C $Header: /home/ubuntu/mnt/e9_copy/MITgcm_contrib/torge/itd/code/seaice_calc_viscosities.F,v 1.4 2013/03/27 18:59:52 torge Exp $ C $Name: $ #include "SEAICE_OPTIONS.h" CBOP CStartOfInterface SUBROUTINE SEAICE_CALC_VISCOSITIES( I e11, e22, e12, zMin, zMax, hEffM, press0, O eta, etaZ, zeta, press, I iStep, myTime, myIter, myThid ) C /==========================================================\ C | SUBROUTINE SEAICE_CALC_VISCOSITIES | C | o compute shear and bulk viscositites eta, zeta and the | C | corrected ice strength P | C | (see Zhang and Hibler, JGR, 102, 8691-8702, 1997) | C |==========================================================| C | written by Martin Losch, Mar 2006 | C \==========================================================/ IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "SEAICE_SIZE.h" #include "SEAICE_PARAMS.h" #ifdef ALLOW_AUTODIFF_TAMC # include "tamc.h" #endif C === Routine arguments === C iStep :: Sub-time-step number C myTime :: Simulation time C myIter :: Simulation timestep number C myThid :: My Thread Id. number INTEGER iStep _RL myTime INTEGER myIter INTEGER myThid C strain rate tensor _RL e11 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL e22 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL e12 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) C _RL zMin (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) _RL zMax (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) _RL hEffM (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) C _RL press0(1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) _RL press (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) C bulk viscosity _RL eta (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) _RL etaZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) C shear viscosity _RL zeta (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) CEndOfInterface #if ( defined (SEAICE_CGRID) && defined (SEAICE_ALLOW_DYNAMICS) ) C === Local variables === C i,j,bi,bj - Loop counters C e11, e12, e22 - components of strain rate tensor C ecm2 - inverse of square of eccentricity of yield curve INTEGER i, j, bi, bj _RL ECM2, deltaC, deltaCreg, tmp _RL e12Csqr(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RL e11Zsqr(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL e22Zsqr(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL e11e22Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pressZ (1-Olx:sNx+Olx,1-Oly:sNy+Oly) #ifdef SEAICE_ALLOW_TEM _RL etaMax, etaDen #endif /* SEAICE_ALLOW_TEM */ INTEGER k _RL zetaZ, deltaZ, deltaZreg, sumNorm, zetaZmax #ifdef SEAICE_ZETA_SMOOTHREG _RL argTmp #endif /* SEAICE_ZETA_SMOOTHREG */ CEOP C-- FIRST SET UP BASIC CONSTANTS k=1 ecm2=0. _d 0 IF ( SEAICE_eccen .NE. 0. _d 0 ) ecm2=ONE/(SEAICE_eccen**2) C DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) C need to do this beforehand for easier vectorization after C TAFization IF ( SEAICEetaZmethod .LT. 2 ) THEN DO j=1-Oly+1,sNy+Oly-1 DO i=1-Olx+1,sNx+Olx-1 tmp = 0.25 * & ( e12(I,J ,bi,bj) + e12(I+1,J ,bi,bj) & + e12(I,J+1,bi,bj) + e12(I+1,J+1,bi,bj) ) e12Csqr(i,j) = tmp*tmp ENDDO ENDDO ELSEIF ( SEAICEetaZmethod .GE. 2 ) THEN DO j=1-Oly+1,sNy+Oly-1 DO i=1-Olx+1,sNx+Olx-1 e12Csqr(i,j) = 0.25 _d 0 * & ( e12(I,J ,bi,bj)**2 + e12(I+1,J ,bi,bj)**2 & + e12(I,J+1,bi,bj)**2 + e12(I+1,J+1,bi,bj)**2 ) ENDDO ENDDO ENDIF DO j=1-Oly+1,sNy+Oly-1 DO i=1-Olx+1,sNx+Olx-1 deltaC = (e11(i,j,bi,bj)**2+e22(i,j,bi,bj)**2)*(ONE+ecm2) & + 4. _d 0*ecm2*e12Csqr(i,j) & + 2. _d 0*e11(i,j,bi,bj)*e22(i,j,bi,bj)*(ONE-ecm2) #ifdef ALLOW_AUTODIFF_TAMC C avoid sqrt of 0 IF ( deltaC .GT. 0. _d 0 ) deltaC = SQRT(deltaC) #else deltaC = SQRT(deltaC) #endif /* ALLOW_AUTODIFF_TAMC */ deltaCreg = MAX(deltaC,SEAICE_EPS) C "replacement pressure" zeta (I,J,bi,bj) = HALF*press0(I,J,bi,bj)/deltaCreg C put min and max viscosities in #ifdef SEAICE_ZETA_SMOOTHREG C regularize zeta to zmax with a smooth tanh-function instead C of a min(zeta,zmax). This improves convergence of iterative C solvers (Lemieux and Tremblay 2009, JGR). No effect on EVP argTmp = exp(-1. _d 0/(deltaCreg*SEAICE_zetaMaxFac)) zeta (I,J,bi,bj) = ZMAX(I,J,bi,bj) & *(1. _d 0 - argTmp)/(1. _d 0 + argTmp) #else zeta (I,J,bi,bj) = MIN(ZMAX(I,J,bi,bj),zeta(I,J,bi,bj)) #endif /* SEAICE_ZETA_SMOOTHREG */ zeta (I,J,bi,bj) = MAX(ZMIN(I,J,bi,bj),zeta(I,J,bi,bj)) C set viscosities to zero at hEffM flow pts zeta (I,J,bi,bj) = zeta(I,J,bi,bj)*HEFFM(I,J,bi,bj) eta (I,J,bi,bj) = ECM2*zeta(I,J,bi,bj) press(I,J,bi,bj) = TWO *zeta(I,J,bi,bj)*deltaC ENDDO ENDDO #ifdef SEAICE_ALLOW_TEM IF ( SEAICEuseTEM ) THEN DO j=1-Oly+1,sNy+Oly-1 DO i=1-Olx+1,sNx+Olx-1 etaDen = (e11(I,J,bi,bj)-e22(I,J,bi,bj))**2 & + 4. _d 0*e12Csqr(i,j) etaDen = SQRT(MAX(SEAICE_EPS_SQ,etaDen)) etaMax = ( 0.5 _d 0*press(I,J,bi,bj)-zeta(I,J,bi,bj) & *( e11(I,J,bi,bj)+e22(I,J,bi,bj) ) & )/etaDen eta(I,J,bi,bj) = MIN(eta(I,J,bi,bj),etaMax) ENDDO ENDDO ENDIF #endif /* SEAICE_ALLOW_TEM */ C compute eta at Z-points IF ( SEAICEetaZmethod .eq. 0 ) THEN C This is the old and stupid way DO j=1-Oly+1,sNy+Oly-1 DO i=1-Olx+1,sNx+Olx-1 etaZ(I,J,bi,bj) = & ( eta (I,J ,bi,bj) + eta (I-1,J ,bi,bj) & + eta (I,J-1,bi,bj) + eta (I-1,J-1,bi,bj) ) & / MAX(1.D0,maskC(I,J, k,bi,bj)+maskC(I-1,J, k,bi,bj) & + maskC(I,J-1,k,bi,bj)+maskC(I-1,J-1,k,bi,bj) ) ENDDO ENDDO ELSEIF ( SEAICEetaZmethod .GT. 2 ) THEN DO j=1-Oly+1,sNy+Oly-1 DO i=1-Olx+1,sNx+Olx-1 sumNorm = maskC(I,J, k,bi,bj)+maskC(I-1,J, k,bi,bj) & + maskC(I,J-1,k,bi,bj)+maskC(I-1,J-1,k,bi,bj) IF ( sumNorm.GT.0. _d 0 ) sumNorm = 1. _d 0 / sumNorm etaZ(I,J,bi,bj) = sumNorm * & ( eta (I,J ,bi,bj) + eta (I-1,J ,bi,bj) & + eta (I,J-1,bi,bj) + eta (I-1,J-1,bi,bj) ) ENDDO ENDDO ELSE IF ( SEAICEetaZmethod .eq. 1 ) THEN DO j=1-Oly+1,sNy+Oly-1 DO i=1-Olx+1,sNx+Olx-1 sumNorm = maskC(I,J, k,bi,bj)+maskC(I-1,J, k,bi,bj) & + maskC(I,J-1,k,bi,bj)+maskC(I-1,J-1,k,bi,bj) IF ( sumNorm.GT.0. _d 0 ) sumNorm = 1. _d 0 / sumNorm pressZ(i,j) = sumNorm * & ( press0(i,j, bi,bj) + press0(i-1,j, bi,bj) & + press0(i,j-1,bi,bj) + press0(i-1,j-1,bi,bj) ) e11Zsqr(i,j) = ( sumNorm * & ( e11(i,j, bi,bj) + e11(i-1,j, bi,bj) & + e11(i,j-1,bi,bj) + e11(i-1,j-1,bi,bj) ) )**2 e22Zsqr(i,j) = ( sumNorm * & ( e22(i,j, bi,bj) + e22(i-1,j, bi,bj) & + e22(i,j-1,bi,bj) + e22(i-1,j-1,bi,bj) ) )**2 e11e22Z(i,j) = sumNorm * sumNorm * & ( e11(i, j, bi,bj) + e11(i-1,j, bi,bj) & + e11(i, j-1,bi,bj) + e11(i-1,j-1,bi,bj) ) * & ( e22(i, j, bi,bj) + e22(i-1,j, bi,bj) & + e22(i ,j-1,bi,bj) + e22(i-1,j-1,bi,bj) ) ENDDO ENDDO ELSEIF ( SEAICEetaZmethod .eq. 2 ) THEN DO j=1-Oly+1,sNy+Oly-1 DO i=1-Olx+1,sNx+Olx-1 sumNorm = maskC(I,J, k,bi,bj)+maskC(I-1,J, k,bi,bj) & + maskC(I,J-1,k,bi,bj)+maskC(I-1,J-1,k,bi,bj) IF ( sumNorm.GT.0. _d 0 ) sumNorm = 1. _d 0 / sumNorm pressZ(i,j) = sumNorm * & ( press0(i,j, bi,bj) + press0(i-1,j, bi,bj) & + press0(i,j-1,bi,bj) + press0(i-1,j-1,bi,bj) ) e11Zsqr(i,j) = sumNorm * & ( e11(i,j, bi,bj)**2 + e11(i-1,j, bi,bj)**2 & + e11(i,j-1,bi,bj)**2 + e11(i-1,j-1,bi,bj)**2 ) e22Zsqr(i,j) = sumNorm * & ( e22(i,j, bi,bj)**2 + e22(i-1,j, bi,bj)**2 & + e22(i,j-1,bi,bj)**2 + e22(i-1,j-1,bi,bj)**2 ) e11e22Z(i,j) = sumNorm * & ( e11(i, j, bi,bj)*e22(i, j, bi,bj) & + e11(i-1,j, bi,bj)*e22(i-1,j, bi,bj) & + e11(i, j-1,bi,bj)*e22(i ,j-1,bi,bj) & + e11(i-1,j-1,bi,bj)*e22(i-1,j-1,bi,bj) ) ENDDO ENDDO ENDIF DO j=1-Oly+1,sNy+Oly-1 DO i=1-Olx+1,sNx+Olx-1 deltaZ = (e11Zsqr(i,j)+e22Zsqr(i,j))*(ONE+ecm2) & + 4. _d 0*ecm2*e12(i,j,bi,bj)**2 & + 2. _d 0*e11e22Z(i,j)*(ONE-ecm2) #ifdef ALLOW_AUTODIFF_TAMC C avoid sqrt of 0 IF ( deltaZ .GT. 0. _d 0 ) deltaZ = SQRT(deltaZ) #else deltaZ = SQRT(deltaZ) #endif /* ALLOW_AUTODIFF_TAMC */ deltaZreg = MAX(deltaZ,SEAICE_EPS) C "replacement pressure" zetaZ = HALF*pressZ(i,j)/deltaZreg C put min and max viscosities in zetaZmax = SEAICE_zetaMaxFac*pressZ(i,j) #ifdef SEAICE_ZETA_SMOOTHREG C regularize zeta to zmax with a smooth tanh-function instead C of a min(zeta,zmax). This improves convergence of iterative C solvers (Lemieux and Tremblay 2009, JGR). No effect on EVP argTmp = exp(-1. _d 0/(deltaZreg*SEAICE_zetaMaxFac)) zetaZ = zetaZmax*(1. _d 0-argTmp)/(1. _d 0+argTmp) #else zetaZ = MIN(zetaZmax,zetaZ) #endif /* SEAICE_ZETA_SMOOTHREG */ zetaZ = MAX(ZMIN(I,J,bi,bj),zetaZ) etaZ(I,J,bi,bj) = ECM2*zetaZ ENDDO ENDDO #ifdef SEAICE_ALLOW_TEM IF ( SEAICEuseTEM ) THEN STOP 'OOPS' CML DO j=1-Oly+1,sNy+Oly-1 CML DO i=1-Olx+1,sNx+Olx-1 CML etaDen = (e11Zsqr(i,j)+e22Zsqr(i,j)-2.*e11e22Z(i,j)) CML & + 4. _d 0*e12(I,J,bi,bj)**2 CML etaDen = SQRT(MAX(SEAICE_EPS_SQ,etaDen)) CML etaMax = ( 0.5 _d 0*press(I,J,bi,bj)-zeta(I,J,bi,bj) CML & *( e11(I,J,bi,bj)+e22(I,J,bi,bj) ) CML & )/etaDen CML etaZ(I,J,bi,bj) = MIN(etaZ(I,J,bi,bj),etaMax) CML ENDDO CML ENDDO ENDIF #endif /* SEAICE_ALLOW_TEM */ C SEAICEetaZmethod ENDIF C free-slip means no lateral stress, which is best achieved masking C eta on vorticity(=Z)-points; from now on we only need to worry C about the no-slip boundary conditions IF (.NOT.SEAICE_no_slip) THEN DO J=1-Oly+1,sNy+Oly-1 DO I=1-Olx+1,sNx+Olx-1 etaZ(I,J,bi,bj) = etaZ(I,J,bi,bj) & *maskC(I,J, k,bi,bj)*maskC(I-1,J, k,bi,bj) & *maskC(I,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) ENDDO ENDDO ENDIF ENDDO ENDDO #endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID */ RETURN END