1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_calc_viscosities.F,v 1.22 2013/02/28 16:26:31 mlosch Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SEAICE_OPTIONS.h" |
5 |
|
6 |
CBOP |
7 |
CStartOfInterface |
8 |
SUBROUTINE SEAICE_CALC_VISCOSITIES( |
9 |
I e11, e22, e12, zMin, zMax, hEffM, press0, |
10 |
O eta, etaZ, zeta, press, |
11 |
I iStep, myTime, myIter, myThid ) |
12 |
C /==========================================================\ |
13 |
C | SUBROUTINE SEAICE_CALC_VISCOSITIES | |
14 |
C | o compute shear and bulk viscositites eta, zeta and the | |
15 |
C | corrected ice strength P | |
16 |
C | (see Zhang and Hibler, JGR, 102, 8691-8702, 1997) | |
17 |
C |==========================================================| |
18 |
C | written by Martin Losch, Mar 2006 | |
19 |
C \==========================================================/ |
20 |
IMPLICIT NONE |
21 |
|
22 |
C === Global variables === |
23 |
#include "SIZE.h" |
24 |
#include "EEPARAMS.h" |
25 |
#include "PARAMS.h" |
26 |
#include "GRID.h" |
27 |
#include "SEAICE_SIZE.h" |
28 |
#include "SEAICE_PARAMS.h" |
29 |
|
30 |
#ifdef ALLOW_AUTODIFF_TAMC |
31 |
# include "tamc.h" |
32 |
#endif |
33 |
|
34 |
C === Routine arguments === |
35 |
C iStep :: Sub-time-step number |
36 |
C myTime :: Simulation time |
37 |
C myIter :: Simulation timestep number |
38 |
C myThid :: My Thread Id. number |
39 |
INTEGER iStep |
40 |
_RL myTime |
41 |
INTEGER myIter |
42 |
INTEGER myThid |
43 |
C strain rate tensor |
44 |
_RL e11 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
45 |
_RL e22 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
46 |
_RL e12 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
47 |
C |
48 |
_RL zMin (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
49 |
_RL zMax (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
50 |
_RL hEffM (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
51 |
C |
52 |
_RL press0(1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
53 |
_RL press (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
54 |
C bulk viscosity |
55 |
_RL eta (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
56 |
_RL etaZ (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
57 |
C shear viscosity |
58 |
_RL zeta (1-Olx:sNx+Olx,1-Oly:sNy+Oly,nSx,nSy) |
59 |
CEndOfInterface |
60 |
|
61 |
#if ( defined (SEAICE_CGRID) && defined (SEAICE_ALLOW_DYNAMICS) ) |
62 |
C === Local variables === |
63 |
C i,j,bi,bj - Loop counters |
64 |
C e11, e12, e22 - components of strain rate tensor |
65 |
C ecm2 - inverse of square of eccentricity of yield curve |
66 |
INTEGER i, j, bi, bj |
67 |
_RL ECM2, deltaC, deltaCreg, tmp |
68 |
_RL e12Csqr(1-Olx:sNx+Olx,1-Oly:sNy+Oly) |
69 |
_RL e11Zsqr(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
70 |
_RL e22Zsqr(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
71 |
_RL e11e22Z(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
72 |
_RL pressZ (1-Olx:sNx+Olx,1-Oly:sNy+Oly) |
73 |
#ifdef SEAICE_ALLOW_TEM |
74 |
_RL etaMax, etaDen |
75 |
#endif /* SEAICE_ALLOW_TEM */ |
76 |
INTEGER k |
77 |
_RL zetaZ, deltaZ, deltaZreg, sumNorm, zetaZmax |
78 |
#ifdef SEAICE_ZETA_SMOOTHREG |
79 |
_RL argTmp |
80 |
#endif /* SEAICE_ZETA_SMOOTHREG */ |
81 |
CEOP |
82 |
|
83 |
C-- FIRST SET UP BASIC CONSTANTS |
84 |
k=1 |
85 |
ecm2=0. _d 0 |
86 |
IF ( SEAICE_eccen .NE. 0. _d 0 ) ecm2=ONE/(SEAICE_eccen**2) |
87 |
C |
88 |
DO bj=myByLo(myThid),myByHi(myThid) |
89 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
90 |
C need to do this beforehand for easier vectorization after |
91 |
C TAFization |
92 |
IF ( SEAICEetaZmethod .LT. 2 ) THEN |
93 |
DO j=1-Oly+1,sNy+Oly-1 |
94 |
DO i=1-Olx+1,sNx+Olx-1 |
95 |
tmp = 0.25 * |
96 |
& ( e12(I,J ,bi,bj) + e12(I+1,J ,bi,bj) |
97 |
& + e12(I,J+1,bi,bj) + e12(I+1,J+1,bi,bj) ) |
98 |
e12Csqr(i,j) = tmp*tmp |
99 |
ENDDO |
100 |
ENDDO |
101 |
ELSEIF ( SEAICEetaZmethod .GE. 2 ) THEN |
102 |
DO j=1-Oly+1,sNy+Oly-1 |
103 |
DO i=1-Olx+1,sNx+Olx-1 |
104 |
e12Csqr(i,j) = 0.25 _d 0 * |
105 |
& ( e12(I,J ,bi,bj)**2 + e12(I+1,J ,bi,bj)**2 |
106 |
& + e12(I,J+1,bi,bj)**2 + e12(I+1,J+1,bi,bj)**2 ) |
107 |
ENDDO |
108 |
ENDDO |
109 |
ENDIF |
110 |
DO j=1-Oly+1,sNy+Oly-1 |
111 |
DO i=1-Olx+1,sNx+Olx-1 |
112 |
deltaC = (e11(i,j,bi,bj)**2+e22(i,j,bi,bj)**2)*(ONE+ecm2) |
113 |
& + 4. _d 0*ecm2*e12Csqr(i,j) |
114 |
& + 2. _d 0*e11(i,j,bi,bj)*e22(i,j,bi,bj)*(ONE-ecm2) |
115 |
#ifdef ALLOW_AUTODIFF_TAMC |
116 |
C avoid sqrt of 0 |
117 |
IF ( deltaC .GT. 0. _d 0 ) deltaC = SQRT(deltaC) |
118 |
#else |
119 |
deltaC = SQRT(deltaC) |
120 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
121 |
deltaCreg = MAX(deltaC,SEAICE_EPS) |
122 |
C "replacement pressure" |
123 |
zeta (I,J,bi,bj) = HALF*press0(I,J,bi,bj)/deltaCreg |
124 |
C put min and max viscosities in |
125 |
#ifdef SEAICE_ZETA_SMOOTHREG |
126 |
C regularize zeta to zmax with a smooth tanh-function instead |
127 |
C of a min(zeta,zmax). This improves convergence of iterative |
128 |
C solvers (Lemieux and Tremblay 2009, JGR). No effect on EVP |
129 |
argTmp = exp(-1. _d 0/(deltaCreg*SEAICE_zetaMaxFac)) |
130 |
zeta (I,J,bi,bj) = ZMAX(I,J,bi,bj) |
131 |
& *(1. _d 0 - argTmp)/(1. _d 0 + argTmp) |
132 |
#else |
133 |
zeta (I,J,bi,bj) = MIN(ZMAX(I,J,bi,bj),zeta(I,J,bi,bj)) |
134 |
#endif /* SEAICE_ZETA_SMOOTHREG */ |
135 |
zeta (I,J,bi,bj) = MAX(ZMIN(I,J,bi,bj),zeta(I,J,bi,bj)) |
136 |
C set viscosities to zero at hEffM flow pts |
137 |
zeta (I,J,bi,bj) = zeta(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
138 |
eta (I,J,bi,bj) = ECM2*zeta(I,J,bi,bj) |
139 |
press(I,J,bi,bj) = TWO *zeta(I,J,bi,bj)*deltaC |
140 |
ENDDO |
141 |
ENDDO |
142 |
#ifdef SEAICE_ALLOW_TEM |
143 |
IF ( SEAICEuseTEM ) THEN |
144 |
DO j=1-Oly+1,sNy+Oly-1 |
145 |
DO i=1-Olx+1,sNx+Olx-1 |
146 |
etaDen = (e11(I,J,bi,bj)-e22(I,J,bi,bj))**2 |
147 |
& + 4. _d 0*e12Csqr(i,j) |
148 |
etaDen = SQRT(MAX(SEAICE_EPS_SQ,etaDen)) |
149 |
etaMax = ( 0.5 _d 0*press(I,J,bi,bj)-zeta(I,J,bi,bj) |
150 |
& *( e11(I,J,bi,bj)+e22(I,J,bi,bj) ) |
151 |
& )/etaDen |
152 |
eta(I,J,bi,bj) = MIN(eta(I,J,bi,bj),etaMax) |
153 |
ENDDO |
154 |
ENDDO |
155 |
ENDIF |
156 |
#endif /* SEAICE_ALLOW_TEM */ |
157 |
C compute eta at Z-points |
158 |
IF ( SEAICEetaZmethod .eq. 0 ) THEN |
159 |
C This is the old and stupid way |
160 |
DO j=1-Oly+1,sNy+Oly-1 |
161 |
DO i=1-Olx+1,sNx+Olx-1 |
162 |
etaZ(I,J,bi,bj) = |
163 |
& ( eta (I,J ,bi,bj) + eta (I-1,J ,bi,bj) |
164 |
& + eta (I,J-1,bi,bj) + eta (I-1,J-1,bi,bj) ) |
165 |
& / MAX(1.D0,maskC(I,J, k,bi,bj)+maskC(I-1,J, k,bi,bj) |
166 |
& + maskC(I,J-1,k,bi,bj)+maskC(I-1,J-1,k,bi,bj) ) |
167 |
ENDDO |
168 |
ENDDO |
169 |
ELSEIF ( SEAICEetaZmethod .GT. 2 ) THEN |
170 |
DO j=1-Oly+1,sNy+Oly-1 |
171 |
DO i=1-Olx+1,sNx+Olx-1 |
172 |
sumNorm = maskC(I,J, k,bi,bj)+maskC(I-1,J, k,bi,bj) |
173 |
& + maskC(I,J-1,k,bi,bj)+maskC(I-1,J-1,k,bi,bj) |
174 |
IF ( sumNorm.GT.0. _d 0 ) sumNorm = 1. _d 0 / sumNorm |
175 |
etaZ(I,J,bi,bj) = sumNorm * |
176 |
& ( eta (I,J ,bi,bj) + eta (I-1,J ,bi,bj) |
177 |
& + eta (I,J-1,bi,bj) + eta (I-1,J-1,bi,bj) ) |
178 |
ENDDO |
179 |
ENDDO |
180 |
ELSE |
181 |
IF ( SEAICEetaZmethod .eq. 1 ) THEN |
182 |
DO j=1-Oly+1,sNy+Oly-1 |
183 |
DO i=1-Olx+1,sNx+Olx-1 |
184 |
sumNorm = maskC(I,J, k,bi,bj)+maskC(I-1,J, k,bi,bj) |
185 |
& + maskC(I,J-1,k,bi,bj)+maskC(I-1,J-1,k,bi,bj) |
186 |
IF ( sumNorm.GT.0. _d 0 ) sumNorm = 1. _d 0 / sumNorm |
187 |
pressZ(i,j) = sumNorm * |
188 |
& ( press0(i,j, bi,bj) + press0(i-1,j, bi,bj) |
189 |
& + press0(i,j-1,bi,bj) + press0(i-1,j-1,bi,bj) ) |
190 |
e11Zsqr(i,j) = ( sumNorm * |
191 |
& ( e11(i,j, bi,bj) + e11(i-1,j, bi,bj) |
192 |
& + e11(i,j-1,bi,bj) + e11(i-1,j-1,bi,bj) ) )**2 |
193 |
e22Zsqr(i,j) = ( sumNorm * |
194 |
& ( e22(i,j, bi,bj) + e22(i-1,j, bi,bj) |
195 |
& + e22(i,j-1,bi,bj) + e22(i-1,j-1,bi,bj) ) )**2 |
196 |
e11e22Z(i,j) = sumNorm * sumNorm * |
197 |
& ( e11(i, j, bi,bj) + e11(i-1,j, bi,bj) |
198 |
& + e11(i, j-1,bi,bj) + e11(i-1,j-1,bi,bj) ) * |
199 |
& ( e22(i, j, bi,bj) + e22(i-1,j, bi,bj) |
200 |
& + e22(i ,j-1,bi,bj) + e22(i-1,j-1,bi,bj) ) |
201 |
ENDDO |
202 |
ENDDO |
203 |
ELSEIF ( SEAICEetaZmethod .eq. 2 ) THEN |
204 |
DO j=1-Oly+1,sNy+Oly-1 |
205 |
DO i=1-Olx+1,sNx+Olx-1 |
206 |
sumNorm = maskC(I,J, k,bi,bj)+maskC(I-1,J, k,bi,bj) |
207 |
& + maskC(I,J-1,k,bi,bj)+maskC(I-1,J-1,k,bi,bj) |
208 |
IF ( sumNorm.GT.0. _d 0 ) sumNorm = 1. _d 0 / sumNorm |
209 |
pressZ(i,j) = sumNorm * |
210 |
& ( press0(i,j, bi,bj) + press0(i-1,j, bi,bj) |
211 |
& + press0(i,j-1,bi,bj) + press0(i-1,j-1,bi,bj) ) |
212 |
e11Zsqr(i,j) = sumNorm * |
213 |
& ( e11(i,j, bi,bj)**2 + e11(i-1,j, bi,bj)**2 |
214 |
& + e11(i,j-1,bi,bj)**2 + e11(i-1,j-1,bi,bj)**2 ) |
215 |
e22Zsqr(i,j) = sumNorm * |
216 |
& ( e22(i,j, bi,bj)**2 + e22(i-1,j, bi,bj)**2 |
217 |
& + e22(i,j-1,bi,bj)**2 + e22(i-1,j-1,bi,bj)**2 ) |
218 |
e11e22Z(i,j) = sumNorm * |
219 |
& ( e11(i, j, bi,bj)*e22(i, j, bi,bj) |
220 |
& + e11(i-1,j, bi,bj)*e22(i-1,j, bi,bj) |
221 |
& + e11(i, j-1,bi,bj)*e22(i ,j-1,bi,bj) |
222 |
& + e11(i-1,j-1,bi,bj)*e22(i-1,j-1,bi,bj) ) |
223 |
ENDDO |
224 |
ENDDO |
225 |
ENDIF |
226 |
DO j=1-Oly+1,sNy+Oly-1 |
227 |
DO i=1-Olx+1,sNx+Olx-1 |
228 |
deltaZ = (e11Zsqr(i,j)+e22Zsqr(i,j))*(ONE+ecm2) |
229 |
& + 4. _d 0*ecm2*e12(i,j,bi,bj)**2 |
230 |
& + 2. _d 0*e11e22Z(i,j)*(ONE-ecm2) |
231 |
#ifdef ALLOW_AUTODIFF_TAMC |
232 |
C avoid sqrt of 0 |
233 |
IF ( deltaZ .GT. 0. _d 0 ) deltaZ = SQRT(deltaZ) |
234 |
#else |
235 |
deltaZ = SQRT(deltaZ) |
236 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
237 |
deltaZreg = MAX(deltaZ,SEAICE_EPS) |
238 |
C "replacement pressure" |
239 |
zetaZ = HALF*pressZ(i,j)/deltaZreg |
240 |
C put min and max viscosities in |
241 |
zetaZmax = SEAICE_zetaMaxFac*pressZ(i,j) |
242 |
#ifdef SEAICE_ZETA_SMOOTHREG |
243 |
C regularize zeta to zmax with a smooth tanh-function instead |
244 |
C of a min(zeta,zmax). This improves convergence of iterative |
245 |
C solvers (Lemieux and Tremblay 2009, JGR). No effect on EVP |
246 |
argTmp = exp(-1. _d 0/(deltaZreg*SEAICE_zetaMaxFac)) |
247 |
zetaZ = zetaZmax*(1. _d 0-argTmp)/(1. _d 0+argTmp) |
248 |
#else |
249 |
zetaZ = MIN(zetaZmax,zetaZ) |
250 |
#endif /* SEAICE_ZETA_SMOOTHREG */ |
251 |
zetaZ = MAX(ZMIN(I,J,bi,bj),zetaZ) |
252 |
etaZ(I,J,bi,bj) = ECM2*zetaZ |
253 |
ENDDO |
254 |
ENDDO |
255 |
#ifdef SEAICE_ALLOW_TEM |
256 |
IF ( SEAICEuseTEM ) THEN |
257 |
STOP 'OOPS' |
258 |
CML DO j=1-Oly+1,sNy+Oly-1 |
259 |
CML DO i=1-Olx+1,sNx+Olx-1 |
260 |
CML etaDen = (e11Zsqr(i,j)+e22Zsqr(i,j)-2.*e11e22Z(i,j)) |
261 |
CML & + 4. _d 0*e12(I,J,bi,bj)**2 |
262 |
CML etaDen = SQRT(MAX(SEAICE_EPS_SQ,etaDen)) |
263 |
CML etaMax = ( 0.5 _d 0*press(I,J,bi,bj)-zeta(I,J,bi,bj) |
264 |
CML & *( e11(I,J,bi,bj)+e22(I,J,bi,bj) ) |
265 |
CML & )/etaDen |
266 |
CML etaZ(I,J,bi,bj) = MIN(etaZ(I,J,bi,bj),etaMax) |
267 |
CML ENDDO |
268 |
CML ENDDO |
269 |
ENDIF |
270 |
#endif /* SEAICE_ALLOW_TEM */ |
271 |
C SEAICEetaZmethod |
272 |
ENDIF |
273 |
C free-slip means no lateral stress, which is best achieved masking |
274 |
C eta on vorticity(=Z)-points; from now on we only need to worry |
275 |
C about the no-slip boundary conditions |
276 |
IF (.NOT.SEAICE_no_slip) THEN |
277 |
DO J=1-Oly+1,sNy+Oly-1 |
278 |
DO I=1-Olx+1,sNx+Olx-1 |
279 |
etaZ(I,J,bi,bj) = etaZ(I,J,bi,bj) |
280 |
& *maskC(I,J, k,bi,bj)*maskC(I-1,J, k,bi,bj) |
281 |
& *maskC(I,J-1,k,bi,bj)*maskC(I-1,J-1,k,bi,bj) |
282 |
ENDDO |
283 |
ENDDO |
284 |
ENDIF |
285 |
ENDDO |
286 |
ENDDO |
287 |
|
288 |
#endif /* SEAICE_ALLOW_DYNAMICS and SEAICE_CGRID */ |
289 |
RETURN |
290 |
END |