SHELFICEsaltTransCoeff |
134 |
ENDDO |
135 |
ENDDO |
136 |
ENDDO |
137 |
ENDDO |
138 |
#endif /* ALLOW_AUTODIFF */ |
139 |
IF ( SHELFICEuseGammaFrict ) THEN |
140 |
C Implement friction velocity-dependent transfer coefficient |
141 |
C of Holland and Jenkins, JPO, 1999 |
142 |
recip_shiKarman= 1. _d 0 / 0.4 _d 0 |
143 |
shiLo = 0. _d 0 |
144 |
shiPr = shiPrandtl**shiTwoThirds |
145 |
shiSc = shiSchmidt**shiTwoThirds |
146 |
cph shiPr = (viscArNr(1)/diffKrNrT(1))**shiTwoThirds |
147 |
cph shiSc = (viscArNr(1)/diffKrNrS(1))**shiTwoThirds |
148 |
gammaTmoleT = 12.5 _d 0 * shiPr - 6. _d 0 |
149 |
gammaTmoleS = 12.5 _d 0 * shiSc - 6. _d 0 |
150 |
C instead of etastar = sqrt(1+zetaN*ustar./(f*Lo*Rc)) |
151 |
etastar = 1. _d 0 |
152 |
gammaTurbConst = 1. _d 0 / (2. _d 0 * shiZetaN*etastar) |
153 |
& - recip_shiKarman |
154 |
#ifdef ALLOW_AUTODIFF |
155 |
DO bj = myByLo(myThid), myByHi(myThid) |
156 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
157 |
DO J = 1-OLy,sNy+OLy |
158 |
DO I = 1-OLx,sNx+OLx |
159 |
shiTransCoeffT(i,j,bi,bj) = 0. _d 0 |
160 |
shiTransCoeffS(i,j,bi,bj) = 0. _d 0 |
161 |
ENDDO |
162 |
ENDDO |
163 |
ENDDO |
164 |
ENDDO |
165 |
#endif /* ALLOW_AUTODIFF */ |
166 |
ENDIF |
167 |
#endif /* SHI_ALLOW_GAMMAFRICT */ |
168 |
|
169 |
recip_latentHeat = 0. _d 0 |
170 |
IF ( SHELFICElatentHeat .NE. 0. _d 0 ) |
171 |
& recip_latentHeat = 1. _d 0/SHELFICElatentHeat |
172 |
C are we doing the conservative form of Jenkins et al. (2001)? |
173 |
recip_Cp = 1. _d 0 / HeatCapacity_Cp |
174 |
cFac = 0. _d 0 |
175 |
IF ( SHELFICEconserve ) cFac = 1. _d 0 |
176 |
|
177 |
realFWfac = 0. _d 0 |
178 |
IF ( SHELFICErealFWflux ) realFWfac = 1. _d 0 |
179 |
C with "real fresh water flux" (affecting ETAN), |
180 |
C there is more to modify |
181 |
rFac = 1. _d 0 |
182 |
IF ( SHELFICEconserve .AND. useRealFreshWaterFlux ) rFac = 0. _d 0 |
183 |
C heat flux into the ice shelf, default is diffusive flux |
184 |
C (Holland and Jenkins, 1999, eq.21) |
185 |
dFac = 0. _d 0 |
186 |
IF ( SHELFICEadvDiffHeatFlux ) dFac = 1. _d 0 |
187 |
fwflxFac = 0. _d 0 |
188 |
C linear dependence of freezing point on salinity |
189 |
a0 = -0.0575 _d 0 |
190 |
a1 = 0.0 _d -0 |
191 |
a2 = 0.0 _d -0 |
192 |
c0 = 0.0901 _d 0 |
193 |
b = -7.61 _d -4 |
194 |
#ifdef ALLOW_ISOMIP_TD |
195 |
IF ( useISOMIPTD ) THEN |
196 |
C non-linear dependence of freezing point on salinity |
197 |
a0 = -0.0575 _d 0 |
198 |
a1 = 1.710523 _d -3 |
199 |
a2 = -2.154996 _d -4 |
200 |
b = -7.53 _d -4 |
201 |
c0 = 0. _d 0 |
202 |
ENDIF |
203 |
convertFW2SaltLoc = convertFW2Salt |
204 |
C hardcoding this value here is OK because it only applies to ISOMIP |
205 |
C where this value is part of the protocol |
206 |
IF ( convertFW2SaltLoc .EQ. -1. ) convertFW2SaltLoc = 33.4 _d 0 |
207 |
#endif /* ALLOW_ISOMIP_TD */ |
208 |
|
209 |
DO bj = myByLo(myThid), myByHi(myThid) |
210 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
211 |
DO J = 1-OLy,sNy+OLy |
212 |
DO I = 1-OLx,sNx+OLx |
213 |
shelfIceHeatFlux (I,J,bi,bj) = 0. _d 0 |
214 |
shelfIceFreshWaterFlux(I,J,bi,bj) = 0. _d 0 |
215 |
shelficeForcingT (I,J,bi,bj) = 0. _d 0 |
216 |
shelficeForcingS (I,J,bi,bj) = 0. _d 0 |
217 |
#if (defined SHI_ALLOW_GAMMAFRICT && defined ALLOW_DIAGNOSTICS) |
218 |
uStarDiag (I,J,bi,bj) = 0. _d 0 |
219 |
#endif /* SHI_ALLOW_GAMMAFRICT and ALLOW_DIAGNOSTICS */ |
220 |
ENDDO |
221 |
ENDDO |
222 |
ENDDO |
223 |
ENDDO |
224 |
#ifdef ALLOW_SHIFWFLX_CONTROL |
225 |
DO bj = myByLo(myThid), myByHi(myThid) |
226 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
227 |
DO J = 1-OLy,sNy+OLy |
228 |
DO I = 1-OLx,sNx+OLx |
229 |
xx_shifwflx_loc(I,J,bi,bj) = 0. _d 0 |
230 |
ENDDO |
231 |
ENDDO |
232 |
ENDDO |
233 |
ENDDO |
234 |
#ifdef ALLOW_CTRL |
235 |
if (useCTRL) CALL CTRL_GET_GEN ( |
236 |
& xx_shifwflx_file, xx_shifwflxstartdate, xx_shifwflxperiod, |
237 |
& maskSHI, xx_shifwflx_loc, xx_shifwflx0, xx_shifwflx1, |
238 |
& xx_shifwflx_dummy, |
239 |
& xx_shifwflx_remo_intercept, xx_shifwflx_remo_slope, |
240 |
& wshifwflx, |
241 |
& myTime, myIter, myThid ) |
242 |
#endif |
243 |
#endif /* ALLOW_SHIFWFLX_CONTROL */ |
244 |
DO bj = myByLo(myThid), myByHi(myThid) |
245 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
246 |
|
247 |
IF ( SHELFICEBoundaryLayer ) THEN |
248 |
C-- average over boundary layer width |
249 |
DO J = 1, sNy+1 |
250 |
DO I = 1, sNx+1 |
251 |
u_topdr(I,J,bi,bj) = 0.0 |
252 |
v_topdr(I,J,bi,bj) = 0.0 |
253 |
ENDDO |
254 |
ENDDO |
255 |
ENDIF |
256 |
|
257 |
#ifdef ALLOW_AUTODIFF_TAMC |
258 |
# ifdef SHI_ALLOW_GAMMAFRICT |
259 |
act1 = bi - myBxLo(myThid) |
260 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
261 |
act2 = bj - myByLo(myThid) |
262 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
263 |
act3 = myThid - 1 |
264 |
max3 = nTx*nTy |
265 |
act4 = ikey_dynamics - 1 |
266 |
ikey = (act1 + 1) + act2*max1 |
267 |
& + act3*max1*max2 |
268 |
& + act4*max1*max2*max3 |
269 |
# endif /* SHI_ALLOW_GAMMAFRICT */ |
270 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
271 |
DO J = 1, sNy |
272 |
DO I = 1, sNx |
273 |
C-- make local copies of temperature, salinity and depth (pressure in deci-bar) |
274 |
C-- underneath the ice |
275 |
K = MAX(1,kTopC(I,J,bi,bj)) |
276 |
pLoc(I,J) = ABS(R_shelfIce(I,J,bi,bj)) |
277 |
c pLoc(I,J) = shelficeMass(I,J,bi,bj)*gravity*1. _d -4 |
278 |
tLoc(I,J) = theta(I,J,K,bi,bj) |
279 |
sLoc(I,J) = MAX(salt(I,J,K,bi,bj), zeroRL) |
280 |
IF ( .not.SHELFICEBoundaryLayer ) THEN |
281 |
uLoc(I,J) = recip_hFacC(I,J,K,bi,bj) * |
282 |
& ( uVel(I, J,K,bi,bj) * _hFacW(I, J,K,bi,bj) |
283 |
& + uVel(I+1,J,K,bi,bj) * _hFacW(I+1,J,K,bi,bj) ) |
284 |
vLoc(I,J) = recip_hFacC(I,J,K,bi,bj) * |
285 |
& ( vVel(I, J,K,bi,bj) * _hFacS(I, J,K,bi,bj) |
286 |
& + vVel(I,J+1,K,bi,bj) * _hFacS(I,J+1,K,bi,bj) ) |
287 |
ENDIF |
288 |
ENDDO |
289 |
ENDDO |
290 |
|
291 |
! IF ( SHELFICEBoundaryLayer ) THEN |
292 |
! DO J = 1, sNy+1 |
293 |
! DO I = 1, sNx+1 |
294 |
! |
295 |
! K = ksurfW(I,J,bi,bj) |
296 |
! Kp1 = K+1 |
297 |
! Kp2 = K+2 |
298 |
! |
299 |
! IF (ShelficeThickBoundaryLayer .and. |
300 |
! & (K.ne.0.and.K.LT.Nr-1)) THEN |
301 |
! |
302 |
! drKp1 = drF(K)*( 1.5 - _hFacW(I,J,K,bi,bj) ) |
303 |
! drKp2 = drKp1 - drF(kp1)*_hFacW(I,J,kp1,bi,bj) |
304 |
! drKp2 = MAX( drKp2, 0. _d 0) |
305 |
! drKp2 = MIN( drKp2, |
306 |
! & drF(kp2)*_hFacW(I,J,kp2,bi,bj)) |
307 |
! drKp1 = drKp1 - drKp2 |
308 |
! drKp1 = MAX( drKp1, 0. _d 0) |
309 |
! recip_drLoc = 1. _d 0 / |
310 |
! & (drF(K)*_hFacW(I,J,K,bi,bj)+drKp1+drKp2) |
311 |
! u_topdr(I,J,bi,bj) = |
312 |
! & (drF(K)*_hFacW(I,J,K,bi,bj)*uVel(I,J,K,bi,bj) + |
313 |
! & drKp1*uVel(I,J,Kp1,bi,bj)) * recip_drLoc |
314 |
! u_topdr(I,J,bi,bj) = u_topdr(I,J,bi,bj) + |
315 |
! & drKp2 * uVel(I,J,Kp2,bi,bj) * recip_drLoc |
316 |
! |
317 |
! ELSEIF ( (K .NE. 0 .AND. K.EQ.Nr-1) .OR. |
318 |
! & (.not.SHELFICEthickboundarylayer.AND. |
319 |
! & (K .NE. 0 .AND. K .LT. Nr) ) ) THEN |
320 |
! |
321 |
! drKp1 = drF(K)*(1. _d 0-_hFacW(I,J,K,bi,bj)) |
322 |
! drKp1 = max (drKp1, 0. _d 0) |
323 |
! recip_drLoc = 1.0 / |
324 |
! & (drF(K)*_hFacW(I,J,K,bi,bj)+drKp1) |
325 |
! u_topdr(I,J,bi,bj) = |
326 |
! & (drF(K)*_hFacW(I,J,K,bi,bj)*uVel(I,J,K,bi,bj) + |
327 |
! & drKp1*uVel(I,J,Kp1,bi,bj)) |
328 |
! & * recip_drLoc |
329 |
! |
330 |
! ELSE |
331 |
! |
332 |
! u_topdr(I,J,bi,bj) = 0. _d 0 |
333 |
! |
334 |
! ENDIF |
335 |
! |
336 |
! K = ksurfS(I,J,bi,bj) |
337 |
! Kp1 = K+1 |
338 |
! Kp2 = K+2 |
339 |
! |
340 |
! IF (ShelficeThickBoundaryLayer .and. |
341 |
! & (K.ne.0.and.K.LT.Nr-1)) THEN |
342 |
! |
343 |
! drKp1 = drF(K)*( 1.5 - _hFacS(I,J,K,bi,bj) ) |
344 |
! drKp2 = drKp1 - drF(kp1)*_hFacS(I,J,kp1,bi,bj) |
345 |
! drKp2 = MAX( drKp2, 0. _d 0) |
346 |
! drKp2 = MIN( drKp2, |
347 |
! & drF(kp2)*_hFacS(I,J,kp2,bi,bj)) |
348 |
! drKp1 = drKp1 - drKp2 |
349 |
! drKp1 = MAX( drKp1, 0. _d 0) |
350 |
! recip_drLoc = 1. _d 0 / |
351 |
! & (drF(K)*_hFacS(I,J,K,bi,bj)+drKp1+drKp2) |
352 |
! v_topdr(I,J,bi,bj) = |
353 |
! & (drF(K)*_hFacS(I,J,K,bi,bj)*vVel(I,J,K,bi,bj) + |
354 |
! & drKp1*vVel(I,J,Kp1,bi,bj)) * recip_drLoc |
355 |
! v_topdr(I,J,bi,bj) = v_topdr(I,J,bi,bj) + |
356 |
! & drKp2 * vVel(I,J,Kp2,bi,bj) * recip_drLoc |
357 |
! |
358 |
! ELSEIF ( (K .NE. 0 .AND. K.EQ.Nr-1) .OR. |
359 |
! & ((.NOT.SHELFICEthickboundarylayer).AND. |
360 |
! & (K .NE. 0 .AND. K .LT. Nr) ) ) THEN |
361 |
! |
362 |
! drKp1 = drF(K)*(1. _d 0-_hFacS(I,J,K,bi,bj)) |
363 |
! drKp1 = max (drKp1, 0. _d 0) |
364 |
! recip_drLoc = 1.0 / |
365 |
! & (drF(K)*_hFacS(I,J,K,bi,bj)+drKp1) |
366 |
! v_topdr(I,J,bi,bj) = |
367 |
! & (drF(K)*_hFacS(I,J,K,bi,bj)*vVel(I,J,K,bi,bj) + |
368 |
! & drKp1*vVel(I,J,Kp1,bi,bj)) |
369 |
! & * recip_drLoc |
370 |
! |
371 |
! ELSE |
372 |
! |
373 |
! v_topdr(I,J,bi,bj) = 0. _d 0 |
374 |
! |
375 |
! ENDIF |
376 |
! |
377 |
! ENDDO |
378 |
! ENDDO |
379 |
! ENDIF |
380 |
|
381 |
IF ( SHELFICEBoundaryLayer ) THEN |
382 |
DO J = 1, sNy+1 |
383 |
DO I = 1, sNx+1 |
384 |
K = ksurfW(I,J,bi,bj) |
385 |
Kp1 = K+1 |
386 |
IF (K.lt.Nr) then |
387 |
drKp1 = drF(K)*(1. _d 0-_hFacW(I,J,K,bi,bj)) |
388 |
drKp1 = max (drKp1, 0. _d 0) |
389 |
recip_drLoc = 1.0 / |
390 |
& (drF(K)*_hFacW(I,J,K,bi,bj)+drKp1) |
391 |
u_topdr(I,J,bi,bj) = |
392 |
& (drF(K)*_hFacW(I,J,K,bi,bj)*uVel(I,J,K,bi,bj) + |
393 |
& drKp1*uVel(I,J,Kp1,bi,bj)) |
394 |
& * recip_drLoc |
395 |
ELSE |
396 |
u_topdr(I,J,bi,bj) = 0. _d 0 |
397 |
ENDIF |
398 |
|
399 |
K = ksurfS(I,J,bi,bj) |
400 |
Kp1 = K+1 |
401 |
IF (K.lt.Nr) then |
402 |
drKp1 = drF(K)*(1. _d 0-_hFacS(I,J,K,bi,bj)) |
403 |
drKp1 = max (drKp1, 0. _d 0) |
404 |
recip_drLoc = 1.0 / |
405 |
& (drF(K)*_hFacS(I,J,K,bi,bj)+drKp1) |
406 |
v_topdr(I,J,bi,bj) = |
407 |
& (drF(K)*_hFacS(I,J,K,bi,bj)*vVel(I,J,K,bi,bj) + |
408 |
& drKp1*vVel(I,J,Kp1,bi,bj)) |
409 |
& * recip_drLoc |
410 |
ELSE |
411 |
v_topdr(I,J,bi,bj) = 0. _d 0 |
412 |
ENDIF |
413 |
|
414 |
ENDDO |
415 |
ENDDO |
416 |
ENDIF |
417 |
|
418 |
IF ( SHELFICEBoundaryLayer ) THEN |
419 |
C-- average over boundary layer width |
420 |
DO J = 1, sNy |
421 |
DO I = 1, sNx |
422 |
K = kTopC(I,J,bi,bj) |
423 |
IF ( K .NE. 0 .AND. K .LT. Nr ) THEN |
424 |
Kp1 = MIN(Nr,K+1) |
425 |
C-- overlap into lower cell |
426 |
drKp1 = drF(K)*( 1. _d 0 - _hFacC(I,J,K,bi,bj) ) |
427 |
C-- Dans fix |
428 |
drKp1 = MAX(drKp1, 0.) |
429 |
C-- lower cell may not be as thick as required |
430 |
drKp1 = MIN( drKp1, drF(Kp1) * _hFacC(I,J,Kp1,bi,bj) ) |
431 |
recip_drLoc = 1. _d 0 / |
432 |
& ( drF(K)*_hFacC(I,J,K,bi,bj) + drKp1 ) |
433 |
tLoc(I,J) = ( tLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) |
434 |
& + theta(I,J,Kp1,bi,bj) *drKp1 ) |
435 |
& * recip_drLoc |
436 |
sLoc(I,J) = ( sLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) |
437 |
& + MAX(salt(I,J,Kp1,bi,bj), zeroRL) * drKp1 ) |
438 |
& * recip_drLoc |
439 |
|
440 |
! uLoc(I,J) = ( uLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) |
441 |
! & + drKp1 * recip_hFacC(I,J,Kp1,bi,bj) * |
442 |
! & ( uVel(I, J,Kp1,bi,bj) * _hFacW(I, J,Kp1,bi,bj) |
443 |
! & + uVel(I+1,J,Kp1,bi,bj) * _hFacW(I+1,J,Kp1,bi,bj) ) |
444 |
! & ) * recip_drLoc |
445 |
! vLoc(I,J) = ( vLoc(I,J) * drF(K)*_hFacC(I,J,K,bi,bj) |
446 |
! & + drKp1 * recip_hFacC(I,J,Kp1,bi,bj) * |
447 |
! & ( vVel(I,J, Kp1,bi,bj) * _hFacS(I,J, Kp1,bi,bj) |
448 |
! & + vVel(I,J+1,Kp1,bi,bj) * _hFacS(I,J+1,Kp1,bi,bj) ) |
449 |
! & ) * recip_drLoc |
450 |
ENDIF |
451 |
ENDDO |
452 |
ENDDO |
453 |
ENDIF |
454 |
|
455 |
|
456 |
IF ( SHELFICEBoundaryLayer ) THEN |
457 |
DO J = 1, sNy |
458 |
DO I = 1, sNx |
459 |
uLoc(I,J) = |
460 |
& u_topdr(I,J,bi,bj) + u_topdr(I+1,J,bi,bj) |
461 |
vLoc(I,J) = |
462 |
& v_topdr(I,J,bi,bj) + v_topdr(I,J+1,bi,bj) |
463 |
ENDDO |
464 |
ENDDO |
465 |
ENDIF |
466 |
|
467 |
C-- turn potential temperature into in-situ temperature relative |
468 |
C-- to the surface |
469 |
DO J = 1, sNy |
470 |
DO I = 1, sNx |
471 |
#ifndef ALLOW_OPENAD |
472 |
tLoc(I,J) = SW_TEMP(sLoc(I,J),tLoc(I,J),pLoc(I,J),zeroRL) |
473 |
#else |
474 |
CALL SW_TEMP(sLoc(I,J),tLoc(I,J),pLoc(I,J),zeroRL,tLoc(I,J)) |
475 |
#endif |
476 |
ENDDO |
477 |
ENDDO |
478 |
|
479 |
#ifdef SHI_ALLOW_GAMMAFRICT |
480 |
IF ( SHELFICEuseGammaFrict ) THEN |
481 |
DO J = 1, sNy |
482 |
DO I = 1, sNx |
483 |
K = kTopC(I,J,bi,bj) |
484 |
IF ( K .NE. 0 .AND. pLoc(I,J) .GT. 0. _d 0 ) THEN |
485 |
ustarSq = shiCdrag * MAX( 1.D-6, |
486 |
& 0.25 _d 0 *(uLoc(I,J)*uLoc(I,J)+vLoc(I,J)*vLoc(I,J)) ) |
487 |
ustar = SQRT(ustarSq) |
488 |
#ifdef ALLOW_DIAGNOSTICS |
489 |
uStarDiag(I,J,bi,bj) = ustar |
490 |
#endif /* ALLOW_DIAGNOSTICS */ |
491 |
C instead of etastar = sqrt(1+zetaN*ustar./(f*Lo*Rc)) |
492 |
C etastar = 1. _d 0 |
493 |
C gammaTurbConst = 1. _d 0 / (2. _d 0 * shiZetaN*etastar) |
494 |
C & - recip_shiKarman |
495 |
IF ( fCori(I,J,bi,bj) .NE. 0. _d 0 ) THEN |
496 |
gammaTurb = LOG( ustarSq * shiZetaN * etastar**2 |
497 |
& / ABS(fCori(I,J,bi,bj) * 5.0 _d 0 * shiKinVisc)) |
498 |
& * recip_shiKarman |
499 |
& + gammaTurbConst |
500 |
C Do we need to catch the unlikely case of very small ustar |
501 |
C that can lead to negative gammaTurb? |
502 |
C gammaTurb = MAX(0.D0, gammaTurb) |
503 |
ELSE |
504 |
gammaTurb = gammaTurbConst |
505 |
ENDIF |
506 |
shiTransCoeffT(i,j,bi,bj) = MAX( zeroRL, |
507 |
& ustar/(gammaTurb + gammaTmoleT) ) |
508 |
shiTransCoeffS(i,j,bi,bj) = MAX( zeroRL, |
509 |
& ustar/(gammaTurb + gammaTmoleS) ) |
510 |
ENDIF |
511 |
ENDDO |
512 |
ENDDO |
513 |
ENDIF |
514 |
#endif /* SHI_ALLOW_GAMMAFRICT */ |
515 |
|
516 |
#ifdef ALLOW_AUTODIFF_TAMC |
517 |
# ifdef SHI_ALLOW_GAMMAFRICT |
518 |
CADJ STORE shiTransCoeffS(:,:,bi,bj) = comlev1_bibj, |
519 |
CADJ & key=ikey, byte=isbyte |
520 |
CADJ STORE shiTransCoeffT(:,:,bi,bj) = comlev1_bibj, |
521 |
CADJ & key=ikey, byte=isbyte |
522 |
# endif /* SHI_ALLOW_GAMMAFRICT */ |
523 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
524 |
#ifdef ALLOW_ISOMIP_TD |
525 |
IF ( useISOMIPTD ) THEN |
526 |
DO J = 1, sNy |
527 |
DO I = 1, sNx |
528 |
K = kTopC(I,J,bi,bj) |
529 |
IF ( K .NE. 0 .AND. pLoc(I,J) .GT. 0. _d 0 ) THEN |
530 |
C-- Calculate freezing temperature as a function of salinity and pressure |
531 |
thetaFreeze = |
532 |
& sLoc(I,J) * ( a0 + a1*sqrt(sLoc(I,J)) + a2*sLoc(I,J) ) |
533 |
& + b*pLoc(I,J) + c0 |
534 |
C-- Calculate the upward heat and fresh water fluxes |
535 |
shelfIceHeatFlux(I,J,bi,bj) = maskC(I,J,K,bi,bj) |
536 |
& * shiTransCoeffT(i,j,bi,bj) |
537 |
& * ( tLoc(I,J) - thetaFreeze ) |
538 |
& * HeatCapacity_Cp*rUnit2mass |
539 |
#ifdef ALLOW_SHIFWFLX_CONTROL |
540 |
& - xx_shifwflx_loc(I,J,bi,bj)*SHELFICElatentHeat |
541 |
#endif /* ALLOW_SHIFWFLX_CONTROL */ |
542 |
C upward heat flux into the shelf-ice implies basal melting, |
543 |
C thus a downward (negative upward) fresh water flux (as a mass flux), |
544 |
C and vice versa |
545 |
shelfIceFreshWaterFlux(I,J,bi,bj) = |
546 |
& - shelfIceHeatFlux(I,J,bi,bj) |
547 |
& *recip_latentHeat |
548 |
C-- compute surface tendencies |
549 |
shelficeForcingT(i,j,bi,bj) = |
550 |
& - shelfIceHeatFlux(I,J,bi,bj) |
551 |
& *recip_Cp*mass2rUnit |
552 |
& - cFac * shelfIceFreshWaterFlux(I,J,bi,bj)*mass2rUnit |
553 |
& * ( thetaFreeze - tLoc(I,J) ) |
554 |
shelficeForcingS(i,j,bi,bj) = |
555 |
& shelfIceFreshWaterFlux(I,J,bi,bj) * mass2rUnit |
556 |
& * ( cFac*sLoc(I,J) + (1. _d 0-cFac)*convertFW2SaltLoc ) |
557 |
C-- stress at the ice/water interface is computed in separate |
558 |
C routines that are called from mom_fluxform/mom_vecinv |
559 |
ELSE |
560 |
shelfIceHeatFlux (I,J,bi,bj) = 0. _d 0 |
561 |
shelfIceFreshWaterFlux(I,J,bi,bj) = 0. _d 0 |
562 |
shelficeForcingT (I,J,bi,bj) = 0. _d 0 |
563 |
shelficeForcingS (I,J,bi,bj) = 0. _d 0 |
564 |
ENDIF |
565 |
ENDDO |
566 |
ENDDO |
567 |
ELSE |
568 |
#else |
569 |
IF ( .TRUE. ) THEN |
570 |
#endif /* ALLOW_ISOMIP_TD */ |
571 |
C use BRIOS thermodynamics, following Hellmers PhD thesis: |
572 |
C Hellmer, H., 1989, A two-dimensional model for the thermohaline |
573 |
C circulation under an ice shelf, Reports on Polar Research, No. 60 |
574 |
C (in German). |
575 |
|
576 |
DO J = 1, sNy |
577 |
DO I = 1, sNx |
578 |
K = kTopC(I,J,bi,bj) |
579 |
IF ( K .NE. 0 .AND. pLoc(I,J) .GT. 0. _d 0 ) THEN |
580 |
C heat flux into the ice shelf, default is diffusive flux |
581 |
C (Holland and Jenkins, 1999, eq.21) |
582 |
thetaFreeze = a0*sLoc(I,J)+c0+b*pLoc(I,J) |
583 |
fwflxFac = 0. _d 0 |
584 |
IF ( tLoc(I,J) .GT. thetaFreeze ) fwflxFac = dFac |
585 |
C a few abbreviations |
586 |
eps1 = rUnit2mass*HeatCapacity_Cp |
587 |
& *shiTransCoeffT(i,j,bi,bj) |
588 |
eps2 = rUnit2mass*SHELFICElatentHeat |
589 |
& *shiTransCoeffS(i,j,bi,bj) |
590 |
eps5 = rUnit2mass*HeatCapacity_Cp |
591 |
& *shiTransCoeffS(i,j,bi,bj) |
592 |
|
593 |
C solve quadratic equation for salinity at shelfice-ocean interface |
594 |
C note: this part of the code is not very intuitive as it involves |
595 |
C many arbitrary abbreviations that were introduced to derive the |
596 |
C correct form of the quadratic equation for salinity. The abbreviations |
597 |
C only make sense in connection with my notes on this (M.Losch) |
598 |
C |
599 |
C eps3a was introduced as a constant variant of eps3 to avoid AD of |
600 |
C code of typ (pLoc-const)/pLoc |
601 |
eps3a = rhoShelfIce*SHELFICEheatCapacity_Cp |
602 |
& * SHELFICEkappa * ( 1. _d 0 - dFac ) |
603 |
eps3 = eps3a/pLoc(I,J) |
604 |
eps4 = b*pLoc(I,J) + c0 |
605 |
eps6 = eps4 - tLoc(I,J) |
606 |
eps7 = eps4 - SHELFICEthetaSurface |
607 |
eps8 = rUnit2mass*SHELFICEheatCapacity_Cp |
608 |
& *shiTransCoeffS(i,j,bi,bj) * fwflxFac |
609 |
aqe = a0 *(eps1+eps3-eps8) |
610 |
recip_aqe = 0. _d 0 |
611 |
IF ( aqe .NE. 0. _d 0 ) recip_aqe = 0.5 _d 0/aqe |
612 |
c bqe = eps1*eps6 + eps3*eps7 - eps2 |
613 |
bqe = eps1*eps6 |
614 |
& + eps3a*( b |
615 |
& + ( c0 - SHELFICEthetaSurface )/pLoc(I,J) ) |
616 |
& - eps2 |
617 |
& + eps8*( a0*sLoc(I,J) - eps7 ) |
618 |
cqe = ( eps2 + eps8*eps7 )*sLoc(I,J) |
619 |
discrim = bqe*bqe - 4. _d 0*aqe*cqe |
620 |
#undef ALLOW_SHELFICE_DEBUG |
621 |
#ifdef ALLOW_SHELFICE_DEBUG |
622 |
IF ( discrim .LT. 0. _d 0 ) THEN |
623 |
print *, 'ml-shelfice: discrim = ', discrim,aqe,bqe,cqe |
624 |
print *, 'ml-shelfice: pLoc = ', pLoc(I,J) |
625 |
print *, 'ml-shelfice: tLoc = ', tLoc(I,J) |
626 |
print *, 'ml-shelfice: sLoc = ', sLoc(I,J) |
627 |
print *, 'ml-shelfice: tsurface= ', |
628 |
& SHELFICEthetaSurface |
629 |
print *, 'ml-shelfice: eps1 = ', eps1 |
630 |
print *, 'ml-shelfice: eps2 = ', eps2 |
631 |
print *, 'ml-shelfice: eps3 = ', eps3 |
632 |
print *, 'ml-shelfice: eps4 = ', eps4 |
633 |
print *, 'ml-shelfice: eps5 = ', eps5 |
634 |
print *, 'ml-shelfice: eps6 = ', eps6 |
635 |
print *, 'ml-shelfice: eps7 = ', eps7 |
636 |
print *, 'ml-shelfice: eps8 = ', eps8 |
637 |
print *, 'ml-shelfice: rU2mass = ', rUnit2mass |
638 |
print *, 'ml-shelfice: rhoIce = ', rhoShelfIce |
639 |
print *, 'ml-shelfice: cFac = ', cFac |
640 |
print *, 'ml-shelfice: Cp_W = ', HeatCapacity_Cp |
641 |
print *, 'ml-shelfice: Cp_I = ', |
642 |
& SHELFICEHeatCapacity_Cp |
643 |
print *, 'ml-shelfice: gammaT = ', |
644 |
& SHELFICEheatTransCoeff |
645 |
print *, 'ml-shelfice: gammaS = ', |
646 |
& SHELFICEsaltTransCoeff |
647 |
print *, 'ml-shelfice: lat.heat= ', |
648 |
& SHELFICElatentHeat |
649 |
STOP 'ABNORMAL END in S/R SHELFICE_THERMODYNAMICS' |
650 |
ENDIF |
651 |
#endif /* ALLOW_SHELFICE_DEBUG */ |
652 |
saltFreeze = (- bqe - SQRT(discrim))*recip_aqe |
653 |
IF ( saltFreeze .LT. 0. _d 0 ) |
654 |
& saltFreeze = (- bqe + SQRT(discrim))*recip_aqe |
655 |
thetaFreeze = a0*saltFreeze + eps4 |
656 |
C-- upward fresh water flux due to melting (in kg/m^2/s) |
657 |
cph change to identical form |
658 |
cph freshWaterFlux = rUnit2mass |
659 |
cph & * shiTransCoeffS(i,j,bi,bj) |
660 |
cph & * ( saltFreeze - sLoc(I,J) ) / saltFreeze |
661 |
freshWaterFlux = rUnit2mass |
662 |
& * shiTransCoeffS(i,j,bi,bj) |
663 |
& * ( 1. _d 0 - sLoc(I,J) / saltFreeze ) |
664 |
#ifdef ALLOW_SHIFWFLX_CONTROL |
665 |
& + xx_shifwflx_loc(I,J,bi,bj) |
666 |
#endif /* ALLOW_SHIFWFLX_CONTROL */ |
667 |
C-- Calculate the upward heat and fresh water fluxes; |
668 |
C-- MITgcm sign conventions: downward (negative) fresh water flux |
669 |
C-- implies melting and due to upward (positive) heat flux |
670 |
shelfIceHeatFlux(I,J,bi,bj) = |
671 |
& ( eps3 |
672 |
& - freshWaterFlux*SHELFICEheatCapacity_Cp*fwflxFac ) |
673 |
& * ( thetaFreeze - SHELFICEthetaSurface ) |
674 |
& - cFac*freshWaterFlux*( SHELFICElatentHeat |
675 |
& - HeatCapacity_Cp*( thetaFreeze - rFac*tLoc(I,J) ) ) |
676 |
shelfIceFreshWaterFlux(I,J,bi,bj) = freshWaterFlux |
677 |
C-- compute surface tendencies |
678 |
shelficeForcingT(i,j,bi,bj) = |
679 |
& ( shiTransCoeffT(i,j,bi,bj) |
680 |
& - cFac*shelfIceFreshWaterFlux(I,J,bi,bj)*mass2rUnit ) |
681 |
& * ( thetaFreeze - tLoc(I,J) ) |
682 |
& - realFWfac*shelfIceFreshWaterFlux(I,J,bi,bj)* |
683 |
& mass2rUnit* |
684 |
& ( tLoc(I,J) - theta(I,J,K,bi,bj) ) |
685 |
shelficeForcingS(i,j,bi,bj) = |
686 |
& ( shiTransCoeffS(i,j,bi,bj) |
687 |
& - cFac*shelfIceFreshWaterFlux(I,J,bi,bj)*mass2rUnit ) |
688 |
& * ( saltFreeze - sLoc(I,J) ) |
689 |
& - realFWfac*shelfIceFreshWaterFlux(I,J,bi,bj)* |
690 |
& mass2rUnit* |
691 |
& ( sLoc(I,J) - salt(I,J,K,bi,bj) ) |
692 |
ELSE |
693 |
shelfIceHeatFlux (I,J,bi,bj) = 0. _d 0 |
694 |
shelfIceFreshWaterFlux(I,J,bi,bj) = 0. _d 0 |
695 |
shelficeForcingT (I,J,bi,bj) = 0. _d 0 |
696 |
shelficeForcingS (I,J,bi,bj) = 0. _d 0 |
697 |
ENDIF |
698 |
ENDDO |
699 |
ENDDO |
700 |
ENDIF |
701 |
C endif (not) useISOMIPTD |
702 |
ENDDO |
703 |
ENDDO |
704 |
|
705 |
IF (SHELFICEMassStepping) THEN |
706 |
! CALL SHELFICE_STEP_ICEMASS( myTime, myIter, myThid ) |
707 |
ENDIF |
708 |
|
709 |
C-- Calculate new loading anomaly (in case the ice-shelf mass was updated) |
710 |
#ifndef ALLOW_AUTODIFF |
711 |
c IF ( SHELFICEloadAnomalyFile .EQ. ' ' ) THEN |
712 |
DO bj = myByLo(myThid), myByHi(myThid) |
713 |
DO bi = myBxLo(myThid), myBxHi(myThid) |
714 |
DO j = 1-OLy, sNy+OLy |
715 |
DO i = 1-OLx, sNx+OLx |
716 |
shelficeLoadAnomaly(i,j,bi,bj) = gravity |
717 |
& *( shelficeMass(i,j,bi,bj) + rhoConst*Ro_surf(i,j,bi,bj) ) |
718 |
ENDDO |
719 |
ENDDO |
720 |
ENDDO |
721 |
ENDDO |
722 |
c ENDIF |
723 |
#endif /* ndef ALLOW_AUTODIFF */ |
724 |
|
725 |
#ifdef ALLOW_DIAGNOSTICS |
726 |
IF ( useDiagnostics ) THEN |
727 |
CALL DIAGNOSTICS_FILL_RS(shelfIceFreshWaterFlux,'SHIfwFlx', |
728 |
& 0,1,0,1,1,myThid) |
729 |
CALL DIAGNOSTICS_FILL_RS(shelfIceHeatFlux, 'SHIhtFlx', |
730 |
& 0,1,0,1,1,myThid) |
731 |
C SHIForcT (Ice shelf forcing for theta [W/m2], >0 increases theta) |
732 |
tmpFac = HeatCapacity_Cp*rUnit2mass |
733 |
CALL DIAGNOSTICS_SCALE_FILL(shelficeForcingT,tmpFac,1, |
734 |
& 'SHIForcT',0,1,0,1,1,myThid) |
735 |
C SHIForcS (Ice shelf forcing for salt [g/m2/s], >0 increases salt) |
736 |
tmpFac = rUnit2mass |
737 |
CALL DIAGNOSTICS_SCALE_FILL(shelficeForcingS,tmpFac,1, |
738 |
& 'SHIForcS',0,1,0,1,1,myThid) |
739 |
C Transfer coefficients |
740 |
CALL DIAGNOSTICS_FILL(shiTransCoeffT,'SHIgammT', |
741 |
& 0,1,0,1,1,myThid) |
742 |
CALL DIAGNOSTICS_FILL(shiTransCoeffS,'SHIgammS', |
743 |
& 0,1,0,1,1,myThid) |
744 |
C Friction velocity |
745 |
#ifdef SHI_ALLOW_GAMMAFRICT |
746 |
IF ( SHELFICEuseGammaFrict ) |
747 |
& CALL DIAGNOSTICS_FILL(uStarDiag,'SHIuStar',0,1,0,1,1,myThid) |
748 |
#endif /* SHI_ALLOW_GAMMAFRICT */ |
749 |
ENDIF |
750 |
CALL DIAGNOSTICS_FILL(R_shelfice,'SHI_Rshelfice', |
751 |
& 0,1,0,1,1,myThid) |
752 |
|
753 |
|
754 |
#endif /* ALLOW_DIAGNOSTICS */ |
755 |
|
756 |
#endif /* ALLOW_SHELFICE */ |
757 |
RETURN |
758 |
END |