1 |
dimitri |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_advdiff.F,v 1.60 2012/02/16 01:22:02 gforget Exp $ |
2 |
|
|
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "SEAICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
CBOP |
7 |
|
|
C !ROUTINE: SEAICE_ADVDIFF |
8 |
|
|
|
9 |
|
|
C !INTERFACE: ========================================================== |
10 |
|
|
SUBROUTINE SEAICE_ADVDIFF( |
11 |
|
|
I myTime, myIter, myThid ) |
12 |
|
|
|
13 |
|
|
C !DESCRIPTION: \bv |
14 |
|
|
C *===========================================================* |
15 |
|
|
C | SUBROUTINE SEAICE_ADVDIFF |
16 |
|
|
C | o driver for different advection routines |
17 |
|
|
C | calls an adaption of gad_advection to call different |
18 |
|
|
C | advection routines of pkg/generic_advdiff |
19 |
|
|
C *===========================================================* |
20 |
|
|
C \ev |
21 |
|
|
|
22 |
|
|
C !USES: =============================================================== |
23 |
|
|
IMPLICIT NONE |
24 |
|
|
|
25 |
|
|
C === Global variables === |
26 |
|
|
C UICE/VICE :: ice velocity |
27 |
|
|
C HEFF :: scalar field to be advected |
28 |
|
|
C HEFFM :: mask for scalar field |
29 |
|
|
#include "SIZE.h" |
30 |
|
|
#include "EEPARAMS.h" |
31 |
|
|
#include "PARAMS.h" |
32 |
|
|
#include "GRID.h" |
33 |
|
|
#include "GAD.h" |
34 |
|
|
#include "SEAICE_SIZE.h" |
35 |
|
|
#include "SEAICE_PARAMS.h" |
36 |
|
|
#include "SEAICE.h" |
37 |
|
|
#include "SEAICE_TRACER.h" |
38 |
|
|
|
39 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
40 |
|
|
# include "tamc.h" |
41 |
|
|
#endif |
42 |
|
|
|
43 |
|
|
C !INPUT PARAMETERS: =================================================== |
44 |
|
|
C === Routine arguments === |
45 |
|
|
C myTime :: current time |
46 |
|
|
C myIter :: iteration number |
47 |
|
|
C myThid :: Thread no. that called this routine. |
48 |
|
|
_RL myTime |
49 |
|
|
INTEGER myIter |
50 |
|
|
INTEGER myThid |
51 |
|
|
CEndOfInterface |
52 |
|
|
|
53 |
|
|
C !LOCAL VARIABLES: ==================================================== |
54 |
|
|
C === Local variables === |
55 |
|
|
C i,j,bi,bj :: Loop counters |
56 |
dimitri |
1.2 |
CToM<<< |
57 |
|
|
#ifdef SEAICE_ITD |
58 |
|
|
C k :: Loop counter for ice thickness categories |
59 |
|
|
#endif |
60 |
|
|
C>>>ToM |
61 |
dimitri |
1.1 |
C ks :: surface level index |
62 |
|
|
C uc/vc :: current ice velocity on C-grid |
63 |
|
|
C uTrans :: volume transport, x direction |
64 |
|
|
C vTrans :: volume transport, y direction |
65 |
|
|
C afx :: horizontal advective flux, x direction |
66 |
|
|
C afy :: horizontal advective flux, y direction |
67 |
|
|
C gFld :: tendency of seaice field |
68 |
|
|
C xA,yA :: "areas" of X and Y face of tracer cells |
69 |
|
|
INTEGER i, j, bi, bj |
70 |
dimitri |
1.2 |
CToM<<< |
71 |
|
|
#ifdef SEAICE_ITD |
72 |
|
|
INTEGER k |
73 |
|
|
#endif |
74 |
|
|
C>>>ToM |
75 |
dimitri |
1.1 |
INTEGER ks |
76 |
|
|
LOGICAL SEAICEmultiDimAdvection |
77 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
78 |
|
|
INTEGER itmpkey |
79 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
80 |
|
|
#ifdef ALLOW_SITRACER |
81 |
|
|
# ifndef SEAICE_GROWTH_LEGACY |
82 |
|
|
_RL hEffNm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
83 |
|
|
_RL areaNm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
84 |
|
|
# endif /* ndef SEAICE_GROWTH_LEGACY */ |
85 |
|
|
INTEGER iTr, SEAICEadvSchSItr |
86 |
|
|
_RL SEAICEdiffKhSItr |
87 |
|
|
_RL SItrExt (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
88 |
|
|
_RL tmpscal1, tmpscal2 |
89 |
|
|
# ifdef ALLOW_SITRACER_ADVCAP |
90 |
|
|
_RL SItrPrev (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
91 |
|
|
# endif |
92 |
|
|
# ifdef ALLOW_SITRACER_DEBUG_DIAG |
93 |
|
|
_RL DIAGarray (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
94 |
|
|
# endif |
95 |
|
|
#endif /* ALLOW_SITRACER */ |
96 |
|
|
|
97 |
|
|
_RL uc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
98 |
|
|
_RL vc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
99 |
|
|
_RL fldNm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
100 |
|
|
_RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
101 |
|
|
_RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
102 |
|
|
_RL afx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
103 |
|
|
_RL afy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
104 |
|
|
_RL gFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
105 |
|
|
_RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
106 |
|
|
_RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
107 |
|
|
_RL recip_heff(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
108 |
|
|
CEOP |
109 |
|
|
|
110 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
111 |
|
|
|
112 |
|
|
ks = 1 |
113 |
|
|
|
114 |
|
|
C-- make a local copy of the velocities for compatibility with B-grid |
115 |
|
|
C-- alternatively interpolate to C-points if necessary |
116 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
117 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
118 |
|
|
#ifdef SEAICE_CGRID |
119 |
|
|
DO j=1-OLy,sNy+OLy |
120 |
|
|
DO i=1-OLx,sNx+OLx |
121 |
|
|
uc(i,j,bi,bj)=UICE(i,j,bi,bj) |
122 |
|
|
vc(i,j,bi,bj)=VICE(i,j,bi,bj) |
123 |
|
|
ENDDO |
124 |
|
|
ENDDO |
125 |
|
|
#else /* not SEAICE_CGRID = BGRID */ |
126 |
|
|
C average seaice velocity to C-grid |
127 |
|
|
DO j=1-OLy,sNy+OLy-1 |
128 |
|
|
DO i=1-OLx,sNx+OLx-1 |
129 |
|
|
uc(i,j,bi,bj)=.5 _d 0*(UICE(i,j,bi,bj)+UICE(i,j+1,bi,bj)) |
130 |
|
|
vc(i,j,bi,bj)=.5 _d 0*(VICE(i,j,bi,bj)+VICE(i+1,j,bi,bj)) |
131 |
|
|
ENDDO |
132 |
|
|
ENDDO |
133 |
|
|
#endif /* SEAICE_CGRID */ |
134 |
|
|
C- compute cell areas used by all tracers |
135 |
|
|
DO j=1-OLy,sNy+OLy |
136 |
|
|
DO i=1-OLx,sNx+OLx |
137 |
|
|
xA(i,j,bi,bj) = _dyG(i,j,bi,bj)*_maskW(i,j,ks,bi,bj) |
138 |
|
|
yA(i,j,bi,bj) = _dxG(i,j,bi,bj)*_maskS(i,j,ks,bi,bj) |
139 |
|
|
ENDDO |
140 |
|
|
ENDDO |
141 |
|
|
ENDDO |
142 |
|
|
ENDDO |
143 |
|
|
|
144 |
|
|
#ifndef SEAICE_CGRID |
145 |
|
|
C Do we need this? I am afraid so. |
146 |
|
|
CALL EXCH_UV_XY_RL(uc,vc,.TRUE.,myThid) |
147 |
|
|
#endif /* not SEAICE_CGRID */ |
148 |
|
|
|
149 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
150 |
|
|
CADJ STORE uc = comlev1, key = ikey_dynamics, kind=isbyte |
151 |
|
|
CADJ STORE vc = comlev1, key = ikey_dynamics, kind=isbyte |
152 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
153 |
|
|
|
154 |
|
|
SEAICEmultidimadvection = .TRUE. |
155 |
|
|
IF ( SEAICEadvScheme.EQ.ENUM_CENTERED_2ND |
156 |
|
|
& .OR.SEAICEadvScheme.EQ.ENUM_UPWIND_3RD |
157 |
|
|
& .OR.SEAICEadvScheme.EQ.ENUM_CENTERED_4TH ) THEN |
158 |
|
|
SEAICEmultiDimAdvection = .FALSE. |
159 |
|
|
ENDIF |
160 |
|
|
|
161 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
162 |
|
|
CADJ STORE heffm = comlev1, key = ikey_dynamics, kind=isbyte |
163 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
164 |
|
|
IF ( SEAICEmultiDimAdvection ) THEN |
165 |
|
|
|
166 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
167 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
168 |
|
|
C--- loops on tile indices bi,bj |
169 |
|
|
|
170 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
171 |
|
|
C Initialise for TAF |
172 |
|
|
DO j=1-OLy,sNy+OLy |
173 |
|
|
DO i=1-OLx,sNx+OLx |
174 |
|
|
gFld(i,j) = 0. _d 0 |
175 |
|
|
ENDDO |
176 |
|
|
ENDDO |
177 |
|
|
C |
178 |
|
|
act1 = bi - myBxLo(myThid) |
179 |
|
|
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
180 |
|
|
act2 = bj - myByLo(myThid) |
181 |
|
|
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
182 |
|
|
act3 = myThid - 1 |
183 |
|
|
max3 = nTx*nTy |
184 |
|
|
act4 = ikey_dynamics - 1 |
185 |
|
|
itmpkey = (act1 + 1) + act2*max1 |
186 |
|
|
& + act3*max1*max2 |
187 |
|
|
& + act4*max1*max2*max3 |
188 |
|
|
C |
189 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
190 |
|
|
CADJ & key = itmpkey, kind=isbyte |
191 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, |
192 |
|
|
CADJ & key = itmpkey, kind=isbyte |
193 |
|
|
CADJ STORE heffm(:,:,bi,bj) = comlev1_bibj, |
194 |
|
|
CADJ & key = itmpkey, kind=isbyte |
195 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, |
196 |
|
|
CADJ & key = itmpkey, kind=isbyte |
197 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
198 |
|
|
|
199 |
|
|
DO j=1-OLy,sNy+OLy |
200 |
|
|
DO i=1-OLx,sNx+OLx |
201 |
|
|
#if ( defined (SEAICE_GROWTH_LEGACY) || defined (ALLOW_SITRACER) ) |
202 |
|
|
hEffNm1(i,j,bi,bj) = HEFF(i,j,bi,bj) |
203 |
|
|
areaNm1(i,j,bi,bj) = AREA(i,j,bi,bj) |
204 |
|
|
#endif |
205 |
|
|
recip_heff(i,j) = 1. _d 0 |
206 |
|
|
ENDDO |
207 |
|
|
ENDDO |
208 |
|
|
|
209 |
|
|
C- Calculate "volume transports" through tracer cell faces. |
210 |
|
|
DO j=1-OLy,sNy+OLy |
211 |
|
|
DO i=1-OLx,sNx+OLx |
212 |
|
|
uTrans(i,j) = uc(i,j,bi,bj)*xA(i,j,bi,bj) |
213 |
|
|
vTrans(i,j) = vc(i,j,bi,bj)*yA(i,j,bi,bj) |
214 |
|
|
ENDDO |
215 |
|
|
ENDDO |
216 |
|
|
|
217 |
|
|
C-- Effective Thickness (Volume) |
218 |
|
|
IF ( SEAICEadvHeff ) THEN |
219 |
dimitri |
1.2 |
CToM<<< |
220 |
|
|
#ifdef SEAICE_ITD |
221 |
|
|
DO k=1,nITD |
222 |
|
|
DO j=1-OLy,sNy+OLy |
223 |
|
|
DO i=1-OLx,sNx+OLx |
224 |
|
|
HEFF(i,j,bi,bj)=HEFFITD(i,j,k,bi,bj) |
225 |
|
|
ENDDO |
226 |
|
|
ENDDO |
227 |
|
|
#endif |
228 |
|
|
C>>>ToM |
229 |
dimitri |
1.1 |
CALL SEAICE_ADVECTION( |
230 |
|
|
I GAD_HEFF, SEAICEadvSchHeff, |
231 |
|
|
I uc(1-OLx,1-OLy,bi,bj), vc(1-OLx,1-OLy,bi,bj), |
232 |
|
|
I uTrans, vTrans, HEFF(1-OLx,1-OLy,bi,bj), recip_heff, |
233 |
|
|
O gFld, afx, afy, |
234 |
|
|
I bi, bj, myTime, myIter, myThid ) |
235 |
|
|
IF ( SEAICEdiffKhHeff .GT. 0. _d 0 ) THEN |
236 |
|
|
C- Add tendency due to diffusion |
237 |
|
|
CALL SEAICE_DIFFUSION( |
238 |
|
|
I GAD_HEFF, SEAICEdiffKhHeff, ONE, |
239 |
|
|
I HEFF(1-OLx,1-OLy,bi,bj), HEFFM, |
240 |
|
|
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
241 |
|
|
U gFld, |
242 |
|
|
I bi, bj, myTime, myIter, myThid ) |
243 |
|
|
ENDIF |
244 |
|
|
C now do the "explicit" time step |
245 |
|
|
DO j=1,sNy |
246 |
|
|
DO i=1,sNx |
247 |
|
|
HEFF(i,j,bi,bj) = HEFFM(i,j,bi,bj) * ( |
248 |
|
|
& HEFF(i,j,bi,bj) + SEAICE_deltaTtherm * gFld(i,j) |
249 |
|
|
& ) |
250 |
|
|
ENDDO |
251 |
|
|
ENDDO |
252 |
dimitri |
1.2 |
CToM<<< |
253 |
|
|
#ifdef SEAICE_ITD |
254 |
|
|
DO j=1-OLy,sNy+OLy |
255 |
|
|
DO i=1-OLx,sNx+OLx |
256 |
|
|
HEFFITD(i,j,k,bi,bj)=HEFF(i,j,bi,bj) |
257 |
|
|
ENDDO |
258 |
|
|
ENDDO |
259 |
|
|
ENDDO |
260 |
|
|
#endif |
261 |
|
|
C>>>ToM |
262 |
dimitri |
1.1 |
ENDIF |
263 |
|
|
|
264 |
|
|
C-- Fractional area |
265 |
|
|
IF ( SEAICEadvArea ) THEN |
266 |
dimitri |
1.2 |
CToM<<< |
267 |
|
|
#ifdef SEAICE_ITD |
268 |
|
|
DO k=1,nITD |
269 |
|
|
DO j=1-OLy,sNy+OLy |
270 |
|
|
DO i=1-OLx,sNx+OLx |
271 |
|
|
AREA(i,j,bi,bj)=AREAITD(i,j,k,bi,bj) |
272 |
|
|
ENDDO |
273 |
|
|
ENDDO |
274 |
|
|
#endif |
275 |
|
|
C>>>ToM |
276 |
dimitri |
1.1 |
CALL SEAICE_ADVECTION( |
277 |
|
|
I GAD_AREA, SEAICEadvSchArea, |
278 |
|
|
I uc(1-OLx,1-OLy,bi,bj), vc(1-OLx,1-OLy,bi,bj), |
279 |
|
|
I uTrans, vTrans, AREA(1-OLx,1-OLy,bi,bj), recip_heff, |
280 |
|
|
O gFld, afx, afy, |
281 |
|
|
I bi, bj, myTime, myIter, myThid ) |
282 |
|
|
IF ( SEAICEdiffKhArea .GT. 0. _d 0 ) THEN |
283 |
|
|
C- Add tendency due to diffusion |
284 |
|
|
CALL SEAICE_DIFFUSION( |
285 |
|
|
I GAD_AREA, SEAICEdiffKhArea, ONE, |
286 |
|
|
I AREA(1-OLx,1-OLy,bi,bj), HEFFM, |
287 |
|
|
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
288 |
|
|
U gFld, |
289 |
|
|
I bi, bj, myTime, myIter, myThid ) |
290 |
|
|
ENDIF |
291 |
|
|
C now do the "explicit" time step |
292 |
|
|
DO j=1,sNy |
293 |
|
|
DO i=1,sNx |
294 |
|
|
AREA(i,j,bi,bj) = HEFFM(i,j,bi,bj) * ( |
295 |
|
|
& AREA(i,j,bi,bj) + SEAICE_deltaTtherm * gFld(i,j) |
296 |
|
|
& ) |
297 |
|
|
ENDDO |
298 |
|
|
ENDDO |
299 |
dimitri |
1.2 |
CToM<<< |
300 |
|
|
#ifdef SEAICE_ITD |
301 |
|
|
DO j=1-OLy,sNy+OLy |
302 |
|
|
DO i=1-OLx,sNx+OLx |
303 |
|
|
AREAITD(i,j,k,bi,bj)=AREA(i,j,bi,bj) |
304 |
|
|
ENDDO |
305 |
|
|
ENDDO |
306 |
|
|
ENDDO |
307 |
|
|
#endif |
308 |
|
|
C>>>ToM |
309 |
dimitri |
1.1 |
ENDIF |
310 |
|
|
|
311 |
|
|
C-- Effective Snow Thickness (Volume) |
312 |
|
|
IF ( SEAICEadvSnow ) THEN |
313 |
dimitri |
1.2 |
CToM<<< |
314 |
|
|
#ifdef SEAICE_ITD |
315 |
|
|
DO k=1,nITD |
316 |
|
|
DO j=1-OLy,sNy+OLy |
317 |
|
|
DO i=1-OLx,sNx+OLx |
318 |
|
|
HSNOW(i,j,bi,bj)=HSNOWITD(i,j,k,bi,bj) |
319 |
|
|
ENDDO |
320 |
|
|
ENDDO |
321 |
|
|
#endif |
322 |
|
|
C>>>ToM |
323 |
dimitri |
1.1 |
CALL SEAICE_ADVECTION( |
324 |
|
|
I GAD_SNOW, SEAICEadvSchSnow, |
325 |
|
|
I uc(1-OLx,1-OLy,bi,bj), vc(1-OLx,1-OLy,bi,bj), |
326 |
|
|
I uTrans, vTrans, HSNOW(1-OLx,1-OLy,bi,bj), recip_heff, |
327 |
|
|
O gFld, afx, afy, |
328 |
|
|
I bi, bj, myTime, myIter, myThid ) |
329 |
|
|
IF ( SEAICEdiffKhSnow .GT. 0. _d 0 ) THEN |
330 |
|
|
C-- Add tendency due to diffusion |
331 |
|
|
CALL SEAICE_DIFFUSION( |
332 |
|
|
I GAD_SNOW, SEAICEdiffKhSnow, ONE, |
333 |
|
|
I HSNOW(1-OLx,1-OLy,bi,bj), HEFFM, |
334 |
|
|
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
335 |
|
|
U gFld, |
336 |
|
|
I bi, bj, myTime, myIter, myThid ) |
337 |
|
|
ENDIF |
338 |
|
|
C now do the "explicit" time step |
339 |
|
|
DO j=1,sNy |
340 |
|
|
DO i=1,sNx |
341 |
|
|
HSNOW(i,j,bi,bj) = HEFFM(i,j,bi,bj) * ( |
342 |
|
|
& HSNOW(i,j,bi,bj) + SEAICE_deltaTtherm * gFld(i,j) |
343 |
|
|
& ) |
344 |
|
|
ENDDO |
345 |
|
|
ENDDO |
346 |
dimitri |
1.2 |
CToM<<< |
347 |
|
|
#ifdef SEAICE_ITD |
348 |
|
|
DO j=1-OLy,sNy+OLy |
349 |
|
|
DO i=1-OLx,sNx+OLx |
350 |
|
|
HSNOWITD(i,j,k,bi,bj)=HSNOW(i,j,bi,bj) |
351 |
|
|
ENDDO |
352 |
|
|
ENDDO |
353 |
|
|
ENDDO |
354 |
|
|
#endif |
355 |
|
|
C>>>ToM |
356 |
dimitri |
1.1 |
ENDIF |
357 |
|
|
|
358 |
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
359 |
|
|
C-- Effective Sea Ice Salinity (Mass of salt) |
360 |
|
|
IF ( SEAICEadvSalt ) THEN |
361 |
|
|
CALL SEAICE_ADVECTION( |
362 |
|
|
I GAD_SALT, SEAICEadvSchSalt, |
363 |
|
|
I uc(1-OLx,1-OLy,bi,bj), vc(1-OLx,1-OLy,bi,bj), |
364 |
|
|
I uTrans, vTrans, HSALT(1-OLx,1-OLy,bi,bj), recip_heff, |
365 |
|
|
O gFld, afx, afy, |
366 |
|
|
I bi, bj, myTime, myIter, myThid ) |
367 |
|
|
IF ( SEAICEdiffKhSalt .GT. 0. _d 0 ) THEN |
368 |
|
|
C-- Add tendency due to diffusion |
369 |
|
|
CALL SEAICE_DIFFUSION( |
370 |
|
|
I GAD_SALT, SEAICEdiffKhSalt, ONE, |
371 |
|
|
I HSALT(1-OLx,1-OLy,bi,bj), HEFFM, |
372 |
|
|
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
373 |
|
|
U gFld, |
374 |
|
|
I bi, bj, myTime, myIter, myThid ) |
375 |
|
|
ENDIF |
376 |
|
|
C now do the "explicit" time step |
377 |
|
|
DO j=1,sNy |
378 |
|
|
DO i=1,sNx |
379 |
|
|
HSALT(i,j,bi,bj) = HEFFM(i,j,bi,bj) * ( |
380 |
|
|
& HSALT(i,j,bi,bj) + SEAICE_deltaTtherm * gFld(i,j) |
381 |
|
|
& ) |
382 |
|
|
ENDDO |
383 |
|
|
ENDDO |
384 |
|
|
ENDIF |
385 |
|
|
#endif /* SEAICE_VARIABLE_SALINITY */ |
386 |
|
|
|
387 |
|
|
#ifdef ALLOW_SITRACER |
388 |
|
|
C-- Sea Ice Tracers |
389 |
|
|
DO iTr = 1, SItrNumInUse |
390 |
|
|
IF ( (SEAICEadvHEFF.AND.(SItrMate(iTr).EQ.'HEFF')).OR. |
391 |
|
|
& (SEAICEadvAREA.AND.(SItrMate(iTr).EQ.'AREA')) ) THEN |
392 |
|
|
C-- scale to effective value |
393 |
|
|
IF (SItrMate(iTr).EQ.'HEFF') THEN |
394 |
|
|
SEAICEadvSchSItr=SEAICEadvSchHEFF |
395 |
|
|
SEAICEdiffKhSItr=SEAICEdiffKhHEFF |
396 |
|
|
DO j=1-OLy,sNy+OLy |
397 |
|
|
DO i=1-OLx,sNx+OLx |
398 |
|
|
SItrExt(i,j,bi,bj) = HEFFM(i,j,bi,bj) * |
399 |
|
|
& SItracer(i,j,bi,bj,iTr) * hEffNm1(i,j,bi,bj) |
400 |
|
|
ENDDO |
401 |
|
|
ENDDO |
402 |
|
|
c TAF? ELSEIF (SItrMate(iTr).EQ.'AREA') THEN |
403 |
|
|
ELSE |
404 |
|
|
SEAICEadvSchSItr=SEAICEadvSchAREA |
405 |
|
|
SEAICEdiffKhSItr=SEAICEdiffKhAREA |
406 |
|
|
DO j=1-OLy,sNy+OLy |
407 |
|
|
DO i=1-OLx,sNx+OLx |
408 |
|
|
SItrExt(i,j,bi,bj) = HEFFM(i,j,bi,bj) * |
409 |
|
|
& SItracer(i,j,bi,bj,iTr) * areaNm1(i,j,bi,bj) |
410 |
|
|
ENDDO |
411 |
|
|
ENDDO |
412 |
|
|
ENDIF |
413 |
|
|
C-- store a couple things |
414 |
|
|
DO j=1-OLy,sNy+OLy |
415 |
|
|
DO i=1-OLx,sNx+OLx |
416 |
|
|
#ifdef ALLOW_SITRACER_ADVCAP |
417 |
|
|
C-- store previous value for spurious maxima treament |
418 |
|
|
SItrPrev(i,j,bi,bj)=SItracer(i,j,bi,bj,iTr) |
419 |
|
|
#endif |
420 |
|
|
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
421 |
|
|
diagArray(I,J,2+(iTr-1)*5) = SItrExt(i,j,bi,bj) |
422 |
|
|
#endif |
423 |
|
|
ENDDO |
424 |
|
|
ENDDO |
425 |
|
|
C-- compute advective tendency |
426 |
|
|
CALL SEAICE_ADVECTION( |
427 |
|
|
I GAD_SITR+iTr-1, SEAICEadvSchSItr, |
428 |
|
|
I uc(1-OLx,1-OLy,bi,bj), vc(1-OLx,1-OLy,bi,bj), |
429 |
|
|
I uTrans, vTrans, SItrExt(1-OLx,1-OLy,bi,bj), |
430 |
|
|
I recip_heff, |
431 |
|
|
O gFld, afx, afy, |
432 |
|
|
I bi, bj, myTime, myIter, myThid ) |
433 |
|
|
IF ( SEAICEdiffKhHeff .GT. 0. _d 0 ) THEN |
434 |
|
|
C-- add diffusive tendency |
435 |
|
|
CALL SEAICE_DIFFUSION( |
436 |
|
|
I GAD_SITR+iTr-1, SEAICEdiffKhSItr, ONE, |
437 |
|
|
I SItrExt(1-OLx,1-OLy,bi,bj), HEFFM, |
438 |
|
|
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
439 |
|
|
U gFld, |
440 |
|
|
I bi, bj, myTime, myIter, myThid ) |
441 |
|
|
ENDIF |
442 |
|
|
C-- apply tendency |
443 |
|
|
DO j=1,sNy |
444 |
|
|
DO i=1,sNx |
445 |
|
|
SItrExt(i,j,bi,bj) = HEFFM(i,j,bi,bj) * ( |
446 |
|
|
& SItrExt(i,j,bi,bj) + SEAICE_deltaTtherm * gFld(i,j) ) |
447 |
|
|
ENDDO |
448 |
|
|
ENDDO |
449 |
|
|
C-- scale back to actual value, or move effective value to ocean bucket |
450 |
|
|
IF (SItrMate(iTr).EQ.'HEFF') THEN |
451 |
|
|
DO j=1,sNy |
452 |
|
|
DO i=1,sNx |
453 |
|
|
if (HEFF(I,J,bi,bj).GE.siEps) then |
454 |
|
|
SItracer(i,j,bi,bj,iTr)=SItrExt(i,j,bi,bj)/HEFF(I,J,bi,bj) |
455 |
|
|
SItrBucket(i,j,bi,bj,iTr)=0. _d 0 |
456 |
|
|
else |
457 |
|
|
SItracer(i,j,bi,bj,iTr)=0. _d 0 |
458 |
|
|
SItrBucket(i,j,bi,bj,iTr)=SItrExt(i,j,bi,bj) |
459 |
|
|
endif |
460 |
|
|
#ifdef ALLOW_SITRACER_ADVCAP |
461 |
|
|
C hack to try avoid 'spontaneous generation' of maxima, which supposedly would |
462 |
|
|
C occur less frequently if we advected SItr with uXheff instead SItrXheff with u |
463 |
|
|
tmpscal1=max(SItrPrev(i,j,bi,bj), |
464 |
|
|
& SItrPrev(i+1,j,bi,bj),SItrPrev(i-1,j,bi,bj), |
465 |
|
|
& SItrPrev(i,j+1,bi,bj),SItrPrev(i,j-1,bi,bj)) |
466 |
|
|
tmpscal2=MAX(ZERO,SItracer(i,j,bi,bj,iTr)-tmpscal1) |
467 |
|
|
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)-tmpscal2 |
468 |
|
|
SItrBucket(i,j,bi,bj,iTr)=SItrBucket(i,j,bi,bj,iTr) |
469 |
|
|
& +tmpscal2*HEFF(I,J,bi,bj) |
470 |
|
|
#endif |
471 |
|
|
C treat case of potential negative value |
472 |
|
|
if (HEFF(I,J,bi,bj).GE.siEps) then |
473 |
|
|
tmpscal1=MIN(0. _d 0,SItracer(i,j,bi,bj,iTr)) |
474 |
|
|
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)-tmpscal1 |
475 |
|
|
SItrBucket(i,j,bi,bj,iTr)=SItrBucket(i,j,bi,bj,iTr) |
476 |
|
|
& +HEFF(I,J,bi,bj)*tmpscal1 |
477 |
|
|
endif |
478 |
|
|
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
479 |
|
|
diagArray(I,J,1+(iTr-1)*5)= - SItrBucket(i,j,bi,bj,iTr) |
480 |
|
|
& *HEFFM(I,J,bi,bj)/SEAICE_deltaTtherm*SEAICE_rhoIce |
481 |
|
|
tmpscal1= ( HEFF(I,J,bi,bj)*SItracer(i,j,bi,bj,iTr) |
482 |
|
|
& + SItrBucket(i,j,bi,bj,iTr) )*HEFFM(I,J,bi,bj) |
483 |
|
|
diagArray(I,J,2+(iTr-1)*5)= tmpscal1-diagArray(I,J,2+(iTr-1)*5) |
484 |
|
|
diagArray(I,J,3+(iTr-1)*5)=HEFFM(i,j,bi,bj) * |
485 |
|
|
& SEAICE_deltaTtherm * gFld(i,j) |
486 |
|
|
#endif |
487 |
|
|
ENDDO |
488 |
|
|
ENDDO |
489 |
|
|
c TAF? ELSEIF (SItrMate(iTr).EQ.'AREA') THEN |
490 |
|
|
ELSE |
491 |
|
|
DO j=1,sNy |
492 |
|
|
DO i=1,sNx |
493 |
|
|
if (AREA(I,J,bi,bj).GE.SEAICE_area_floor) then |
494 |
|
|
SItracer(i,j,bi,bj,iTr)=SItrExt(i,j,bi,bj)/AREA(I,J,bi,bj) |
495 |
|
|
else |
496 |
|
|
SItracer(i,j,bi,bj,iTr)=0. _d 0 |
497 |
|
|
endif |
498 |
|
|
SItrBucket(i,j,bi,bj,iTr)=0. _d 0 |
499 |
|
|
#ifdef ALLOW_SITRACER_ADVCAP |
500 |
|
|
tmpscal1=max(SItrPrev(i,j,bi,bj), |
501 |
|
|
& SItrPrev(i+1,j,bi,bj),SItrPrev(i-1,j,bi,bj), |
502 |
|
|
& SItrPrev(i,j+1,bi,bj),SItrPrev(i,j-1,bi,bj)) |
503 |
|
|
tmpscal2=MAX(ZERO,SItracer(i,j,bi,bj,iTr)-tmpscal1) |
504 |
|
|
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)-tmpscal2 |
505 |
|
|
#endif |
506 |
|
|
C treat case of potential negative value |
507 |
|
|
if (AREA(I,J,bi,bj).GE.SEAICE_area_floor) then |
508 |
|
|
tmpscal1=MIN(0. _d 0,SItracer(i,j,bi,bj,iTr)) |
509 |
|
|
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)-tmpscal1 |
510 |
|
|
endif |
511 |
|
|
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
512 |
|
|
diagArray(I,J,1+(iTr-1)*5)= 0. _d 0 |
513 |
|
|
diagArray(I,J,2+(iTr-1)*5)= - diagArray(I,J,2+(iTr-1)*5) |
514 |
|
|
& + AREA(I,J,bi,bj)*SItracer(i,j,bi,bj,iTr)*HEFFM(I,J,bi,bj) |
515 |
|
|
diagArray(I,J,3+(iTr-1)*5)=HEFFM(i,j,bi,bj) * |
516 |
|
|
& SEAICE_deltaTtherm * gFld(i,j) |
517 |
|
|
#endif |
518 |
|
|
ENDDO |
519 |
|
|
ENDDO |
520 |
|
|
ENDIF |
521 |
|
|
C-- |
522 |
|
|
ENDIF |
523 |
|
|
ENDDO |
524 |
|
|
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
525 |
|
|
c CALL DIAGNOSTICS_FILL(DIAGarray,'UDIAG2 ',0,Nr,2,bi,bj,myThid) |
526 |
|
|
#endif |
527 |
|
|
#endif /* ALLOW_SITRACER */ |
528 |
|
|
|
529 |
|
|
C--- end bi,bj loops |
530 |
|
|
ENDDO |
531 |
|
|
ENDDO |
532 |
|
|
|
533 |
|
|
ELSE |
534 |
|
|
C-- if not multiDimAdvection |
535 |
|
|
|
536 |
|
|
Cold This has to be done to comply with the time stepping in advect.F: |
537 |
|
|
Cold Making sure that the following routines see the different |
538 |
|
|
Cold time levels correctly |
539 |
|
|
Cold At the end of the routine ADVECT, |
540 |
|
|
Cold timelevel 1 is updated with advection contribution |
541 |
|
|
Cold and diffusion contribution |
542 |
|
|
Cold (which was computed in DIFFUS on timelevel 3) |
543 |
|
|
Cold timelevel 2 is the previous timelevel 1 |
544 |
|
|
Cold timelevel 3 is the total diffusion tendency * deltaT |
545 |
|
|
Cold (empty if no diffusion) |
546 |
|
|
C-- This is what remains from old 3-level storage of AREA & HEFF: still |
547 |
|
|
C needed for SEAICE_GROWTH, Legacy branch. Left old comments here above. |
548 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
549 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
550 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
551 |
|
|
DO j=1-OLy,sNy+OLy |
552 |
|
|
DO i=1-OLx,sNx+OLx |
553 |
|
|
hEffNm1(i,j,bi,bj) = HEFF(i,j,bi,bj) |
554 |
|
|
areaNm1(i,j,bi,bj) = AREA(i,j,bi,bj) |
555 |
|
|
ENDDO |
556 |
|
|
ENDDO |
557 |
|
|
ENDDO |
558 |
|
|
ENDDO |
559 |
|
|
#endif |
560 |
|
|
|
561 |
|
|
IF ( SEAICEadvHEff ) THEN |
562 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
563 |
|
|
CADJ STORE heff = comlev1, key = ikey_dynamics, kind=isbyte |
564 |
|
|
#endif |
565 |
dimitri |
1.2 |
CToM<<< |
566 |
|
|
#ifdef SEAICE_ITD |
567 |
|
|
DO k=1,nITD |
568 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
569 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
570 |
|
|
DO j=1-OLy,sNy+OLy |
571 |
|
|
DO i=1-OLx,sNx+OLx |
572 |
|
|
HEFF(i,j,bi,bj)=HEFFITD(i,j,k,bi,bj) |
573 |
|
|
ENDDO |
574 |
|
|
ENDDO |
575 |
|
|
ENDDO |
576 |
|
|
ENDDO |
577 |
|
|
#endif |
578 |
|
|
C>>>ToM |
579 |
dimitri |
1.1 |
CALL ADVECT( uc, vc, hEff, fldNm1, HEFFM, myThid ) |
580 |
|
|
IF ( SEAICEdiffKhHeff .GT. 0. _d 0 ) THEN |
581 |
|
|
C- Add tendency due to diffusion |
582 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
583 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
584 |
|
|
CALL SEAICE_DIFFUSION( |
585 |
|
|
I GAD_HEFF, SEAICEdiffKhHeff, SEAICE_deltaTtherm, |
586 |
|
|
I fldNm1(1-OLx,1-OLy,bi,bj), HEFFM, |
587 |
|
|
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
588 |
|
|
U HEFF(1-OLx,1-OLy,bi,bj), |
589 |
|
|
I bi, bj, myTime, myIter, myThid ) |
590 |
|
|
ENDDO |
591 |
|
|
ENDDO |
592 |
|
|
ENDIF |
593 |
dimitri |
1.2 |
CToM<<< |
594 |
|
|
#ifdef SEAICE_ITD |
595 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
596 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
597 |
|
|
DO j=1-OLy,sNy+OLy |
598 |
|
|
DO i=1-OLx,sNx+OLx |
599 |
|
|
HEFFITD(i,j,k,bi,bj)=HEFF(i,j,bi,bj) |
600 |
|
|
ENDDO |
601 |
|
|
ENDDO |
602 |
|
|
ENDDO |
603 |
|
|
ENDDO |
604 |
|
|
ENDDO |
605 |
|
|
#endif |
606 |
|
|
C>>>ToM |
607 |
dimitri |
1.1 |
ENDIF |
608 |
|
|
IF ( SEAICEadvArea ) THEN |
609 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
610 |
|
|
CADJ STORE area = comlev1, key = ikey_dynamics, kind=isbyte |
611 |
|
|
#endif |
612 |
dimitri |
1.2 |
CToM<<< |
613 |
|
|
#ifdef SEAICE_ITD |
614 |
|
|
DO k=1,nITD |
615 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
616 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
617 |
|
|
DO j=1-OLy,sNy+OLy |
618 |
|
|
DO i=1-OLx,sNx+OLx |
619 |
|
|
AREA(i,j,bi,bj)=AREAITD(i,j,k,bi,bj) |
620 |
|
|
ENDDO |
621 |
|
|
ENDDO |
622 |
|
|
ENDDO |
623 |
|
|
ENDDO |
624 |
|
|
#endif |
625 |
|
|
C>>>ToM |
626 |
dimitri |
1.1 |
CALL ADVECT( uc, vc, area, fldNm1, HEFFM, myThid ) |
627 |
|
|
IF ( SEAICEdiffKhArea .GT. 0. _d 0 ) THEN |
628 |
|
|
C- Add tendency due to diffusion |
629 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
630 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
631 |
|
|
CALL SEAICE_DIFFUSION( |
632 |
|
|
I GAD_AREA, SEAICEdiffKhArea, SEAICE_deltaTtherm, |
633 |
|
|
I fldNm1(1-OLx,1-OLy,bi,bj), HEFFM, |
634 |
|
|
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
635 |
|
|
U Area(1-OLx,1-OLy,bi,bj), |
636 |
|
|
I bi, bj, myTime, myIter, myThid ) |
637 |
|
|
ENDDO |
638 |
|
|
ENDDO |
639 |
|
|
ENDIF |
640 |
dimitri |
1.2 |
CToM<<< |
641 |
|
|
#ifdef SEAICE_ITD |
642 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
643 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
644 |
|
|
DO j=1-OLy,sNy+OLy |
645 |
|
|
DO i=1-OLx,sNx+OLx |
646 |
|
|
AREAITD(i,j,k,bi,bj)=AREA(i,j,bi,bj) |
647 |
|
|
ENDDO |
648 |
|
|
ENDDO |
649 |
|
|
ENDDO |
650 |
|
|
ENDDO |
651 |
|
|
ENDDO |
652 |
|
|
#endif |
653 |
|
|
C>>>ToM |
654 |
dimitri |
1.1 |
ENDIF |
655 |
|
|
IF ( SEAICEadvSnow ) THEN |
656 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
657 |
|
|
CADJ STORE hsnow = comlev1, key = ikey_dynamics, kind=isbyte |
658 |
|
|
#endif |
659 |
dimitri |
1.2 |
CToM<<< |
660 |
|
|
#ifdef SEAICE_ITD |
661 |
|
|
DO k=1,nITD |
662 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
663 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
664 |
|
|
DO j=1-OLy,sNy+OLy |
665 |
|
|
DO i=1-OLx,sNx+OLx |
666 |
|
|
HSNOW(i,j,bi,bj)=HSNOWITD(i,j,k,bi,bj) |
667 |
|
|
ENDDO |
668 |
|
|
ENDDO |
669 |
|
|
ENDDO |
670 |
|
|
ENDDO |
671 |
|
|
#endif |
672 |
|
|
C>>>ToM |
673 |
dimitri |
1.1 |
CALL ADVECT( uc, vc, HSNOW, fldNm1, HEFFM, myThid ) |
674 |
|
|
IF ( SEAICEdiffKhSnow .GT. 0. _d 0 ) THEN |
675 |
|
|
C- Add tendency due to diffusion |
676 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
677 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
678 |
|
|
CALL SEAICE_DIFFUSION( |
679 |
|
|
I GAD_SNOW, SEAICEdiffKhSnow, SEAICE_deltaTtherm, |
680 |
|
|
I fldNm1(1-OLx,1-OLy,bi,bj), HEFFM, |
681 |
|
|
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
682 |
|
|
U HSNOW(1-OLx,1-OLy,bi,bj), |
683 |
|
|
I bi, bj, myTime, myIter, myThid ) |
684 |
|
|
ENDDO |
685 |
|
|
ENDDO |
686 |
|
|
ENDIF |
687 |
dimitri |
1.2 |
CToM<<< |
688 |
|
|
#ifdef SEAICE_ITD |
689 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
690 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
691 |
|
|
DO j=1-OLy,sNy+OLy |
692 |
|
|
DO i=1-OLx,sNx+OLx |
693 |
|
|
HSNOWITD(i,j,k,bi,bj)=HSNOW(i,j,bi,bj) |
694 |
|
|
ENDDO |
695 |
|
|
ENDDO |
696 |
|
|
ENDDO |
697 |
|
|
ENDDO |
698 |
|
|
ENDDO |
699 |
|
|
#endif |
700 |
|
|
C>>>ToM |
701 |
dimitri |
1.1 |
ENDIF |
702 |
|
|
|
703 |
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
704 |
|
|
IF ( SEAICEadvSalt ) THEN |
705 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
706 |
|
|
CADJ STORE hsalt = comlev1, key = ikey_dynamics, kind=isbyte |
707 |
|
|
#endif |
708 |
|
|
CALL ADVECT( uc, vc, HSALT, fldNm1, HEFFM, myThid ) |
709 |
|
|
IF ( SEAICEdiffKhSalt .GT. 0. _d 0 ) THEN |
710 |
|
|
C- Add tendency due to diffusion |
711 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
712 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
713 |
|
|
CALL SEAICE_DIFFUSION( |
714 |
|
|
I GAD_SALT, SEAICEdiffKhSalt, SEAICE_deltaTtherm, |
715 |
|
|
I fldNm1(1-OLx,1-OLy,bi,bj), HEFFM, |
716 |
|
|
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
717 |
|
|
U HSALT(1-OLx,1-OLy,bi,bj), |
718 |
|
|
I bi, bj, myTime, myIter, myThid ) |
719 |
|
|
ENDDO |
720 |
|
|
ENDDO |
721 |
|
|
ENDIF |
722 |
|
|
ENDIF |
723 |
|
|
#endif /* SEAICE_VARIABLE_SALINITY */ |
724 |
|
|
|
725 |
|
|
C-- end if multiDimAdvection |
726 |
|
|
ENDIF |
727 |
|
|
|
728 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
729 |
|
|
CADJ STORE AREA = comlev1, key = ikey_dynamics, kind=isbyte |
730 |
|
|
#endif |
731 |
|
|
IF ( .NOT. usePW79thermodynamics ) THEN |
732 |
|
|
C Hiblers "ridging function": Do it now if not in seaice_growth |
733 |
|
|
C in principle we should add a "real" ridging function here (or |
734 |
|
|
C somewhere after doing the advection) |
735 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
736 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
737 |
|
|
DO j=1-OLy,sNy+OLy |
738 |
|
|
DO i=1-OLx,sNx+OLx |
739 |
|
|
AREA(I,J,bi,bj) = MIN(ONE,AREA(I,J,bi,bj)) |
740 |
|
|
ENDDO |
741 |
|
|
ENDDO |
742 |
|
|
ENDDO |
743 |
|
|
ENDDO |
744 |
|
|
ENDIF |
745 |
|
|
|
746 |
|
|
RETURN |
747 |
|
|
END |