1 |
C $Header: /u/gcmpack/MITgcm_contrib/torge/itd/code/seaice_advdiff.F,v 1.4 2013/03/27 18:59:52 torge Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SEAICE_OPTIONS.h" |
5 |
|
6 |
CBOP |
7 |
C !ROUTINE: SEAICE_ADVDIFF |
8 |
|
9 |
C !INTERFACE: ========================================================== |
10 |
SUBROUTINE SEAICE_ADVDIFF( |
11 |
I myTime, myIter, myThid ) |
12 |
|
13 |
C !DESCRIPTION: \bv |
14 |
C *===========================================================* |
15 |
C | SUBROUTINE SEAICE_ADVDIFF |
16 |
C | o driver for different advection routines |
17 |
C | calls an adaption of gad_advection to call different |
18 |
C | advection routines of pkg/generic_advdiff |
19 |
C *===========================================================* |
20 |
C \ev |
21 |
|
22 |
C !USES: =============================================================== |
23 |
IMPLICIT NONE |
24 |
|
25 |
C === Global variables === |
26 |
C UICE/VICE :: ice velocity |
27 |
C HEFF :: scalar field to be advected |
28 |
C HEFFM :: mask for scalar field |
29 |
#include "SIZE.h" |
30 |
#include "EEPARAMS.h" |
31 |
#include "PARAMS.h" |
32 |
#include "GRID.h" |
33 |
#include "GAD.h" |
34 |
#include "SEAICE_SIZE.h" |
35 |
#include "SEAICE_PARAMS.h" |
36 |
#include "SEAICE.h" |
37 |
#include "SEAICE_TRACER.h" |
38 |
|
39 |
#ifdef ALLOW_AUTODIFF_TAMC |
40 |
# include "tamc.h" |
41 |
#endif |
42 |
|
43 |
C !INPUT PARAMETERS: =================================================== |
44 |
C === Routine arguments === |
45 |
C myTime :: current time |
46 |
C myIter :: iteration number |
47 |
C myThid :: Thread no. that called this routine. |
48 |
_RL myTime |
49 |
INTEGER myIter |
50 |
INTEGER myThid |
51 |
CEndOfInterface |
52 |
|
53 |
C !LOCAL VARIABLES: ==================================================== |
54 |
C === Local variables === |
55 |
C i,j,bi,bj :: Loop counters |
56 |
#ifdef SEAICE_ITD |
57 |
C it :: Loop counter for ice thickness categories |
58 |
#endif |
59 |
C ks :: surface level index |
60 |
C uc/vc :: current ice velocity on C-grid |
61 |
C uTrans :: volume transport, x direction |
62 |
C vTrans :: volume transport, y direction |
63 |
C afx :: horizontal advective flux, x direction |
64 |
C afy :: horizontal advective flux, y direction |
65 |
C gFld :: tendency of seaice field |
66 |
C xA,yA :: "areas" of X and Y face of tracer cells |
67 |
INTEGER i, j, bi, bj |
68 |
#ifdef SEAICE_ITD |
69 |
INTEGER it |
70 |
#endif |
71 |
INTEGER ks |
72 |
LOGICAL SEAICEmultiDimAdvection |
73 |
#ifdef ALLOW_AUTODIFF_TAMC |
74 |
INTEGER itmpkey |
75 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
76 |
#ifdef ALLOW_SITRACER |
77 |
_RL hEffNm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
78 |
_RL areaNm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
79 |
INTEGER iTr, SEAICEadvSchSItr |
80 |
_RL SEAICEdiffKhSItr |
81 |
_RL SItrExt (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
82 |
_RL tmpscal1, tmpscal2 |
83 |
# ifdef ALLOW_SITRACER_ADVCAP |
84 |
_RL SItrPrev (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
85 |
# endif |
86 |
# ifdef ALLOW_SITRACER_DEBUG_DIAG |
87 |
_RL DIAGarray (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
88 |
# endif |
89 |
#endif /* ALLOW_SITRACER */ |
90 |
|
91 |
_RL uc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
92 |
_RL vc (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
93 |
_RL fldNm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
94 |
_RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
95 |
_RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
96 |
_RL afx (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
97 |
_RL afy (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
98 |
_RL gFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
99 |
_RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
100 |
_RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
101 |
_RL recip_heff(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
102 |
CEOP |
103 |
|
104 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
105 |
|
106 |
ks = 1 |
107 |
|
108 |
C-- make a local copy of the velocities for compatibility with B-grid |
109 |
C-- alternatively interpolate to C-points if necessary |
110 |
DO bj=myByLo(myThid),myByHi(myThid) |
111 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
112 |
#ifdef SEAICE_CGRID |
113 |
DO j=1-OLy,sNy+OLy |
114 |
DO i=1-OLx,sNx+OLx |
115 |
uc(i,j,bi,bj)=UICE(i,j,bi,bj) |
116 |
vc(i,j,bi,bj)=VICE(i,j,bi,bj) |
117 |
ENDDO |
118 |
ENDDO |
119 |
#else /* not SEAICE_CGRID = BGRID */ |
120 |
C average seaice velocity to C-grid |
121 |
DO j=1-OLy,sNy+OLy-1 |
122 |
DO i=1-OLx,sNx+OLx-1 |
123 |
uc(i,j,bi,bj)=.5 _d 0*(UICE(i,j,bi,bj)+UICE(i,j+1,bi,bj)) |
124 |
vc(i,j,bi,bj)=.5 _d 0*(VICE(i,j,bi,bj)+VICE(i+1,j,bi,bj)) |
125 |
ENDDO |
126 |
ENDDO |
127 |
#endif /* SEAICE_CGRID */ |
128 |
C- compute cell areas used by all tracers |
129 |
DO j=1-OLy,sNy+OLy |
130 |
DO i=1-OLx,sNx+OLx |
131 |
xA(i,j,bi,bj) = _dyG(i,j,bi,bj)*_maskW(i,j,ks,bi,bj) |
132 |
yA(i,j,bi,bj) = _dxG(i,j,bi,bj)*_maskS(i,j,ks,bi,bj) |
133 |
ENDDO |
134 |
ENDDO |
135 |
ENDDO |
136 |
ENDDO |
137 |
|
138 |
#ifndef SEAICE_CGRID |
139 |
C Do we need this? I am afraid so. |
140 |
CALL EXCH_UV_XY_RL(uc,vc,.TRUE.,myThid) |
141 |
#endif /* not SEAICE_CGRID */ |
142 |
|
143 |
#ifdef ALLOW_AUTODIFF_TAMC |
144 |
CADJ STORE uc = comlev1, key = ikey_dynamics, kind=isbyte |
145 |
CADJ STORE vc = comlev1, key = ikey_dynamics, kind=isbyte |
146 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
147 |
|
148 |
SEAICEmultidimadvection = .TRUE. |
149 |
IF ( SEAICEadvScheme.EQ.ENUM_CENTERED_2ND |
150 |
& .OR.SEAICEadvScheme.EQ.ENUM_UPWIND_3RD |
151 |
& .OR.SEAICEadvScheme.EQ.ENUM_CENTERED_4TH ) THEN |
152 |
SEAICEmultiDimAdvection = .FALSE. |
153 |
ENDIF |
154 |
|
155 |
#ifdef ALLOW_AUTODIFF_TAMC |
156 |
CADJ STORE heffm = comlev1, key = ikey_dynamics, kind=isbyte |
157 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
158 |
IF ( SEAICEmultiDimAdvection ) THEN |
159 |
|
160 |
DO bj=myByLo(myThid),myByHi(myThid) |
161 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
162 |
C--- loops on tile indices bi,bj |
163 |
|
164 |
#ifdef ALLOW_AUTODIFF_TAMC |
165 |
C Initialise for TAF |
166 |
DO j=1-OLy,sNy+OLy |
167 |
DO i=1-OLx,sNx+OLx |
168 |
gFld(i,j) = 0. _d 0 |
169 |
ENDDO |
170 |
ENDDO |
171 |
C |
172 |
act1 = bi - myBxLo(myThid) |
173 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
174 |
act2 = bj - myByLo(myThid) |
175 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
176 |
act3 = myThid - 1 |
177 |
max3 = nTx*nTy |
178 |
act4 = ikey_dynamics - 1 |
179 |
itmpkey = (act1 + 1) + act2*max1 |
180 |
& + act3*max1*max2 |
181 |
& + act4*max1*max2*max3 |
182 |
C |
183 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
184 |
CADJ & key = itmpkey, kind=isbyte |
185 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, |
186 |
CADJ & key = itmpkey, kind=isbyte |
187 |
CADJ STORE heffm(:,:,bi,bj) = comlev1_bibj, |
188 |
CADJ & key = itmpkey, kind=isbyte |
189 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, |
190 |
CADJ & key = itmpkey, kind=isbyte |
191 |
# ifdef SEAICE_VARIABLE_SALINITY |
192 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj, |
193 |
CADJ & key = itmpkey, kind=isbyte |
194 |
# endif |
195 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
196 |
|
197 |
DO j=1-OLy,sNy+OLy |
198 |
DO i=1-OLx,sNx+OLx |
199 |
#ifdef ALLOW_SITRACER |
200 |
hEffNm1(i,j,bi,bj) = HEFF(i,j,bi,bj) |
201 |
areaNm1(i,j,bi,bj) = AREA(i,j,bi,bj) |
202 |
#endif |
203 |
recip_heff(i,j) = 1. _d 0 |
204 |
ENDDO |
205 |
ENDDO |
206 |
|
207 |
C- Calculate "volume transports" through tracer cell faces. |
208 |
DO j=1-OLy,sNy+OLy |
209 |
DO i=1-OLx,sNx+OLx |
210 |
uTrans(i,j) = uc(i,j,bi,bj)*xA(i,j,bi,bj) |
211 |
vTrans(i,j) = vc(i,j,bi,bj)*yA(i,j,bi,bj) |
212 |
ENDDO |
213 |
ENDDO |
214 |
|
215 |
C-- Effective Thickness (Volume) |
216 |
IF ( SEAICEadvHeff ) THEN |
217 |
#ifdef SEAICE_ITD |
218 |
DO it=1,nITD |
219 |
DO j=1-OLy,sNy+OLy |
220 |
DO i=1-OLx,sNx+OLx |
221 |
HEFF(i,j,bi,bj)=HEFFITD(i,j,it,bi,bj) |
222 |
ENDDO |
223 |
ENDDO |
224 |
#endif |
225 |
CALL SEAICE_ADVECTION( |
226 |
I GAD_HEFF, SEAICEadvSchHeff, |
227 |
I uc(1-OLx,1-OLy,bi,bj), vc(1-OLx,1-OLy,bi,bj), |
228 |
I uTrans, vTrans, HEFF(1-OLx,1-OLy,bi,bj), recip_heff, |
229 |
O gFld, afx, afy, |
230 |
I bi, bj, myTime, myIter, myThid ) |
231 |
IF ( SEAICEdiffKhHeff .GT. 0. _d 0 ) THEN |
232 |
C- Add tendency due to diffusion |
233 |
CALL SEAICE_DIFFUSION( |
234 |
I GAD_HEFF, SEAICEdiffKhHeff, ONE, |
235 |
I HEFF(1-OLx,1-OLy,bi,bj), HEFFM, |
236 |
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
237 |
U gFld, |
238 |
I bi, bj, myTime, myIter, myThid ) |
239 |
ENDIF |
240 |
C now do the "explicit" time step |
241 |
DO j=1,sNy |
242 |
DO i=1,sNx |
243 |
HEFF(i,j,bi,bj) = HEFFM(i,j,bi,bj) * ( |
244 |
& HEFF(i,j,bi,bj) + SEAICE_deltaTtherm * gFld(i,j) |
245 |
& ) |
246 |
ENDDO |
247 |
ENDDO |
248 |
#ifdef SEAICE_ITD |
249 |
DO j=1-OLy,sNy+OLy |
250 |
DO i=1-OLx,sNx+OLx |
251 |
HEFFITD(i,j,it,bi,bj)=HEFF(i,j,bi,bj) |
252 |
ENDDO |
253 |
ENDDO |
254 |
ENDDO |
255 |
#endif |
256 |
ENDIF |
257 |
|
258 |
C-- Fractional area |
259 |
IF ( SEAICEadvArea ) THEN |
260 |
#ifdef SEAICE_ITD |
261 |
DO it=1,nITD |
262 |
DO j=1-OLy,sNy+OLy |
263 |
DO i=1-OLx,sNx+OLx |
264 |
AREA(i,j,bi,bj)=AREAITD(i,j,it,bi,bj) |
265 |
ENDDO |
266 |
ENDDO |
267 |
#endif |
268 |
CALL SEAICE_ADVECTION( |
269 |
I GAD_AREA, SEAICEadvSchArea, |
270 |
I uc(1-OLx,1-OLy,bi,bj), vc(1-OLx,1-OLy,bi,bj), |
271 |
I uTrans, vTrans, AREA(1-OLx,1-OLy,bi,bj), recip_heff, |
272 |
O gFld, afx, afy, |
273 |
I bi, bj, myTime, myIter, myThid ) |
274 |
IF ( SEAICEdiffKhArea .GT. 0. _d 0 ) THEN |
275 |
C- Add tendency due to diffusion |
276 |
CALL SEAICE_DIFFUSION( |
277 |
I GAD_AREA, SEAICEdiffKhArea, ONE, |
278 |
I AREA(1-OLx,1-OLy,bi,bj), HEFFM, |
279 |
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
280 |
U gFld, |
281 |
I bi, bj, myTime, myIter, myThid ) |
282 |
ENDIF |
283 |
C now do the "explicit" time step |
284 |
DO j=1,sNy |
285 |
DO i=1,sNx |
286 |
AREA(i,j,bi,bj) = HEFFM(i,j,bi,bj) * ( |
287 |
& AREA(i,j,bi,bj) + SEAICE_deltaTtherm * gFld(i,j) |
288 |
& ) |
289 |
ENDDO |
290 |
ENDDO |
291 |
#ifdef SEAICE_ITD |
292 |
DO j=1-OLy,sNy+OLy |
293 |
DO i=1-OLx,sNx+OLx |
294 |
AREAITD(i,j,it,bi,bj)=AREA(i,j,bi,bj) |
295 |
ENDDO |
296 |
ENDDO |
297 |
ENDDO |
298 |
#endif |
299 |
ENDIF |
300 |
|
301 |
C-- Effective Snow Thickness (Volume) |
302 |
IF ( SEAICEadvSnow ) THEN |
303 |
#ifdef SEAICE_ITD |
304 |
DO it=1,nITD |
305 |
DO j=1-OLy,sNy+OLy |
306 |
DO i=1-OLx,sNx+OLx |
307 |
HSNOW(i,j,bi,bj)=HSNOWITD(i,j,it,bi,bj) |
308 |
ENDDO |
309 |
ENDDO |
310 |
#endif |
311 |
CALL SEAICE_ADVECTION( |
312 |
I GAD_SNOW, SEAICEadvSchSnow, |
313 |
I uc(1-OLx,1-OLy,bi,bj), vc(1-OLx,1-OLy,bi,bj), |
314 |
I uTrans, vTrans, HSNOW(1-OLx,1-OLy,bi,bj), recip_heff, |
315 |
O gFld, afx, afy, |
316 |
I bi, bj, myTime, myIter, myThid ) |
317 |
IF ( SEAICEdiffKhSnow .GT. 0. _d 0 ) THEN |
318 |
C-- Add tendency due to diffusion |
319 |
CALL SEAICE_DIFFUSION( |
320 |
I GAD_SNOW, SEAICEdiffKhSnow, ONE, |
321 |
I HSNOW(1-OLx,1-OLy,bi,bj), HEFFM, |
322 |
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
323 |
U gFld, |
324 |
I bi, bj, myTime, myIter, myThid ) |
325 |
ENDIF |
326 |
C now do the "explicit" time step |
327 |
DO j=1,sNy |
328 |
DO i=1,sNx |
329 |
HSNOW(i,j,bi,bj) = HEFFM(i,j,bi,bj) * ( |
330 |
& HSNOW(i,j,bi,bj) + SEAICE_deltaTtherm * gFld(i,j) |
331 |
& ) |
332 |
ENDDO |
333 |
ENDDO |
334 |
#ifdef SEAICE_ITD |
335 |
DO j=1-OLy,sNy+OLy |
336 |
DO i=1-OLx,sNx+OLx |
337 |
HSNOWITD(i,j,it,bi,bj)=HSNOW(i,j,bi,bj) |
338 |
ENDDO |
339 |
ENDDO |
340 |
ENDDO |
341 |
#endif |
342 |
ENDIF |
343 |
|
344 |
#ifdef SEAICE_VARIABLE_SALINITY |
345 |
C-- Effective Sea Ice Salinity (Mass of salt) |
346 |
IF ( SEAICEadvSalt ) THEN |
347 |
CALL SEAICE_ADVECTION( |
348 |
I GAD_SALT, SEAICEadvSchSalt, |
349 |
I uc(1-OLx,1-OLy,bi,bj), vc(1-OLx,1-OLy,bi,bj), |
350 |
I uTrans, vTrans, HSALT(1-OLx,1-OLy,bi,bj), recip_heff, |
351 |
O gFld, afx, afy, |
352 |
I bi, bj, myTime, myIter, myThid ) |
353 |
IF ( SEAICEdiffKhSalt .GT. 0. _d 0 ) THEN |
354 |
C-- Add tendency due to diffusion |
355 |
CALL SEAICE_DIFFUSION( |
356 |
I GAD_SALT, SEAICEdiffKhSalt, ONE, |
357 |
I HSALT(1-OLx,1-OLy,bi,bj), HEFFM, |
358 |
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
359 |
U gFld, |
360 |
I bi, bj, myTime, myIter, myThid ) |
361 |
ENDIF |
362 |
C now do the "explicit" time step |
363 |
DO j=1,sNy |
364 |
DO i=1,sNx |
365 |
HSALT(i,j,bi,bj) = HEFFM(i,j,bi,bj) * ( |
366 |
& HSALT(i,j,bi,bj) + SEAICE_deltaTtherm * gFld(i,j) |
367 |
& ) |
368 |
ENDDO |
369 |
ENDDO |
370 |
ENDIF |
371 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
372 |
|
373 |
#ifdef ALLOW_SITRACER |
374 |
C-- Sea Ice Tracers |
375 |
DO iTr = 1, SItrNumInUse |
376 |
IF ( (SEAICEadvHEFF.AND.(SItrMate(iTr).EQ.'HEFF')).OR. |
377 |
& (SEAICEadvAREA.AND.(SItrMate(iTr).EQ.'AREA')) ) THEN |
378 |
C-- scale to effective value |
379 |
IF (SItrMate(iTr).EQ.'HEFF') THEN |
380 |
SEAICEadvSchSItr=SEAICEadvSchHEFF |
381 |
SEAICEdiffKhSItr=SEAICEdiffKhHEFF |
382 |
DO j=1-OLy,sNy+OLy |
383 |
DO i=1-OLx,sNx+OLx |
384 |
SItrExt(i,j,bi,bj) = HEFFM(i,j,bi,bj) * |
385 |
& SItracer(i,j,bi,bj,iTr) * hEffNm1(i,j,bi,bj) |
386 |
ENDDO |
387 |
ENDDO |
388 |
c TAF? ELSEIF (SItrMate(iTr).EQ.'AREA') THEN |
389 |
ELSE |
390 |
SEAICEadvSchSItr=SEAICEadvSchAREA |
391 |
SEAICEdiffKhSItr=SEAICEdiffKhAREA |
392 |
DO j=1-OLy,sNy+OLy |
393 |
DO i=1-OLx,sNx+OLx |
394 |
SItrExt(i,j,bi,bj) = HEFFM(i,j,bi,bj) * |
395 |
& SItracer(i,j,bi,bj,iTr) * areaNm1(i,j,bi,bj) |
396 |
ENDDO |
397 |
ENDDO |
398 |
ENDIF |
399 |
C-- store a couple things |
400 |
DO j=1-OLy,sNy+OLy |
401 |
DO i=1-OLx,sNx+OLx |
402 |
#ifdef ALLOW_SITRACER_ADVCAP |
403 |
C-- store previous value for spurious maxima treament |
404 |
SItrPrev(i,j,bi,bj)=SItracer(i,j,bi,bj,iTr) |
405 |
#endif |
406 |
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
407 |
diagArray(I,J,2+(iTr-1)*5) = SItrExt(i,j,bi,bj) |
408 |
#endif |
409 |
ENDDO |
410 |
ENDDO |
411 |
C-- compute advective tendency |
412 |
CALL SEAICE_ADVECTION( |
413 |
I GAD_SITR+iTr-1, SEAICEadvSchSItr, |
414 |
I uc(1-OLx,1-OLy,bi,bj), vc(1-OLx,1-OLy,bi,bj), |
415 |
I uTrans, vTrans, SItrExt(1-OLx,1-OLy,bi,bj), |
416 |
I recip_heff, |
417 |
O gFld, afx, afy, |
418 |
I bi, bj, myTime, myIter, myThid ) |
419 |
IF ( SEAICEdiffKhHeff .GT. 0. _d 0 ) THEN |
420 |
C-- add diffusive tendency |
421 |
CALL SEAICE_DIFFUSION( |
422 |
I GAD_SITR+iTr-1, SEAICEdiffKhSItr, ONE, |
423 |
I SItrExt(1-OLx,1-OLy,bi,bj), HEFFM, |
424 |
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
425 |
U gFld, |
426 |
I bi, bj, myTime, myIter, myThid ) |
427 |
ENDIF |
428 |
C-- apply tendency |
429 |
DO j=1,sNy |
430 |
DO i=1,sNx |
431 |
SItrExt(i,j,bi,bj) = HEFFM(i,j,bi,bj) * ( |
432 |
& SItrExt(i,j,bi,bj) + SEAICE_deltaTtherm * gFld(i,j) ) |
433 |
ENDDO |
434 |
ENDDO |
435 |
C-- scale back to actual value, or move effective value to ocean bucket |
436 |
IF (SItrMate(iTr).EQ.'HEFF') THEN |
437 |
DO j=1,sNy |
438 |
DO i=1,sNx |
439 |
if (HEFF(I,J,bi,bj).GE.siEps) then |
440 |
SItracer(i,j,bi,bj,iTr)=SItrExt(i,j,bi,bj)/HEFF(I,J,bi,bj) |
441 |
SItrBucket(i,j,bi,bj,iTr)=0. _d 0 |
442 |
else |
443 |
SItracer(i,j,bi,bj,iTr)=0. _d 0 |
444 |
SItrBucket(i,j,bi,bj,iTr)=SItrExt(i,j,bi,bj) |
445 |
endif |
446 |
#ifdef ALLOW_SITRACER_ADVCAP |
447 |
C hack to try avoid 'spontaneous generation' of maxima, which supposedly would |
448 |
C occur less frequently if we advected SItr with uXheff instead SItrXheff with u |
449 |
tmpscal1=max(SItrPrev(i,j,bi,bj), |
450 |
& SItrPrev(i+1,j,bi,bj),SItrPrev(i-1,j,bi,bj), |
451 |
& SItrPrev(i,j+1,bi,bj),SItrPrev(i,j-1,bi,bj)) |
452 |
tmpscal2=MAX(ZERO,SItracer(i,j,bi,bj,iTr)-tmpscal1) |
453 |
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)-tmpscal2 |
454 |
SItrBucket(i,j,bi,bj,iTr)=SItrBucket(i,j,bi,bj,iTr) |
455 |
& +tmpscal2*HEFF(I,J,bi,bj) |
456 |
#endif |
457 |
C treat case of potential negative value |
458 |
if (HEFF(I,J,bi,bj).GE.siEps) then |
459 |
tmpscal1=MIN(0. _d 0,SItracer(i,j,bi,bj,iTr)) |
460 |
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)-tmpscal1 |
461 |
SItrBucket(i,j,bi,bj,iTr)=SItrBucket(i,j,bi,bj,iTr) |
462 |
& +HEFF(I,J,bi,bj)*tmpscal1 |
463 |
endif |
464 |
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
465 |
diagArray(I,J,1+(iTr-1)*5)= - SItrBucket(i,j,bi,bj,iTr) |
466 |
& *HEFFM(I,J,bi,bj)/SEAICE_deltaTtherm*SEAICE_rhoIce |
467 |
tmpscal1= ( HEFF(I,J,bi,bj)*SItracer(i,j,bi,bj,iTr) |
468 |
& + SItrBucket(i,j,bi,bj,iTr) )*HEFFM(I,J,bi,bj) |
469 |
diagArray(I,J,2+(iTr-1)*5)= tmpscal1-diagArray(I,J,2+(iTr-1)*5) |
470 |
diagArray(I,J,3+(iTr-1)*5)=HEFFM(i,j,bi,bj) * |
471 |
& SEAICE_deltaTtherm * gFld(i,j) |
472 |
#endif |
473 |
ENDDO |
474 |
ENDDO |
475 |
c TAF? ELSEIF (SItrMate(iTr).EQ.'AREA') THEN |
476 |
ELSE |
477 |
DO j=1,sNy |
478 |
DO i=1,sNx |
479 |
if (AREA(I,J,bi,bj).GE.SEAICE_area_floor) then |
480 |
SItracer(i,j,bi,bj,iTr)=SItrExt(i,j,bi,bj)/AREA(I,J,bi,bj) |
481 |
else |
482 |
SItracer(i,j,bi,bj,iTr)=0. _d 0 |
483 |
endif |
484 |
SItrBucket(i,j,bi,bj,iTr)=0. _d 0 |
485 |
#ifdef ALLOW_SITRACER_ADVCAP |
486 |
tmpscal1=max(SItrPrev(i,j,bi,bj), |
487 |
& SItrPrev(i+1,j,bi,bj),SItrPrev(i-1,j,bi,bj), |
488 |
& SItrPrev(i,j+1,bi,bj),SItrPrev(i,j-1,bi,bj)) |
489 |
tmpscal2=MAX(ZERO,SItracer(i,j,bi,bj,iTr)-tmpscal1) |
490 |
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)-tmpscal2 |
491 |
#endif |
492 |
C treat case of potential negative value |
493 |
if (AREA(I,J,bi,bj).GE.SEAICE_area_floor) then |
494 |
tmpscal1=MIN(0. _d 0,SItracer(i,j,bi,bj,iTr)) |
495 |
SItracer(i,j,bi,bj,iTr)=SItracer(i,j,bi,bj,iTr)-tmpscal1 |
496 |
endif |
497 |
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
498 |
diagArray(I,J,1+(iTr-1)*5)= 0. _d 0 |
499 |
diagArray(I,J,2+(iTr-1)*5)= - diagArray(I,J,2+(iTr-1)*5) |
500 |
& + AREA(I,J,bi,bj)*SItracer(i,j,bi,bj,iTr)*HEFFM(I,J,bi,bj) |
501 |
diagArray(I,J,3+(iTr-1)*5)=HEFFM(i,j,bi,bj) * |
502 |
& SEAICE_deltaTtherm * gFld(i,j) |
503 |
#endif |
504 |
ENDDO |
505 |
ENDDO |
506 |
ENDIF |
507 |
C-- |
508 |
ENDIF |
509 |
ENDDO |
510 |
#ifdef ALLOW_SITRACER_DEBUG_DIAG |
511 |
c CALL DIAGNOSTICS_FILL(DIAGarray,'UDIAG2 ',0,Nr,2,bi,bj,myThid) |
512 |
#endif |
513 |
#endif /* ALLOW_SITRACER */ |
514 |
|
515 |
C--- end bi,bj loops |
516 |
ENDDO |
517 |
ENDDO |
518 |
|
519 |
ELSE |
520 |
C-- if not multiDimAdvection |
521 |
|
522 |
IF ( SEAICEadvHEff ) THEN |
523 |
#ifdef ALLOW_AUTODIFF_TAMC |
524 |
CADJ STORE heff = comlev1, key = ikey_dynamics, kind=isbyte |
525 |
#endif |
526 |
#ifdef SEAICE_ITD |
527 |
DO it=1,nITD |
528 |
DO bj=myByLo(myThid),myByHi(myThid) |
529 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
530 |
DO j=1-OLy,sNy+OLy |
531 |
DO i=1-OLx,sNx+OLx |
532 |
HEFF(i,j,bi,bj)=HEFFITD(i,j,it,bi,bj) |
533 |
ENDDO |
534 |
ENDDO |
535 |
ENDDO |
536 |
ENDDO |
537 |
#endif |
538 |
CALL ADVECT( uc, vc, hEff, fldNm1, HEFFM, myThid ) |
539 |
IF ( SEAICEdiffKhHeff .GT. 0. _d 0 ) THEN |
540 |
C- Add tendency due to diffusion |
541 |
DO bj=myByLo(myThid),myByHi(myThid) |
542 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
543 |
CALL SEAICE_DIFFUSION( |
544 |
I GAD_HEFF, SEAICEdiffKhHeff, SEAICE_deltaTtherm, |
545 |
I fldNm1(1-OLx,1-OLy,bi,bj), HEFFM, |
546 |
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
547 |
U HEFF(1-OLx,1-OLy,bi,bj), |
548 |
I bi, bj, myTime, myIter, myThid ) |
549 |
ENDDO |
550 |
ENDDO |
551 |
ENDIF |
552 |
#ifdef SEAICE_ITD |
553 |
DO bj=myByLo(myThid),myByHi(myThid) |
554 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
555 |
DO j=1-OLy,sNy+OLy |
556 |
DO i=1-OLx,sNx+OLx |
557 |
HEFFITD(i,j,it,bi,bj)=HEFF(i,j,bi,bj) |
558 |
ENDDO |
559 |
ENDDO |
560 |
ENDDO |
561 |
ENDDO |
562 |
ENDDO |
563 |
#endif |
564 |
ENDIF |
565 |
IF ( SEAICEadvArea ) THEN |
566 |
#ifdef ALLOW_AUTODIFF_TAMC |
567 |
CADJ STORE area = comlev1, key = ikey_dynamics, kind=isbyte |
568 |
#endif |
569 |
#ifdef SEAICE_ITD |
570 |
DO it=1,nITD |
571 |
DO bj=myByLo(myThid),myByHi(myThid) |
572 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
573 |
DO j=1-OLy,sNy+OLy |
574 |
DO i=1-OLx,sNx+OLx |
575 |
AREA(i,j,bi,bj)=AREAITD(i,j,it,bi,bj) |
576 |
ENDDO |
577 |
ENDDO |
578 |
ENDDO |
579 |
ENDDO |
580 |
#endif |
581 |
CALL ADVECT( uc, vc, area, fldNm1, HEFFM, myThid ) |
582 |
IF ( SEAICEdiffKhArea .GT. 0. _d 0 ) THEN |
583 |
C- Add tendency due to diffusion |
584 |
DO bj=myByLo(myThid),myByHi(myThid) |
585 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
586 |
CALL SEAICE_DIFFUSION( |
587 |
I GAD_AREA, SEAICEdiffKhArea, SEAICE_deltaTtherm, |
588 |
I fldNm1(1-OLx,1-OLy,bi,bj), HEFFM, |
589 |
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
590 |
U Area(1-OLx,1-OLy,bi,bj), |
591 |
I bi, bj, myTime, myIter, myThid ) |
592 |
ENDDO |
593 |
ENDDO |
594 |
ENDIF |
595 |
#ifdef SEAICE_ITD |
596 |
DO bj=myByLo(myThid),myByHi(myThid) |
597 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
598 |
DO j=1-OLy,sNy+OLy |
599 |
DO i=1-OLx,sNx+OLx |
600 |
AREAITD(i,j,it,bi,bj)=AREA(i,j,bi,bj) |
601 |
ENDDO |
602 |
ENDDO |
603 |
ENDDO |
604 |
ENDDO |
605 |
ENDDO |
606 |
#endif |
607 |
ENDIF |
608 |
IF ( SEAICEadvSnow ) THEN |
609 |
#ifdef ALLOW_AUTODIFF_TAMC |
610 |
CADJ STORE hsnow = comlev1, key = ikey_dynamics, kind=isbyte |
611 |
#endif |
612 |
#ifdef SEAICE_ITD |
613 |
DO it=1,nITD |
614 |
DO bj=myByLo(myThid),myByHi(myThid) |
615 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
616 |
DO j=1-OLy,sNy+OLy |
617 |
DO i=1-OLx,sNx+OLx |
618 |
HSNOW(i,j,bi,bj)=HSNOWITD(i,j,it,bi,bj) |
619 |
ENDDO |
620 |
ENDDO |
621 |
ENDDO |
622 |
ENDDO |
623 |
#endif |
624 |
CALL ADVECT( uc, vc, HSNOW, fldNm1, HEFFM, myThid ) |
625 |
IF ( SEAICEdiffKhSnow .GT. 0. _d 0 ) THEN |
626 |
C- Add tendency due to diffusion |
627 |
DO bj=myByLo(myThid),myByHi(myThid) |
628 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
629 |
CALL SEAICE_DIFFUSION( |
630 |
I GAD_SNOW, SEAICEdiffKhSnow, SEAICE_deltaTtherm, |
631 |
I fldNm1(1-OLx,1-OLy,bi,bj), HEFFM, |
632 |
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
633 |
U HSNOW(1-OLx,1-OLy,bi,bj), |
634 |
I bi, bj, myTime, myIter, myThid ) |
635 |
ENDDO |
636 |
ENDDO |
637 |
ENDIF |
638 |
#ifdef SEAICE_ITD |
639 |
DO bj=myByLo(myThid),myByHi(myThid) |
640 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
641 |
DO j=1-OLy,sNy+OLy |
642 |
DO i=1-OLx,sNx+OLx |
643 |
HSNOWITD(i,j,it,bi,bj)=HSNOW(i,j,bi,bj) |
644 |
ENDDO |
645 |
ENDDO |
646 |
ENDDO |
647 |
ENDDO |
648 |
ENDDO |
649 |
#endif |
650 |
ENDIF |
651 |
|
652 |
#ifdef SEAICE_VARIABLE_SALINITY |
653 |
IF ( SEAICEadvSalt ) THEN |
654 |
#ifdef ALLOW_AUTODIFF_TAMC |
655 |
CADJ STORE hsalt = comlev1, key = ikey_dynamics, kind=isbyte |
656 |
#endif |
657 |
CALL ADVECT( uc, vc, HSALT, fldNm1, HEFFM, myThid ) |
658 |
IF ( SEAICEdiffKhSalt .GT. 0. _d 0 ) THEN |
659 |
C- Add tendency due to diffusion |
660 |
DO bj=myByLo(myThid),myByHi(myThid) |
661 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
662 |
CALL SEAICE_DIFFUSION( |
663 |
I GAD_SALT, SEAICEdiffKhSalt, SEAICE_deltaTtherm, |
664 |
I fldNm1(1-OLx,1-OLy,bi,bj), HEFFM, |
665 |
I xA(1-OLx,1-OLy,bi,bj), yA(1-OLx,1-OLy,bi,bj), |
666 |
U HSALT(1-OLx,1-OLy,bi,bj), |
667 |
I bi, bj, myTime, myIter, myThid ) |
668 |
ENDDO |
669 |
ENDDO |
670 |
ENDIF |
671 |
ENDIF |
672 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
673 |
|
674 |
C-- end if multiDimAdvection |
675 |
ENDIF |
676 |
|
677 |
#ifdef ALLOW_AUTODIFF_TAMC |
678 |
CADJ STORE AREA = comlev1, key = ikey_dynamics, kind=isbyte |
679 |
#endif |
680 |
IF ( .NOT. usePW79thermodynamics ) THEN |
681 |
C Hiblers "ridging function": Do it now if not in seaice_growth |
682 |
C in principle we should add a "real" ridging function here (or |
683 |
C somewhere after doing the advection) |
684 |
DO bj=myByLo(myThid),myByHi(myThid) |
685 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
686 |
DO j=1-OLy,sNy+OLy |
687 |
DO i=1-OLx,sNx+OLx |
688 |
AREA(I,J,bi,bj) = MIN(ONE,AREA(I,J,bi,bj)) |
689 |
ENDDO |
690 |
ENDDO |
691 |
ENDDO |
692 |
ENDDO |
693 |
ENDIF |
694 |
|
695 |
RETURN |
696 |
END |