1 |
torge |
1.1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_get_dynforcing.F,v 1.13 2012/08/28 19:19:32 gforget Exp $ |
2 |
|
|
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "SEAICE_OPTIONS.h" |
5 |
|
|
|
6 |
|
|
CBOP |
7 |
|
|
C !ROUTINE: SEAICE_SOLVE4TEMP |
8 |
|
|
C !INTERFACE: |
9 |
|
|
SUBROUTINE SEAICE_GET_DYNFORCING( |
10 |
|
|
I uIce, vIce, |
11 |
|
|
O taux, tauy, |
12 |
|
|
I myTime, myIter, myThid ) |
13 |
|
|
C !DESCRIPTION: \bv |
14 |
|
|
C *==========================================================* |
15 |
|
|
C | SUBROUTINE SEAICE_GET_DYNFORCING |
16 |
|
|
C | compute surface stress from atmopheric forcing fields |
17 |
|
|
C *==========================================================* |
18 |
|
|
C | started by Martin Losch, April 2007 |
19 |
|
|
C *==========================================================* |
20 |
|
|
C \ev |
21 |
|
|
|
22 |
|
|
C !USES: |
23 |
|
|
IMPLICIT NONE |
24 |
|
|
C === Global variables === |
25 |
|
|
#include "SIZE.h" |
26 |
|
|
#include "EEPARAMS.h" |
27 |
|
|
#include "PARAMS.h" |
28 |
|
|
#include "GRID.h" |
29 |
|
|
#include "FFIELDS.h" |
30 |
|
|
#include "DYNVARS.h" |
31 |
|
|
#include "SEAICE_SIZE.h" |
32 |
|
|
#include "SEAICE_PARAMS.h" |
33 |
|
|
#ifdef ALLOW_EXF |
34 |
|
|
# include "EXF_OPTIONS.h" |
35 |
|
|
# include "EXF_FIELDS.h" |
36 |
|
|
# include "EXF_PARAM.h" |
37 |
|
|
#endif |
38 |
|
|
|
39 |
|
|
C !INPUT/OUTPUT PARAMETERS: |
40 |
|
|
C uIce (inp) :: zonal ice velocity (input) |
41 |
|
|
C vIce (inp) :: meridional ice velocity (input) |
42 |
|
|
C taux (out) :: zonal wind stress over ice at U point |
43 |
|
|
C tauy (out) :: meridional wind stress over ice at V point |
44 |
|
|
C myTime (inp) :: current time in simulation |
45 |
|
|
C myIter (inp) :: iteration number in simulation |
46 |
|
|
C myThid (inp) :: my Thread Id. number |
47 |
|
|
_RL uIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
48 |
|
|
_RL vIce (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
49 |
|
|
_RL taux (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
50 |
|
|
_RL tauy (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
51 |
|
|
_RL myTime |
52 |
|
|
INTEGER myIter |
53 |
|
|
INTEGER myThid |
54 |
|
|
CEOP |
55 |
|
|
|
56 |
|
|
#ifdef SEAICE_CGRID |
57 |
|
|
C !LOCAL VARIABLES: |
58 |
|
|
C i,j,bi,bj :: Loop counters |
59 |
|
|
C ks :: vertical index of surface layer |
60 |
|
|
INTEGER bi, bj, i, j |
61 |
|
|
INTEGER ks |
62 |
|
|
_RL COSWIN |
63 |
|
|
_RS SINWIN |
64 |
|
|
_RL U1, V1, AAA |
65 |
|
|
C CDAIR :: local wind stress coefficient (used twice) |
66 |
|
|
C oceTauX :: wind-stress over open-ocean (on Arakawa A-grid), X direction |
67 |
|
|
C oceTauY :: wind-stress over open-ocean (on Arakawa A-grid), Y direction |
68 |
|
|
_RL CDAIR (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
69 |
|
|
#ifndef SEAICE_EXTERNAL_FLUXES |
70 |
|
|
_RL oceTauX (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
71 |
|
|
_RL oceTauY (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
72 |
|
|
#endif |
73 |
|
|
|
74 |
|
|
C-- surface level |
75 |
|
|
ks = 1 |
76 |
|
|
C-- introduce turning angle (default is zero) |
77 |
|
|
SINWIN=SIN(SEAICE_airTurnAngle*deg2rad) |
78 |
|
|
COSWIN=COS(SEAICE_airTurnAngle*deg2rad) |
79 |
|
|
|
80 |
|
|
C-- NOW SET UP FORCING FIELDS |
81 |
|
|
|
82 |
|
|
#ifdef SEAICE_EXTERNAL_FLUXES |
83 |
|
|
IF (useAtmWind) THEN |
84 |
|
|
#endif |
85 |
|
|
C-- Wind stress is computed on center of C-grid cell |
86 |
|
|
C and interpolated to U and V points later |
87 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
88 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
89 |
|
|
|
90 |
|
|
#ifndef SEAICE_EXTERNAL_FLUXES |
91 |
|
|
C-- First compute wind-stress over open ocean: this will results in |
92 |
|
|
C over-writing fu and fv that were computed or read-in by pkg/exf. |
93 |
|
|
DO j=1-Oly,sNy+Oly |
94 |
|
|
DO i=1-Olx,sNx+Olx |
95 |
|
|
U1=UWIND(i,j,bi,bj) |
96 |
|
|
V1=VWIND(i,j,bi,bj) |
97 |
|
|
AAA=U1**2+V1**2 |
98 |
|
|
IF ( AAA .LE. SEAICE_EPS_SQ ) THEN |
99 |
|
|
AAA=SEAICE_EPS |
100 |
|
|
ELSE |
101 |
|
|
AAA=SQRT(AAA) |
102 |
|
|
ENDIF |
103 |
|
|
CDAIR(i,j)=SEAICE_rhoAir*OCEAN_drag |
104 |
|
|
& *(2.70 _d 0+0.142 _d 0*AAA+0.0764 _d 0*AAA*AAA) |
105 |
|
|
oceTauX(i,j)=CDAIR(i,j)* |
106 |
|
|
& (COSWIN*U1-SIGN(SINWIN, _fCori(i,j,bi,bj))*V1) |
107 |
|
|
oceTauY(i,j)=CDAIR(i,j)* |
108 |
|
|
& (SIGN(SINWIN, _fCori(i,j,bi,bj))*U1+COSWIN*V1) |
109 |
|
|
ENDDO |
110 |
|
|
ENDDO |
111 |
|
|
C-- Interpolate wind stress over open ocean (N/m^2) |
112 |
|
|
C from A-grid to U and V points of C-grid |
113 |
|
|
DO j=1-Oly+1,sNy+Oly |
114 |
|
|
DO i=1-Olx+1,sNx+Olx |
115 |
|
|
fu(i,j,bi,bj) = 0.5 _d 0*( oceTauX(i,j) + oceTauX(i-1,j) ) |
116 |
|
|
& *_maskW(i,j,ks,bi,bj) |
117 |
|
|
fv(i,j,bi,bj) = 0.5 _d 0*( oceTauY(i,j) + oceTauY(i,j-1) ) |
118 |
|
|
& *_maskS(i,j,ks,bi,bj) |
119 |
|
|
ENDDO |
120 |
|
|
ENDDO |
121 |
|
|
#endif /* ndef SEAICE_EXTERNAL_FLUXES */ |
122 |
|
|
|
123 |
|
|
C-- Now compute ice surface stress |
124 |
|
|
IF (useRelativeWind) THEN |
125 |
|
|
DO j=1-Oly,sNy+Oly-1 |
126 |
|
|
DO i=1-Olx,sNx+Olx-1 |
127 |
|
|
U1=UWIND(i,j,bi,bj) |
128 |
|
|
& + 0.5 _d 0 * (uVel(i,j,ks,bi,bj)+uVel(i+1,j,ks,bi,bj)) |
129 |
|
|
& - 0.5 _d 0 * (uIce(i,j,bi,bj)+uIce(i+1,j,bi,bj)) |
130 |
|
|
V1=VWIND(i,j,bi,bj) |
131 |
|
|
& + 0.5 _d 0 * (vVel(i,j,ks,bi,bj)+vVel(i,j+1,ks,bi,bj)) |
132 |
|
|
& - 0.5 _d 0 * (vIce(i,j,bi,bj)+vIce(i,j+1,bi,bj)) |
133 |
|
|
AAA=U1**2+V1**2 |
134 |
|
|
IF ( AAA .LE. SEAICE_EPS_SQ ) THEN |
135 |
|
|
AAA=SEAICE_EPS |
136 |
|
|
ELSE |
137 |
|
|
AAA=SQRT(AAA) |
138 |
|
|
ENDIF |
139 |
|
|
IF ( yC(i,j,bi,bj) .LT. ZERO ) THEN |
140 |
|
|
CDAIR(i,j) = SEAICE_rhoAir*SEAICE_drag_south*AAA |
141 |
|
|
ELSE |
142 |
|
|
CDAIR(i,j) = SEAICE_rhoAir*SEAICE_drag*AAA |
143 |
|
|
ENDIF |
144 |
|
|
ENDDO |
145 |
|
|
ENDDO |
146 |
|
|
ELSE |
147 |
|
|
DO j=1-Oly,sNy+Oly |
148 |
|
|
DO i=1-Olx,sNx+Olx |
149 |
|
|
U1=UWIND(i,j,bi,bj) |
150 |
|
|
V1=VWIND(i,j,bi,bj) |
151 |
|
|
AAA=U1**2+V1**2 |
152 |
|
|
IF ( AAA .LE. SEAICE_EPS_SQ ) THEN |
153 |
|
|
AAA=SEAICE_EPS |
154 |
|
|
ELSE |
155 |
|
|
AAA=SQRT(AAA) |
156 |
|
|
ENDIF |
157 |
|
|
IF ( yC(i,j,bi,bj) .LT. ZERO ) THEN |
158 |
|
|
CDAIR(i,j) = SEAICE_rhoAir*SEAICE_drag_south*AAA |
159 |
|
|
ELSE |
160 |
|
|
CDAIR(i,j) = SEAICE_rhoAir*SEAICE_drag*AAA |
161 |
|
|
ENDIF |
162 |
|
|
ENDDO |
163 |
|
|
ENDDO |
164 |
|
|
ENDIF |
165 |
|
|
IF (useRelativeWind) THEN |
166 |
|
|
DO j=1-Oly+1,sNy+Oly-1 |
167 |
|
|
DO i=1-Olx+1,sNx+Olx-1 |
168 |
|
|
C interpolate to U points |
169 |
|
|
taux(i,j,bi,bj)= 0.5 _d 0 * |
170 |
|
|
& ( CDAIR(i,j)*(COSWIN* |
171 |
|
|
& (uWind(i,j,bi,bj) |
172 |
|
|
& +0.5 _d 0*(uVel(i,j,ks,bi,bj)+uVel(i+1,j,ks,bi,bj)) |
173 |
|
|
& -0.5 _d 0*(uIce(i,j,bi,bj)+uIce(i+1,j,bi,bj))) |
174 |
|
|
& -SIGN(SINWIN, _fCori(i,j,bi,bj))* |
175 |
|
|
& (vWind(i,j,bi,bj) |
176 |
|
|
& +0.5 _d 0*(vVel(i,j,ks,bi,bj)+vVel(i,j+1,ks,bi,bj)) |
177 |
|
|
& -0.5 _d 0*(vIce(i,j,bi,bj)+vIce(i,j+1,bi,bj)))) |
178 |
|
|
& +CDAIR(i-1,j)*(COSWIN* |
179 |
|
|
& (uWind(i-1,j,bi,bj) |
180 |
|
|
& +0.5 _d 0*(uVel(i-1,j,ks,bi,bj)+uVel(i,j,ks,bi,bj)) |
181 |
|
|
& -0.5 _d 0*(uIce(i-1,j,bi,bj)+uIce(i,j,bi,bj))) |
182 |
|
|
& -SIGN(SINWIN, _fCori(i-1,j,bi,bj))* |
183 |
|
|
& (vWind(i-1,j,bi,bj) |
184 |
|
|
& +0.5 _d 0*(vVel(i-1,j,ks,bi,bj)+vVel(i-1,j+1,ks,bi,bj)) |
185 |
|
|
& -0.5 _d 0*(vIce(i-1,j,bi,bj)+vIce(i-1,j+1,bi,bj)))) |
186 |
|
|
& )*_maskW(i,j,ks,bi,bj) |
187 |
|
|
C interpolate to V points |
188 |
|
|
tauy(i,j,bi,bj)= 0.5 _d 0 * |
189 |
|
|
& ( CDAIR(i,j)*(SIGN(SINWIN, _fCori(i,j,bi,bj))* |
190 |
|
|
& (uWind(i,j,bi,bj) |
191 |
|
|
& +0.5 _d 0*(uVel(i,j,ks,bi,bj)+uVel(i+1,j,ks,bi,bj)) |
192 |
|
|
& -0.5 _d 0*(uIce(i,j,bi,bj)+uIce(i+1,j,bi,bj))) |
193 |
|
|
& +COSWIN* |
194 |
|
|
& (vWind(i,j,bi,bj) |
195 |
|
|
& +0.5 _d 0*(vVel(i,j,ks,bi,bj)+vVel(i,j+1,ks,bi,bj)) |
196 |
|
|
& -0.5 _d 0*(vIce(i,j,bi,bj)+vIce(i,j+1,bi,bj)))) |
197 |
|
|
& +CDAIR(i,j-1)*(SIGN(SINWIN, _fCori(i,j-1,bi,bj))* |
198 |
|
|
& (uWind(i,j-1,bi,bj) |
199 |
|
|
& +0.5 _d 0*(uVel(i,j-1,ks,bi,bj)+uVel(i+1,j-1,ks,bi,bj)) |
200 |
|
|
& -0.5 _d 0*(uIce(i,j-1,bi,bj)+uIce(i+1,j-1,bi,bj))) |
201 |
|
|
& +COSWIN* |
202 |
|
|
& (vWind(i,j-1,bi,bj) |
203 |
|
|
& +0.5 _d 0*(vVel(i,j-1,ks,bi,bj)+vVel(i,j,ks,bi,bj)) |
204 |
|
|
& -0.5 _d 0*(vIce(i,j-1,bi,bj)+vIce(i,j,bi,bj)))) |
205 |
|
|
& )*_maskS(i,j,ks,bi,bj) |
206 |
|
|
ENDDO |
207 |
|
|
ENDDO |
208 |
|
|
ELSE |
209 |
|
|
DO j=1-Oly+1,sNy+Oly |
210 |
|
|
DO i=1-Olx+1,sNx+Olx |
211 |
|
|
C interpolate to U points |
212 |
|
|
taux(i,j,bi,bj)=0.5 _d 0 * |
213 |
|
|
& ( CDAIR(i ,j)*( |
214 |
|
|
& COSWIN *uWind(i ,j,bi,bj) |
215 |
|
|
& -SIGN(SINWIN, _fCori(i ,j,bi,bj))*vWind(i ,j,bi,bj) ) |
216 |
|
|
& + CDAIR(i-1,j)*( |
217 |
|
|
& COSWIN *uWind(i-1,j,bi,bj) |
218 |
|
|
& -SIGN(SINWIN, _fCori(i-1,j,bi,bj))*vWind(i-1,j,bi,bj) ) |
219 |
|
|
& )*_maskW(i,j,ks,bi,bj) |
220 |
|
|
C interpolate to V points |
221 |
|
|
tauy(i,j,bi,bj)=0.5 _d 0 * |
222 |
|
|
& ( CDAIR(i,j )*( |
223 |
|
|
& SIGN(SINWIN, _fCori(i,j ,bi,bj))*uWind(i,j ,bi,bj) |
224 |
|
|
& +COSWIN*vWind(i,j ,bi,bj) ) |
225 |
|
|
& + CDAIR(i,j-1)*( |
226 |
|
|
& SIGN(SINWIN, _fCori(i,j-1,bi,bj))*uWind(i,j-1,bi,bj) |
227 |
|
|
& +COSWIN*vWind(i,j-1,bi,bj) ) |
228 |
|
|
& )*_maskS(i,j,ks,bi,bj) |
229 |
|
|
ENDDO |
230 |
|
|
ENDDO |
231 |
|
|
ENDIF |
232 |
|
|
|
233 |
|
|
ENDDO |
234 |
|
|
ENDDO |
235 |
|
|
|
236 |
|
|
#ifdef SEAICE_EXTERNAL_FLUXES |
237 |
|
|
ELSE |
238 |
|
|
C-- Wind stress is available on U and V points, copy it to seaice variables. |
239 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
240 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
241 |
|
|
DO j=1-Oly,sNy+Oly |
242 |
|
|
DO i=1-Olx,sNx+Olx |
243 |
|
|
C now ice surface stress |
244 |
|
|
IF ( yC(i,j,bi,bj) .LT. ZERO ) THEN |
245 |
|
|
CDAIR(i,j) = SEAICE_drag_south/OCEAN_drag |
246 |
|
|
ELSE |
247 |
|
|
CDAIR(i,j) = SEAICE_drag /OCEAN_drag |
248 |
|
|
ENDIF |
249 |
|
|
taux(i,j,bi,bj) = CDAIR(i,j)*fu(i,j,bi,bj) |
250 |
|
|
& *_maskW(i,j,ks,bi,bj) |
251 |
|
|
tauy(i,j,bi,bj) = CDAIR(i,j)*fv(i,j,bi,bj) |
252 |
|
|
& *_maskS(i,j,ks,bi,bj) |
253 |
|
|
ENDDO |
254 |
|
|
ENDDO |
255 |
|
|
ENDDO |
256 |
|
|
ENDDO |
257 |
|
|
ENDIF |
258 |
|
|
#endif /* SEAICE_EXTERNAL_FLUXES */ |
259 |
|
|
#endif /* SEAICE_CGRID */ |
260 |
|
|
|
261 |
|
|
RETURN |
262 |
|
|
END |