1 |
torge |
1.8 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_growth.F,v 1.162 2012/03/15 03:07:31 jmc Exp $ |
2 |
dimitri |
1.1 |
C $Name: $ |
3 |
|
|
|
4 |
|
|
#include "SEAICE_OPTIONS.h" |
5 |
|
|
#ifdef ALLOW_EXF |
6 |
|
|
# include "EXF_OPTIONS.h" |
7 |
|
|
#endif |
8 |
|
|
|
9 |
|
|
CBOP |
10 |
|
|
C !ROUTINE: SEAICE_GROWTH |
11 |
|
|
C !INTERFACE: |
12 |
|
|
SUBROUTINE SEAICE_GROWTH( myTime, myIter, myThid ) |
13 |
|
|
C !DESCRIPTION: \bv |
14 |
|
|
C *==========================================================* |
15 |
|
|
C | SUBROUTINE seaice_growth |
16 |
|
|
C | o Updata ice thickness and snow depth |
17 |
|
|
C *==========================================================* |
18 |
|
|
C \ev |
19 |
|
|
|
20 |
|
|
C !USES: |
21 |
|
|
IMPLICIT NONE |
22 |
|
|
C === Global variables === |
23 |
|
|
#include "SIZE.h" |
24 |
|
|
#include "EEPARAMS.h" |
25 |
|
|
#include "PARAMS.h" |
26 |
|
|
#include "DYNVARS.h" |
27 |
|
|
#include "GRID.h" |
28 |
|
|
#include "FFIELDS.h" |
29 |
|
|
#include "SEAICE_SIZE.h" |
30 |
|
|
#include "SEAICE_PARAMS.h" |
31 |
|
|
#include "SEAICE.h" |
32 |
|
|
#include "SEAICE_TRACER.h" |
33 |
|
|
#ifdef ALLOW_EXF |
34 |
|
|
# include "EXF_PARAM.h" |
35 |
|
|
# include "EXF_FIELDS.h" |
36 |
|
|
#endif |
37 |
|
|
#ifdef ALLOW_SALT_PLUME |
38 |
|
|
# include "SALT_PLUME.h" |
39 |
|
|
#endif |
40 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
41 |
|
|
# include "tamc.h" |
42 |
|
|
#endif |
43 |
|
|
|
44 |
|
|
C !INPUT/OUTPUT PARAMETERS: |
45 |
|
|
C === Routine arguments === |
46 |
|
|
C myTime :: Simulation time |
47 |
|
|
C myIter :: Simulation timestep number |
48 |
|
|
C myThid :: Thread no. that called this routine. |
49 |
|
|
_RL myTime |
50 |
|
|
INTEGER myIter, myThid |
51 |
|
|
CEOP |
52 |
|
|
|
53 |
|
|
C !FUNCTIONS: |
54 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
55 |
|
|
LOGICAL DIAGNOSTICS_IS_ON |
56 |
|
|
EXTERNAL DIAGNOSTICS_IS_ON |
57 |
|
|
#endif |
58 |
|
|
|
59 |
|
|
C !LOCAL VARIABLES: |
60 |
|
|
C === Local variables === |
61 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
62 |
|
|
C msgBuf :: Informational/error message buffer |
63 |
|
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
64 |
|
|
c ToM>>> |
65 |
dimitri |
1.1 |
C |
66 |
|
|
C unit/sign convention: |
67 |
|
|
C Within the thermodynamic computation all stocks, except HSNOW, |
68 |
|
|
C are in 'effective ice meters' units, and >0 implies more ice. |
69 |
|
|
C This holds for stocks due to ocean and atmosphere heat, |
70 |
|
|
C at the outset of 'PART 2: determine heat fluxes/stocks' |
71 |
|
|
C and until 'PART 7: determine ocean model forcing' |
72 |
|
|
C This strategy minimizes the need for multiplications/divisions |
73 |
|
|
C by ice fraction, heat capacity, etc. The only conversions that |
74 |
|
|
C occurs are for the HSNOW (in effective snow meters) and |
75 |
|
|
C PRECIP (fresh water m/s). |
76 |
|
|
C |
77 |
|
|
C HEFF is effective Hice thickness (m3/m2) |
78 |
|
|
C HSNOW is Heffective snow thickness (m3/m2) |
79 |
|
|
C HSALT is Heffective salt content (g/m2) |
80 |
|
|
C AREA is the seaice cover fraction (0<=AREA<=1) |
81 |
|
|
C Q denotes heat stocks -- converted to ice stocks (m3/m2) early on |
82 |
|
|
C |
83 |
|
|
C For all other stocks/increments, such as d_HEFFbyATMonOCN |
84 |
|
|
C or a_QbyATM_cover, the naming convention is as follows: |
85 |
|
|
C The prefix 'a_' means available, the prefix 'd_' means delta |
86 |
|
|
C (i.e. increment), and the prefix 'r_' means residual. |
87 |
|
|
C The suffix '_cover' denotes a value for the ice covered fraction |
88 |
|
|
C of the grid cell, whereas '_open' is for the open water fraction. |
89 |
|
|
C The main part of the name states what ice/snow stock is concerned |
90 |
|
|
C (e.g. QbyATM or HEFF), and how it is affected (e.g. d_HEFFbyATMonOCN |
91 |
|
|
C is the increment of HEFF due to the ATMosphere extracting heat from the |
92 |
|
|
C OCeaN surface, or providing heat to the OCeaN surface). |
93 |
|
|
|
94 |
|
|
C i,j,bi,bj :: Loop counters |
95 |
|
|
INTEGER i, j, bi, bj |
96 |
|
|
C number of surface interface layer |
97 |
|
|
INTEGER kSurface |
98 |
|
|
C constants |
99 |
|
|
_RL tempFrz, ICE2SNOW, SNOW2ICE |
100 |
|
|
_RL QI, QS, recip_QI |
101 |
|
|
|
102 |
|
|
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
103 |
|
|
_RL TmixLoc (1:sNx,1:sNy) |
104 |
|
|
|
105 |
|
|
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
106 |
|
|
C the atmosphere and the ocean surface - for ice covered water |
107 |
|
|
C a_QbyATM_open :: same but for open water |
108 |
|
|
C r_QbyATM_cover :: residual of a_QbyATM_cover after freezing/melting processes |
109 |
|
|
C r_QbyATM_open :: same but for open water |
110 |
|
|
_RL a_QbyATM_cover (1:sNx,1:sNy) |
111 |
|
|
_RL a_QbyATM_open (1:sNx,1:sNy) |
112 |
|
|
_RL r_QbyATM_cover (1:sNx,1:sNy) |
113 |
|
|
_RL r_QbyATM_open (1:sNx,1:sNy) |
114 |
|
|
C a_QSWbyATM_open - short wave heat flux over ocean in W/m^2 |
115 |
|
|
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
116 |
|
|
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
117 |
|
|
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
118 |
torge |
1.7 |
C a_QbyOCN :: available heat (in W/m^2) due to the |
119 |
dimitri |
1.1 |
C interaction of the ice pack and the ocean surface |
120 |
|
|
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
121 |
|
|
C processes have been accounted for |
122 |
|
|
_RL a_QbyOCN (1:sNx,1:sNy) |
123 |
|
|
_RL r_QbyOCN (1:sNx,1:sNy) |
124 |
|
|
|
125 |
|
|
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
126 |
|
|
_RL convertQ2HI, convertHI2Q |
127 |
|
|
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
128 |
|
|
_RL convertPRECIP2HI, convertHI2PRECIP |
129 |
|
|
|
130 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
131 |
|
|
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
132 |
|
|
_RL d_AREAbyATM (1:sNx,1:sNy) |
133 |
|
|
_RL d_AREAbyOCN (1:sNx,1:sNy) |
134 |
|
|
_RL d_AREAbyICE (1:sNx,1:sNy) |
135 |
|
|
#endif |
136 |
|
|
|
137 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
138 |
|
|
C ICE/SNOW stocks tendency associated with relaxation towards observation |
139 |
|
|
_RL d_AREAbyRLX (1:sNx,1:sNy) |
140 |
|
|
c The change of mean ice thickness due to relaxation |
141 |
|
|
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
142 |
|
|
#endif |
143 |
|
|
|
144 |
|
|
c The change of mean ice thickness due to out-of-bounds values following |
145 |
dimitri |
1.2 |
c sea ice dynamics |
146 |
dimitri |
1.1 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
147 |
|
|
|
148 |
|
|
c The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
149 |
|
|
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
150 |
|
|
|
151 |
|
|
c The sum of mean ice thickness increments due to atmospheric fluxes over the open water |
152 |
|
|
c fraction and ice-covered fractions of the grid cell |
153 |
|
|
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
154 |
|
|
c The change of mean ice thickness due to flooding by snow |
155 |
|
|
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
156 |
|
|
|
157 |
|
|
c The mean ice thickness increments due to atmospheric fluxes over the open water |
158 |
|
|
c fraction and ice-covered fractions of the grid cell, respectively |
159 |
|
|
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
160 |
|
|
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
161 |
|
|
|
162 |
|
|
_RL d_HSNWbyNEG (1:sNx,1:sNy) |
163 |
|
|
_RL d_HSNWbyATMonSNW (1:sNx,1:sNy) |
164 |
|
|
_RL d_HSNWbyOCNonSNW (1:sNx,1:sNy) |
165 |
|
|
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
166 |
|
|
|
167 |
|
|
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
168 |
|
|
C |
169 |
|
|
C a_FWbySublim :: fresh water flux implied by latent heat of |
170 |
|
|
C sublimation to atmosphere, same sign convention |
171 |
|
|
C as EVAP (positive upward) |
172 |
|
|
_RL a_FWbySublim (1:sNx,1:sNy) |
173 |
|
|
_RL r_FWbySublim (1:sNx,1:sNy) |
174 |
|
|
_RL d_HEFFbySublim (1:sNx,1:sNy) |
175 |
|
|
_RL d_HSNWbySublim (1:sNx,1:sNy) |
176 |
|
|
|
177 |
torge |
1.5 |
#ifdef SEAICE_CAP_SUBLIM |
178 |
dimitri |
1.1 |
C The latent heat flux which will sublimate all snow and ice |
179 |
|
|
C over one time step |
180 |
torge |
1.6 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
181 |
torge |
1.5 |
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
182 |
dimitri |
1.1 |
#endif |
183 |
|
|
|
184 |
|
|
C actual ice thickness (with upper and lower limit) |
185 |
|
|
_RL heffActual (1:sNx,1:sNy) |
186 |
|
|
C actual snow thickness |
187 |
|
|
_RL hsnowActual (1:sNx,1:sNy) |
188 |
|
|
C actual ice thickness (with lower limit only) Reciprocal |
189 |
|
|
_RL recip_heffActual (1:sNx,1:sNy) |
190 |
|
|
C local value (=1/HO or 1/HO_south) |
191 |
|
|
_RL recip_HO |
192 |
|
|
C local value (=1/ice thickness) |
193 |
|
|
_RL recip_HH |
194 |
|
|
|
195 |
|
|
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
196 |
|
|
_RL AREApreTH (1:sNx,1:sNy) |
197 |
|
|
_RL HEFFpreTH (1:sNx,1:sNy) |
198 |
|
|
_RL HSNWpreTH (1:sNx,1:sNy) |
199 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
200 |
|
|
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
201 |
|
|
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
202 |
|
|
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
203 |
|
|
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
204 |
torge |
1.8 |
_RL leadIceThickMin |
205 |
dimitri |
1.2 |
#endif |
206 |
dimitri |
1.1 |
|
207 |
|
|
C wind speed |
208 |
|
|
_RL UG (1:sNx,1:sNy) |
209 |
|
|
#ifdef ALLOW_ATM_WIND |
210 |
|
|
_RL SPEED_SQ |
211 |
|
|
#endif |
212 |
|
|
|
213 |
|
|
C Regularization values squared |
214 |
|
|
_RL area_reg_sq, hice_reg_sq |
215 |
|
|
|
216 |
|
|
C pathological cases thresholds |
217 |
|
|
_RL heffTooHeavy |
218 |
|
|
|
219 |
|
|
_RL lhSublim |
220 |
|
|
|
221 |
|
|
C temporary variables available for the various computations |
222 |
|
|
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
223 |
|
|
_RL tmparr1 (1:sNx,1:sNy) |
224 |
|
|
|
225 |
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
226 |
|
|
_RL saltFluxAdjust (1:sNx,1:sNy) |
227 |
|
|
#endif |
228 |
|
|
|
229 |
|
|
INTEGER ilockey |
230 |
torge |
1.3 |
INTEGER it |
231 |
dimitri |
1.1 |
_RL pFac |
232 |
|
|
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
233 |
|
|
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
234 |
|
|
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
235 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
236 |
|
|
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
237 |
|
|
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
238 |
|
|
#endif |
239 |
dimitri |
1.1 |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
240 |
|
|
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
241 |
|
|
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
242 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
243 |
|
|
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
244 |
|
|
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
245 |
|
|
#endif |
246 |
dimitri |
1.1 |
C Helper variables: reciprocal of some constants |
247 |
|
|
_RL recip_multDim |
248 |
|
|
_RL recip_deltaTtherm |
249 |
|
|
_RL recip_rhoIce |
250 |
|
|
|
251 |
|
|
C Factor by which we increase the upper ocean friction velocity (u*) when |
252 |
|
|
C ice is absent in a grid cell (dimensionless) |
253 |
|
|
_RL MixedLayerTurbulenceFactor |
254 |
|
|
|
255 |
|
|
#ifdef ALLOW_SITRACER |
256 |
|
|
INTEGER iTr |
257 |
|
|
CHARACTER*8 diagName |
258 |
|
|
#endif |
259 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
260 |
|
|
c Helper variables for diagnostics |
261 |
|
|
_RL DIAGarrayA (1:sNx,1:sNy) |
262 |
|
|
_RL DIAGarrayB (1:sNx,1:sNy) |
263 |
|
|
_RL DIAGarrayC (1:sNx,1:sNy) |
264 |
|
|
_RL DIAGarrayD (1:sNx,1:sNy) |
265 |
|
|
#endif |
266 |
|
|
|
267 |
|
|
|
268 |
|
|
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
269 |
|
|
|
270 |
|
|
C =================================================================== |
271 |
|
|
C =================PART 0: constants and initializations============= |
272 |
|
|
C =================================================================== |
273 |
|
|
|
274 |
|
|
IF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN |
275 |
|
|
kSurface = Nr |
276 |
|
|
ELSE |
277 |
|
|
kSurface = 1 |
278 |
|
|
ENDIF |
279 |
|
|
|
280 |
|
|
C avoid unnecessary divisions in loops |
281 |
torge |
1.8 |
c#ifdef SEAICE_ITD |
282 |
|
|
CToM this is now set by MULTDIM = nITD in SEAICE_SIZE.h |
283 |
|
|
C (see SEAICE_SIZE.h and seaice_readparms.F) |
284 |
|
|
c SEAICE_multDim = nITD |
285 |
|
|
c#endif |
286 |
dimitri |
1.1 |
recip_multDim = SEAICE_multDim |
287 |
|
|
recip_multDim = ONE / recip_multDim |
288 |
|
|
C above/below: double/single precision calculation of recip_multDim |
289 |
|
|
c recip_multDim = 1./float(SEAICE_multDim) |
290 |
|
|
recip_deltaTtherm = ONE / SEAICE_deltaTtherm |
291 |
|
|
recip_rhoIce = ONE / SEAICE_rhoIce |
292 |
|
|
|
293 |
|
|
C Cutoff for iceload |
294 |
|
|
heffTooHeavy=drF(kSurface) / 5. _d 0 |
295 |
|
|
|
296 |
|
|
C RATIO OF SEA ICE DENSITY to SNOW DENSITY |
297 |
|
|
ICE2SNOW = SEAICE_rhoIce/SEAICE_rhoSnow |
298 |
|
|
SNOW2ICE = ONE / ICE2SNOW |
299 |
|
|
|
300 |
|
|
C HEAT OF FUSION OF ICE (J/m^3) |
301 |
|
|
QI = SEAICE_rhoIce*SEAICE_lhFusion |
302 |
|
|
recip_QI = ONE / QI |
303 |
|
|
C HEAT OF FUSION OF SNOW (J/m^3) |
304 |
|
|
QS = SEAICE_rhoSnow*SEAICE_lhFusion |
305 |
|
|
|
306 |
|
|
C ICE LATENT HEAT CONSTANT |
307 |
|
|
lhSublim = SEAICE_lhEvap + SEAICE_lhFusion |
308 |
|
|
|
309 |
|
|
C regularization constants |
310 |
|
|
area_reg_sq = SEAICE_area_reg * SEAICE_area_reg |
311 |
|
|
hice_reg_sq = SEAICE_hice_reg * SEAICE_hice_reg |
312 |
|
|
|
313 |
|
|
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
314 |
|
|
convertQ2HI=SEAICE_deltaTtherm/QI |
315 |
|
|
convertHI2Q = ONE/convertQ2HI |
316 |
|
|
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
317 |
|
|
convertPRECIP2HI=SEAICE_deltaTtherm*rhoConstFresh/SEAICE_rhoIce |
318 |
|
|
convertHI2PRECIP = ONE/convertPRECIP2HI |
319 |
|
|
|
320 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
321 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
322 |
|
|
|
323 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
324 |
|
|
act1 = bi - myBxLo(myThid) |
325 |
|
|
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
326 |
|
|
act2 = bj - myByLo(myThid) |
327 |
|
|
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
328 |
|
|
act3 = myThid - 1 |
329 |
|
|
max3 = nTx*nTy |
330 |
|
|
act4 = ikey_dynamics - 1 |
331 |
|
|
iicekey = (act1 + 1) + act2*max1 |
332 |
|
|
& + act3*max1*max2 |
333 |
|
|
& + act4*max1*max2*max3 |
334 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
335 |
|
|
|
336 |
|
|
|
337 |
|
|
C array initializations |
338 |
|
|
C ===================== |
339 |
|
|
|
340 |
|
|
DO J=1,sNy |
341 |
|
|
DO I=1,sNx |
342 |
|
|
a_QbyATM_cover (I,J) = 0.0 _d 0 |
343 |
|
|
a_QbyATM_open(I,J) = 0.0 _d 0 |
344 |
|
|
r_QbyATM_cover (I,J) = 0.0 _d 0 |
345 |
|
|
r_QbyATM_open (I,J) = 0.0 _d 0 |
346 |
|
|
|
347 |
|
|
a_QSWbyATM_open (I,J) = 0.0 _d 0 |
348 |
|
|
a_QSWbyATM_cover (I,J) = 0.0 _d 0 |
349 |
|
|
|
350 |
|
|
a_QbyOCN (I,J) = 0.0 _d 0 |
351 |
|
|
r_QbyOCN (I,J) = 0.0 _d 0 |
352 |
|
|
|
353 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
354 |
|
|
d_AREAbyATM(I,J) = 0.0 _d 0 |
355 |
|
|
d_AREAbyICE(I,J) = 0.0 _d 0 |
356 |
|
|
d_AREAbyOCN(I,J) = 0.0 _d 0 |
357 |
|
|
#endif |
358 |
|
|
|
359 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
360 |
|
|
d_AREAbyRLX(I,J) = 0.0 _d 0 |
361 |
|
|
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
362 |
|
|
#endif |
363 |
|
|
|
364 |
|
|
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
365 |
|
|
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
366 |
|
|
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
367 |
|
|
d_HEFFbyFLOODING(I,J) = 0.0 _d 0 |
368 |
|
|
|
369 |
|
|
d_HEFFbyATMonOCN_open(I,J) = 0.0 _d 0 |
370 |
|
|
d_HEFFbyATMonOCN_cover(I,J) = 0.0 _d 0 |
371 |
|
|
|
372 |
|
|
d_HSNWbyNEG(I,J) = 0.0 _d 0 |
373 |
|
|
d_HSNWbyATMonSNW(I,J) = 0.0 _d 0 |
374 |
|
|
d_HSNWbyOCNonSNW(I,J) = 0.0 _d 0 |
375 |
|
|
d_HSNWbyRAIN(I,J) = 0.0 _d 0 |
376 |
|
|
a_FWbySublim(I,J) = 0.0 _d 0 |
377 |
|
|
r_FWbySublim(I,J) = 0.0 _d 0 |
378 |
|
|
d_HEFFbySublim(I,J) = 0.0 _d 0 |
379 |
|
|
d_HSNWbySublim(I,J) = 0.0 _d 0 |
380 |
|
|
#ifdef SEAICE_CAP_SUBLIM |
381 |
|
|
latentHeatFluxMax(I,J) = 0.0 _d 0 |
382 |
|
|
#endif |
383 |
|
|
c |
384 |
|
|
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
385 |
|
|
|
386 |
|
|
tmparr1(I,J) = 0.0 _d 0 |
387 |
|
|
|
388 |
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
389 |
|
|
saltFluxAdjust(I,J) = 0.0 _d 0 |
390 |
|
|
#endif |
391 |
|
|
DO IT=1,SEAICE_multDim |
392 |
|
|
ticeInMult(I,J,IT) = 0.0 _d 0 |
393 |
|
|
ticeOutMult(I,J,IT) = 0.0 _d 0 |
394 |
|
|
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
395 |
|
|
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
396 |
|
|
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
397 |
torge |
1.6 |
#ifdef SEAICE_CAP_SUBLIM |
398 |
|
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
399 |
|
|
#endif |
400 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
401 |
|
|
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
402 |
|
|
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
403 |
|
|
#endif |
404 |
dimitri |
1.1 |
ENDDO |
405 |
|
|
ENDDO |
406 |
|
|
ENDDO |
407 |
|
|
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
408 |
|
|
DO J=1-oLy,sNy+oLy |
409 |
|
|
DO I=1-oLx,sNx+oLx |
410 |
|
|
frWtrAtm(I,J,bi,bj) = 0.0 _d 0 |
411 |
|
|
ENDDO |
412 |
|
|
ENDDO |
413 |
|
|
#endif |
414 |
|
|
|
415 |
|
|
|
416 |
|
|
C ===================================================================== |
417 |
|
|
C ===========PART 1: treat pathological cases (post advdiff)=========== |
418 |
|
|
C ===================================================================== |
419 |
|
|
|
420 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
421 |
|
|
|
422 |
|
|
DO J=1,sNy |
423 |
|
|
DO I=1,sNx |
424 |
|
|
HEFFpreTH(I,J)=HEFFNM1(I,J,bi,bj) |
425 |
|
|
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
426 |
|
|
AREApreTH(I,J)=AREANM1(I,J,bi,bj) |
427 |
|
|
d_HEFFbyNEG(I,J)=0. _d 0 |
428 |
|
|
d_HSNWbyNEG(I,J)=0. _d 0 |
429 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
430 |
|
|
DIAGarrayA(I,J) = AREANM1(I,J,bi,bj) |
431 |
|
|
DIAGarrayB(I,J) = AREANM1(I,J,bi,bj) |
432 |
|
|
DIAGarrayC(I,J) = HEFFNM1(I,J,bi,bj) |
433 |
|
|
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
434 |
|
|
#endif |
435 |
|
|
ENDDO |
436 |
|
|
ENDDO |
437 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
438 |
torge |
1.5 |
DO IT=1,nITD |
439 |
dimitri |
1.2 |
DO J=1,sNy |
440 |
|
|
DO I=1,sNx |
441 |
torge |
1.5 |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
442 |
|
|
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
443 |
|
|
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
444 |
dimitri |
1.2 |
ENDDO |
445 |
|
|
ENDDO |
446 |
|
|
ENDDO |
447 |
|
|
#endif |
448 |
dimitri |
1.1 |
|
449 |
|
|
#else /* SEAICE_GROWTH_LEGACY */ |
450 |
|
|
|
451 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
452 |
|
|
Cgf no dependency through pathological cases treatment |
453 |
|
|
IF ( SEAICEadjMODE.EQ.0 ) THEN |
454 |
|
|
#endif |
455 |
|
|
|
456 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
457 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
458 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
459 |
|
|
C 0) relax sea ice concentration towards observation |
460 |
|
|
IF (SEAICE_tauAreaObsRelax .GT. 0.) THEN |
461 |
|
|
DO J=1,sNy |
462 |
|
|
DO I=1,sNx |
463 |
|
|
C d_AREAbyRLX(i,j) = 0. _d 0 |
464 |
|
|
C d_HEFFbyRLX(i,j) = 0. _d 0 |
465 |
|
|
IF ( obsSIce(I,J,bi,bj).GT.AREA(I,J,bi,bj)) THEN |
466 |
|
|
d_AREAbyRLX(i,j) = |
467 |
|
|
& SEAICE_deltaTtherm/SEAICE_tauAreaObsRelax |
468 |
|
|
& * (obsSIce(I,J,bi,bj) - AREA(I,J,bi,bj)) |
469 |
|
|
ENDIF |
470 |
|
|
IF ( obsSIce(I,J,bi,bj).GT.0. _d 0 .AND. |
471 |
|
|
& AREA(I,J,bi,bj).EQ.0. _d 0) THEN |
472 |
|
|
C d_HEFFbyRLX(i,j) = 1. _d 1 * siEps * d_AREAbyRLX(i,j) |
473 |
|
|
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
474 |
|
|
ENDIF |
475 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
476 |
|
|
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
477 |
|
|
& + d_AREAbyRLX(i,j) |
478 |
|
|
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
479 |
|
|
& + d_HEFFbyRLX(i,j) |
480 |
|
|
#endif |
481 |
dimitri |
1.1 |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj) + d_AREAbyRLX(i,j) |
482 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + d_HEFFbyRLX(i,j) |
483 |
|
|
ENDDO |
484 |
|
|
ENDDO |
485 |
|
|
ENDIF |
486 |
|
|
#endif /* SEAICE_ALLOW_AREA_RELAXATION */ |
487 |
|
|
|
488 |
|
|
C 1) treat the case of negative values: |
489 |
|
|
|
490 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
491 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
492 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
493 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
494 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
495 |
|
|
DO J=1,sNy |
496 |
|
|
DO I=1,sNx |
497 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
498 |
torge |
1.5 |
DO IT=1,nITD |
499 |
dimitri |
1.2 |
tmpscal2=0. _d 0 |
500 |
|
|
tmpscal3=0. _d 0 |
501 |
torge |
1.5 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
502 |
|
|
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
503 |
dimitri |
1.2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
504 |
torge |
1.5 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
505 |
|
|
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
506 |
dimitri |
1.2 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
507 |
torge |
1.7 |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
508 |
dimitri |
1.2 |
ENDDO |
509 |
torge |
1.3 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
510 |
|
|
C by calling SEAICE_ITD_SUM |
511 |
dimitri |
1.2 |
#else |
512 |
dimitri |
1.1 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
513 |
torge |
1.5 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
514 |
dimitri |
1.2 |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
515 |
torge |
1.5 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
516 |
dimitri |
1.2 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
517 |
torge |
1.3 |
#endif |
518 |
dimitri |
1.1 |
ENDDO |
519 |
|
|
ENDDO |
520 |
|
|
|
521 |
|
|
C 1.25) treat the case of very thin ice: |
522 |
|
|
|
523 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
524 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
525 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
526 |
|
|
DO J=1,sNy |
527 |
|
|
DO I=1,sNx |
528 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
529 |
torge |
1.5 |
DO IT=1,nITD |
530 |
torge |
1.3 |
#endif |
531 |
|
|
tmpscal2=0. _d 0 |
532 |
|
|
tmpscal3=0. _d 0 |
533 |
|
|
#ifdef SEAICE_ITD |
534 |
torge |
1.5 |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
535 |
|
|
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
536 |
|
|
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
537 |
|
|
TICES(I,J,IT,bi,bj)=celsius2K |
538 |
torge |
1.3 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
539 |
dimitri |
1.2 |
ENDIF |
540 |
torge |
1.5 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
541 |
|
|
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
542 |
dimitri |
1.2 |
#else |
543 |
dimitri |
1.1 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
544 |
torge |
1.3 |
tmpscal2=-HEFF(I,J,bi,bj) |
545 |
|
|
tmpscal3=-HSNOW(I,J,bi,bj) |
546 |
|
|
TICE(I,J,bi,bj)=celsius2K |
547 |
|
|
DO IT=1,SEAICE_multDim |
548 |
|
|
TICES(I,J,IT,bi,bj)=celsius2K |
549 |
|
|
ENDDO |
550 |
dimitri |
1.1 |
ENDIF |
551 |
|
|
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+tmpscal2 |
552 |
torge |
1.3 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
553 |
|
|
#endif |
554 |
dimitri |
1.1 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
555 |
|
|
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
556 |
torge |
1.3 |
#ifdef SEAICE_ITD |
557 |
|
|
ENDDO |
558 |
dimitri |
1.2 |
#endif |
559 |
dimitri |
1.1 |
ENDDO |
560 |
|
|
ENDDO |
561 |
|
|
|
562 |
|
|
C 1.5) treat the case of area but no ice/snow: |
563 |
|
|
|
564 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
565 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
566 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
567 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
568 |
|
|
DO J=1,sNy |
569 |
|
|
DO I=1,sNx |
570 |
torge |
1.3 |
#ifdef SEAICE_ITD |
571 |
torge |
1.5 |
DO IT=1,nITD |
572 |
|
|
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
573 |
|
|
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
574 |
|
|
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
575 |
torge |
1.3 |
ENDDO |
576 |
|
|
#else |
577 |
dimitri |
1.1 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
578 |
torge |
1.3 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
579 |
dimitri |
1.2 |
#endif |
580 |
dimitri |
1.1 |
ENDDO |
581 |
|
|
ENDDO |
582 |
|
|
|
583 |
|
|
C 2) treat the case of very small area: |
584 |
|
|
|
585 |
|
|
#ifndef DISABLE_AREA_FLOOR |
586 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
587 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
588 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
589 |
|
|
DO J=1,sNy |
590 |
|
|
DO I=1,sNx |
591 |
torge |
1.3 |
#ifdef SEAICE_ITD |
592 |
torge |
1.5 |
DO IT=1,nITD |
593 |
|
|
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
594 |
|
|
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
595 |
torge |
1.3 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
596 |
|
|
C hence use SEAICE_area_floor devided by nITD |
597 |
|
|
C (or install a warning in e.g. seaice_readparms.F) |
598 |
torge |
1.5 |
AREAITD(I,J,IT,bi,bj)= |
599 |
|
|
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
600 |
torge |
1.3 |
ENDIF |
601 |
|
|
ENDDO |
602 |
|
|
#else |
603 |
dimitri |
1.1 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
604 |
|
|
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
605 |
torge |
1.3 |
ENDIF |
606 |
dimitri |
1.2 |
#endif |
607 |
dimitri |
1.1 |
ENDDO |
608 |
|
|
ENDDO |
609 |
|
|
#endif /* DISABLE_AREA_FLOOR */ |
610 |
|
|
|
611 |
|
|
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
612 |
|
|
|
613 |
torge |
1.3 |
CToM for SEAICE_ITD this case is treated in SEAICE_ITD_REDIST, |
614 |
|
|
C which is called at end of PART 1 below |
615 |
|
|
#ifndef SEAICE_ITD |
616 |
dimitri |
1.1 |
#ifdef ALLOW_AUTODIFF_TAMC |
617 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
618 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
619 |
|
|
DO J=1,sNy |
620 |
|
|
DO I=1,sNx |
621 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
622 |
|
|
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
623 |
|
|
#endif |
624 |
|
|
#ifdef ALLOW_SITRACER |
625 |
|
|
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
626 |
|
|
#endif |
627 |
|
|
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
628 |
torge |
1.3 |
ENDDO |
629 |
|
|
ENDDO |
630 |
torge |
1.5 |
#endif /* notSEAICE_ITD */ |
631 |
torge |
1.3 |
|
632 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
633 |
torge |
1.3 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
634 |
|
|
DO J=1,sNy |
635 |
|
|
DO I=1,sNx |
636 |
|
|
C TICES was changed above (item 1.25), now update TICE as ice volume |
637 |
|
|
C weighted average of TICES |
638 |
torge |
1.5 |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
639 |
torge |
1.3 |
tmpscal1 = 0. _d 0 |
640 |
|
|
tmpscal2 = 0. _d 0 |
641 |
torge |
1.5 |
tmpscal3 = 0. _d 0 |
642 |
|
|
DO IT=1,nITD |
643 |
|
|
tmpscal1=tmpscal1 + TICES(I,J,IT,bi,bj)*HEFFITD(I,J,IT,bi,bj) |
644 |
|
|
tmpscal2=tmpscal2 + HEFFITD(I,J,IT,bi,bj) |
645 |
|
|
tmpscal3=tmpscal3 + AREAITD(I,J,IT,bi,bj) |
646 |
dimitri |
1.2 |
ENDDO |
647 |
torge |
1.3 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
648 |
|
|
C lines of item 2.5 that were omitted: |
649 |
|
|
C in 2.5 these lines are executed before "ridging" is applied to AREA |
650 |
|
|
C hence we execute them here before SEAICE_ITD_REDIST is called |
651 |
|
|
C although this means that AREA has not been completely regularized |
652 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
653 |
torge |
1.5 |
DIAGarrayA(I,J) = tmpscal3 |
654 |
torge |
1.3 |
#endif |
655 |
|
|
#ifdef ALLOW_SITRACER |
656 |
torge |
1.5 |
SItrAREA(I,J,bi,bj,1)=tmpscal3 |
657 |
dimitri |
1.2 |
#endif |
658 |
dimitri |
1.1 |
ENDDO |
659 |
|
|
ENDDO |
660 |
|
|
|
661 |
torge |
1.3 |
CToM finally make sure that all categories meet their thickness limits |
662 |
|
|
C which includes ridging as in item 2.5 |
663 |
|
|
C and update AREA, HEFF, and HSNOW |
664 |
|
|
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
665 |
|
|
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
666 |
|
|
|
667 |
torge |
1.7 |
c ToM<<< debug seaice_growth |
668 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
669 |
torge |
1.7 |
& ' SEAICE_GROWTH: Heff increments 0, HEFFITD = ', |
670 |
torge |
1.8 |
& HEFFITD(1,1,:,bi,bj) |
671 |
torge |
1.7 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
672 |
|
|
& SQUEEZE_RIGHT , myThid) |
673 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
674 |
torge |
1.7 |
& ' SEAICE_GROWTH: Area increments 0, AREAITD = ', |
675 |
torge |
1.8 |
& AREAITD(1,1,:,bi,bj) |
676 |
torge |
1.7 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
677 |
|
|
& SQUEEZE_RIGHT , myThid) |
678 |
|
|
#else |
679 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
680 |
torge |
1.7 |
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
681 |
torge |
1.8 |
& HEFF(1,1,bi,bj) |
682 |
torge |
1.7 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
683 |
|
|
& SQUEEZE_RIGHT , myThid) |
684 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
685 |
torge |
1.7 |
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
686 |
torge |
1.8 |
& AREA(1,1,bi,bj) |
687 |
torge |
1.7 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
688 |
|
|
& SQUEEZE_RIGHT , myThid) |
689 |
|
|
c ToM>>> |
690 |
|
|
#endif /* SEAICE_ITD */ |
691 |
dimitri |
1.1 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
692 |
torge |
1.5 |
C end SEAICEadjMODE.EQ.0 statement: |
693 |
dimitri |
1.1 |
ENDIF |
694 |
|
|
#endif |
695 |
|
|
|
696 |
|
|
C 3) store regularized values of heff, hsnow, area at the onset of thermo. |
697 |
|
|
DO J=1,sNy |
698 |
|
|
DO I=1,sNx |
699 |
|
|
HEFFpreTH(I,J)=HEFF(I,J,bi,bj) |
700 |
|
|
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
701 |
|
|
AREApreTH(I,J)=AREA(I,J,bi,bj) |
702 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
703 |
|
|
DIAGarrayB(I,J) = AREA(I,J,bi,bj) |
704 |
|
|
DIAGarrayC(I,J) = HEFF(I,J,bi,bj) |
705 |
|
|
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
706 |
|
|
#endif |
707 |
|
|
#ifdef ALLOW_SITRACER |
708 |
|
|
SItrHEFF(I,J,bi,bj,1)=HEFF(I,J,bi,bj) |
709 |
|
|
SItrAREA(I,J,bi,bj,2)=AREA(I,J,bi,bj) |
710 |
|
|
#endif |
711 |
|
|
ENDDO |
712 |
|
|
ENDDO |
713 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
714 |
torge |
1.5 |
DO IT=1,nITD |
715 |
dimitri |
1.2 |
DO J=1,sNy |
716 |
|
|
DO I=1,sNx |
717 |
torge |
1.5 |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
718 |
|
|
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
719 |
|
|
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
720 |
torge |
1.3 |
|
721 |
|
|
C memorize areal and volume fraction of each ITD category |
722 |
torge |
1.8 |
IF (AREA(I,J,bi,bj) .GT. ZERO) THEN |
723 |
torge |
1.5 |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
724 |
torge |
1.3 |
ELSE |
725 |
torge |
1.7 |
C if there's no ice, potential growth starts in 1st category |
726 |
|
|
IF (IT .EQ. 1) THEN |
727 |
|
|
areaFracFactor(I,J,IT)=ONE |
728 |
|
|
ELSE |
729 |
|
|
areaFracFactor(I,J,IT)=ZERO |
730 |
|
|
ENDIF |
731 |
torge |
1.3 |
ENDIF |
732 |
|
|
ENDDO |
733 |
|
|
ENDDO |
734 |
|
|
ENDDO |
735 |
|
|
C prepare SItrHEFF to be computed as cumulative sum |
736 |
torge |
1.5 |
DO iTr=2,5 |
737 |
torge |
1.3 |
DO J=1,sNy |
738 |
|
|
DO I=1,sNx |
739 |
torge |
1.5 |
SItrHEFF(I,J,bi,bj,iTr)=ZERO |
740 |
dimitri |
1.2 |
ENDDO |
741 |
|
|
ENDDO |
742 |
|
|
ENDDO |
743 |
torge |
1.3 |
C prepare SItrAREA to be computed as cumulative sum |
744 |
|
|
DO J=1,sNy |
745 |
|
|
DO I=1,sNx |
746 |
|
|
SItrAREA(I,J,bi,bj,3)=ZERO |
747 |
|
|
ENDDO |
748 |
|
|
ENDDO |
749 |
dimitri |
1.2 |
#endif |
750 |
dimitri |
1.1 |
|
751 |
|
|
C 4) treat sea ice salinity pathological cases |
752 |
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
753 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
754 |
|
|
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
755 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
756 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
757 |
|
|
DO J=1,sNy |
758 |
|
|
DO I=1,sNx |
759 |
|
|
IF ( (HSALT(I,J,bi,bj) .LT. 0.0).OR. |
760 |
|
|
& (HEFF(I,J,bi,bj) .EQ. 0.0) ) THEN |
761 |
|
|
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
762 |
|
|
& HSALT(I,J,bi,bj) * recip_deltaTtherm |
763 |
|
|
HSALT(I,J,bi,bj) = 0.0 _d 0 |
764 |
|
|
ENDIF |
765 |
|
|
ENDDO |
766 |
|
|
ENDDO |
767 |
|
|
#endif /* SEAICE_VARIABLE_SALINITY */ |
768 |
|
|
|
769 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
770 |
|
|
|
771 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
772 |
|
|
IF ( useDiagnostics ) THEN |
773 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIareaPR',0,1,3,bi,bj,myThid) |
774 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIareaPT',0,1,3,bi,bj,myThid) |
775 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIheffPT',0,1,3,bi,bj,myThid) |
776 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayD,'SIhsnoPT',0,1,3,bi,bj,myThid) |
777 |
|
|
#ifdef ALLOW_SITRACER |
778 |
|
|
DO iTr = 1, SItrNumInUse |
779 |
|
|
WRITE(diagName,'(A4,I2.2,A2)') 'SItr',iTr,'PT' |
780 |
|
|
IF (SItrMate(iTr).EQ.'HEFF') THEN |
781 |
|
|
CALL DIAGNOSTICS_FRACT_FILL( |
782 |
|
|
I SItracer(1-OLx,1-OLy,bi,bj,iTr),HEFF(1-OLx,1-OLy,bi,bj), |
783 |
|
|
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
784 |
|
|
ELSE |
785 |
|
|
CALL DIAGNOSTICS_FRACT_FILL( |
786 |
|
|
I SItracer(1-OLx,1-OLy,bi,bj,iTr),AREA(1-OLx,1-OLy,bi,bj), |
787 |
|
|
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
788 |
|
|
ENDIF |
789 |
|
|
ENDDO |
790 |
|
|
#endif /* ALLOW_SITRACER */ |
791 |
|
|
ENDIF |
792 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
793 |
|
|
|
794 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
795 |
|
|
Cgf no additional dependency of air-sea fluxes to ice |
796 |
|
|
IF ( SEAICEadjMODE.GE.1 ) THEN |
797 |
|
|
DO J=1,sNy |
798 |
|
|
DO I=1,sNx |
799 |
|
|
HEFFpreTH(I,J) = 0. _d 0 |
800 |
|
|
HSNWpreTH(I,J) = 0. _d 0 |
801 |
|
|
AREApreTH(I,J) = 0. _d 0 |
802 |
|
|
ENDDO |
803 |
|
|
ENDDO |
804 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
805 |
torge |
1.5 |
DO IT=1,nITD |
806 |
dimitri |
1.2 |
DO J=1,sNy |
807 |
|
|
DO I=1,sNx |
808 |
torge |
1.5 |
HEFFITDpreTH(I,J,IT) = 0. _d 0 |
809 |
|
|
HSNWITDpreTH(I,J,IT) = 0. _d 0 |
810 |
|
|
AREAITDpreTH(I,J,IT) = 0. _d 0 |
811 |
dimitri |
1.2 |
ENDDO |
812 |
|
|
ENDDO |
813 |
|
|
ENDDO |
814 |
|
|
#endif |
815 |
dimitri |
1.1 |
ENDIF |
816 |
|
|
#endif |
817 |
|
|
|
818 |
|
|
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
819 |
|
|
DO J=1,sNy |
820 |
|
|
DO I=1,sNx |
821 |
|
|
AREAforAtmFW(I,J,bi,bj) = AREApreTH(I,J) |
822 |
|
|
ENDDO |
823 |
|
|
ENDDO |
824 |
|
|
#endif |
825 |
|
|
|
826 |
|
|
C 4) COMPUTE ACTUAL ICE/SNOW THICKNESS; USE MIN/MAX VALUES |
827 |
|
|
C TO REGULARIZE SEAICE_SOLVE4TEMP/d_AREA COMPUTATIONS |
828 |
|
|
|
829 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
830 |
|
|
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
831 |
|
|
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
832 |
|
|
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
833 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
834 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
835 |
torge |
1.5 |
DO IT=1,nITD |
836 |
dimitri |
1.2 |
#endif |
837 |
dimitri |
1.1 |
DO J=1,sNy |
838 |
|
|
DO I=1,sNx |
839 |
|
|
|
840 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
841 |
torge |
1.5 |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
842 |
dimitri |
1.2 |
#ifdef SEAICE_GROWTH_LEGACY |
843 |
torge |
1.3 |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
844 |
torge |
1.5 |
& AREAITDpreTH(I,J,IT)) |
845 |
|
|
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT)/tmpscal1 |
846 |
|
|
tmpscal2 = HEFFITDpreTH(I,J,IT)/tmpscal1 |
847 |
|
|
heffActualMult(I,J,IT) = MAX(tmpscal2,SEAICE_hice_reg) |
848 |
dimitri |
1.2 |
#else /* SEAICE_GROWTH_LEGACY */ |
849 |
|
|
cif regularize AREA with SEAICE_area_reg |
850 |
torge |
1.5 |
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
851 |
dimitri |
1.2 |
& + area_reg_sq) |
852 |
|
|
cif heffActual calculated with the regularized AREA |
853 |
torge |
1.5 |
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
854 |
dimitri |
1.2 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
855 |
torge |
1.5 |
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
856 |
dimitri |
1.2 |
& + hice_reg_sq) |
857 |
|
|
cif hsnowActual calculated with the regularized AREA |
858 |
torge |
1.5 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
859 |
dimitri |
1.2 |
#endif /* SEAICE_GROWTH_LEGACY */ |
860 |
|
|
cif regularize the inverse of heffActual by hice_reg |
861 |
torge |
1.5 |
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
862 |
|
|
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
863 |
dimitri |
1.2 |
& + hice_reg_sq) |
864 |
|
|
cif Do not regularize when HEFFpreTH = 0 |
865 |
|
|
ELSE |
866 |
torge |
1.5 |
heffActualMult(I,J,IT) = ZERO |
867 |
|
|
hsnowActualMult(I,J,IT) = ZERO |
868 |
|
|
recip_heffActualMult(I,J,IT) = ZERO |
869 |
dimitri |
1.2 |
ENDIF |
870 |
torge |
1.3 |
#else /* SEAICE_ITD */ |
871 |
dimitri |
1.1 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
872 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
873 |
|
|
tmpscal1 = MAX(SEAICE_area_reg,AREApreTH(I,J)) |
874 |
|
|
hsnowActual(I,J) = HSNWpreTH(I,J)/tmpscal1 |
875 |
|
|
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
876 |
|
|
heffActual(I,J) = MAX(tmpscal2,SEAICE_hice_reg) |
877 |
|
|
#else /* SEAICE_GROWTH_LEGACY */ |
878 |
|
|
cif regularize AREA with SEAICE_area_reg |
879 |
|
|
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
880 |
|
|
cif heffActual calculated with the regularized AREA |
881 |
|
|
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
882 |
|
|
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
883 |
|
|
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
884 |
|
|
cif hsnowActual calculated with the regularized AREA |
885 |
|
|
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
886 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
887 |
|
|
cif regularize the inverse of heffActual by hice_reg |
888 |
|
|
recip_heffActual(I,J) = AREApreTH(I,J) / |
889 |
|
|
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
890 |
|
|
cif Do not regularize when HEFFpreTH = 0 |
891 |
|
|
ELSE |
892 |
|
|
heffActual(I,J) = ZERO |
893 |
|
|
hsnowActual(I,J) = ZERO |
894 |
|
|
recip_heffActual(I,J) = ZERO |
895 |
|
|
ENDIF |
896 |
torge |
1.3 |
#endif /* SEAICE_ITD */ |
897 |
dimitri |
1.1 |
|
898 |
|
|
ENDDO |
899 |
|
|
ENDDO |
900 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
901 |
|
|
ENDDO |
902 |
|
|
#endif |
903 |
dimitri |
1.1 |
|
904 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
905 |
|
|
CALL ZERO_ADJ_1D( sNx*sNy, heffActual, myThid) |
906 |
|
|
CALL ZERO_ADJ_1D( sNx*sNy, hsnowActual, myThid) |
907 |
|
|
CALL ZERO_ADJ_1D( sNx*sNy, recip_heffActual, myThid) |
908 |
|
|
#endif |
909 |
|
|
|
910 |
|
|
#ifdef SEAICE_CAP_SUBLIM |
911 |
|
|
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
912 |
|
|
C AND SNOW THICKNESS |
913 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
914 |
torge |
1.5 |
DO IT=1,nITD |
915 |
dimitri |
1.2 |
#endif |
916 |
dimitri |
1.1 |
DO J=1,sNy |
917 |
|
|
DO I=1,sNx |
918 |
|
|
c The latent heat flux over the sea ice which |
919 |
|
|
c will sublimate all of the snow and ice over one time |
920 |
|
|
c step (W/m^2) |
921 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
922 |
torge |
1.5 |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
923 |
|
|
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
924 |
|
|
& (HEFFITDpreTH(I,J,IT)*SEAICE_rhoIce + |
925 |
|
|
& HSNWITDpreTH(I,J,IT)*SEAICE_rhoSnow) |
926 |
|
|
& /AREAITDpreTH(I,J,IT) |
927 |
dimitri |
1.2 |
ELSE |
928 |
torge |
1.5 |
latentHeatFluxMaxMult(I,J,IT) = ZERO |
929 |
dimitri |
1.2 |
ENDIF |
930 |
|
|
#else |
931 |
dimitri |
1.1 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
932 |
|
|
latentHeatFluxMax(I,J) = lhSublim * recip_deltaTtherm * |
933 |
|
|
& (HEFFpreTH(I,J) * SEAICE_rhoIce + |
934 |
|
|
& HSNWpreTH(I,J) * SEAICE_rhoSnow)/AREApreTH(I,J) |
935 |
|
|
ELSE |
936 |
|
|
latentHeatFluxMax(I,J) = ZERO |
937 |
|
|
ENDIF |
938 |
dimitri |
1.2 |
#endif |
939 |
dimitri |
1.1 |
ENDDO |
940 |
|
|
ENDDO |
941 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
942 |
|
|
ENDDO |
943 |
|
|
#endif |
944 |
dimitri |
1.1 |
#endif /* SEAICE_CAP_SUBLIM */ |
945 |
|
|
|
946 |
|
|
C =================================================================== |
947 |
|
|
C ================PART 2: determine heat fluxes/stocks=============== |
948 |
|
|
C =================================================================== |
949 |
|
|
|
950 |
|
|
C determine available heat due to the atmosphere -- for open water |
951 |
|
|
C ================================================================ |
952 |
|
|
|
953 |
|
|
DO j=1,sNy |
954 |
|
|
DO i=1,sNx |
955 |
|
|
C ocean surface/mixed layer temperature |
956 |
|
|
TmixLoc(i,j) = theta(i,j,kSurface,bi,bj)+celsius2K |
957 |
|
|
C wind speed from exf |
958 |
|
|
UG(I,J) = MAX(SEAICE_EPS,wspeed(I,J,bi,bj)) |
959 |
|
|
ENDDO |
960 |
|
|
ENDDO |
961 |
|
|
|
962 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
963 |
|
|
CADJ STORE qnet(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
964 |
|
|
CADJ STORE qsw(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
965 |
|
|
cCADJ STORE UG = comlev1_bibj, key = iicekey,byte=isbyte |
966 |
|
|
cCADJ STORE TmixLoc = comlev1_bibj, key = iicekey,byte=isbyte |
967 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
968 |
|
|
|
969 |
|
|
CALL SEAICE_BUDGET_OCEAN( |
970 |
|
|
I UG, |
971 |
|
|
I TmixLoc, |
972 |
|
|
O a_QbyATM_open, a_QSWbyATM_open, |
973 |
|
|
I bi, bj, myTime, myIter, myThid ) |
974 |
torge |
1.8 |
c ToM<<< debugging |
975 |
|
|
print*,' ' |
976 |
|
|
print*,'UG = ',UG(1,1) |
977 |
|
|
print*,'Tsurf = ',TmixLoc(1,1) |
978 |
|
|
print*,'a_QbyATM_open = ',a_QbyATM_open(1,1) |
979 |
|
|
print*,' ' |
980 |
|
|
c ToM>>> |
981 |
dimitri |
1.1 |
|
982 |
|
|
C determine available heat due to the atmosphere -- for ice covered water |
983 |
|
|
C ======================================================================= |
984 |
|
|
|
985 |
|
|
#ifdef ALLOW_ATM_WIND |
986 |
|
|
IF (useRelativeWind) THEN |
987 |
|
|
C Compute relative wind speed over sea ice. |
988 |
|
|
DO J=1,sNy |
989 |
|
|
DO I=1,sNx |
990 |
|
|
SPEED_SQ = |
991 |
|
|
& (uWind(I,J,bi,bj) |
992 |
|
|
& +0.5 _d 0*(uVel(i,j,kSurface,bi,bj) |
993 |
|
|
& +uVel(i+1,j,kSurface,bi,bj)) |
994 |
|
|
& -0.5 _d 0*(uice(i,j,bi,bj)+uice(i+1,j,bi,bj)))**2 |
995 |
|
|
& +(vWind(I,J,bi,bj) |
996 |
|
|
& +0.5 _d 0*(vVel(i,j,kSurface,bi,bj) |
997 |
|
|
& +vVel(i,j+1,kSurface,bi,bj)) |
998 |
|
|
& -0.5 _d 0*(vice(i,j,bi,bj)+vice(i,j+1,bi,bj)))**2 |
999 |
|
|
IF ( SPEED_SQ .LE. SEAICE_EPS_SQ ) THEN |
1000 |
|
|
UG(I,J)=SEAICE_EPS |
1001 |
|
|
ELSE |
1002 |
|
|
UG(I,J)=SQRT(SPEED_SQ) |
1003 |
|
|
ENDIF |
1004 |
|
|
ENDDO |
1005 |
|
|
ENDDO |
1006 |
|
|
ENDIF |
1007 |
|
|
#endif /* ALLOW_ATM_WIND */ |
1008 |
|
|
|
1009 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1010 |
|
|
CADJ STORE tice(:,:,bi,bj) |
1011 |
|
|
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1012 |
|
|
CADJ STORE hsnowActual = comlev1_bibj, key = iicekey, byte = isbyte |
1013 |
|
|
CADJ STORE heffActual = comlev1_bibj, key = iicekey, byte = isbyte |
1014 |
|
|
CADJ STORE UG = comlev1_bibj, key = iicekey, byte = isbyte |
1015 |
|
|
CADJ STORE tices(:,:,:,bi,bj) |
1016 |
|
|
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1017 |
|
|
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1018 |
|
|
CADJ & key = iicekey, byte = isbyte |
1019 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1020 |
|
|
|
1021 |
|
|
C-- Start loop over multi-categories |
1022 |
torge |
1.3 |
#ifdef SEAICE_ITD |
1023 |
|
|
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
1024 |
|
|
#endif |
1025 |
dimitri |
1.1 |
DO IT=1,SEAICE_multDim |
1026 |
|
|
c homogeneous distribution between 0 and 2 x heffActual |
1027 |
dimitri |
1.2 |
#ifndef SEAICE_ITD |
1028 |
dimitri |
1.1 |
pFac = (2.0 _d 0*real(IT)-1.0 _d 0)*recip_multDim |
1029 |
dimitri |
1.2 |
#endif |
1030 |
dimitri |
1.1 |
DO J=1,sNy |
1031 |
|
|
DO I=1,sNx |
1032 |
dimitri |
1.2 |
#ifndef SEAICE_ITD |
1033 |
|
|
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
1034 |
|
|
C (instead of heffActual and latentHeatFluxMax) |
1035 |
dimitri |
1.1 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
1036 |
|
|
#ifdef SEAICE_CAP_SUBLIM |
1037 |
|
|
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
1038 |
|
|
#endif |
1039 |
dimitri |
1.2 |
#endif |
1040 |
dimitri |
1.1 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1041 |
|
|
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1042 |
|
|
TICE(I,J,bi,bj) = ZERO |
1043 |
|
|
TICES(I,J,IT,bi,bj) = ZERO |
1044 |
|
|
ENDDO |
1045 |
|
|
ENDDO |
1046 |
|
|
ENDDO |
1047 |
|
|
|
1048 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1049 |
|
|
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1050 |
|
|
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
1051 |
|
|
# ifdef SEAICE_CAP_SUBLIM |
1052 |
|
|
CADJ STORE latentHeatFluxMaxMult |
1053 |
|
|
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1054 |
|
|
# endif |
1055 |
|
|
CADJ STORE a_QbyATMmult_cover = |
1056 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1057 |
|
|
CADJ STORE a_QSWbyATMmult_cover = |
1058 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1059 |
|
|
CADJ STORE a_FWbySublimMult = |
1060 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1061 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1062 |
|
|
|
1063 |
|
|
DO IT=1,SEAICE_multDim |
1064 |
|
|
CALL SEAICE_SOLVE4TEMP( |
1065 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1066 |
|
|
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
1067 |
|
|
#else |
1068 |
dimitri |
1.1 |
I UG, heffActualMult(1,1,IT), hsnowActual, |
1069 |
dimitri |
1.2 |
#endif |
1070 |
dimitri |
1.1 |
#ifdef SEAICE_CAP_SUBLIM |
1071 |
|
|
I latentHeatFluxMaxMult(1,1,IT), |
1072 |
|
|
#endif |
1073 |
|
|
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
1074 |
|
|
O a_QbyATMmult_cover(1,1,IT), a_QSWbyATMmult_cover(1,1,IT), |
1075 |
|
|
O a_FWbySublimMult(1,1,IT), |
1076 |
|
|
I bi, bj, myTime, myIter, myThid ) |
1077 |
|
|
ENDDO |
1078 |
|
|
|
1079 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1080 |
|
|
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1081 |
|
|
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
1082 |
|
|
# ifdef SEAICE_CAP_SUBLIM |
1083 |
|
|
CADJ STORE latentHeatFluxMaxMult |
1084 |
|
|
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1085 |
|
|
# endif |
1086 |
|
|
CADJ STORE a_QbyATMmult_cover = |
1087 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1088 |
|
|
CADJ STORE a_QSWbyATMmult_cover = |
1089 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1090 |
|
|
CADJ STORE a_FWbySublimMult = |
1091 |
|
|
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1092 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1093 |
|
|
|
1094 |
|
|
DO IT=1,SEAICE_multDim |
1095 |
|
|
DO J=1,sNy |
1096 |
|
|
DO I=1,sNx |
1097 |
|
|
C update TICE & TICES |
1098 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1099 |
|
|
C calculate area weighted mean |
1100 |
torge |
1.3 |
C (although the ice's temperature relates to its energy content |
1101 |
torge |
1.7 |
C and hence should be averaged weighted by ice volume, |
1102 |
torge |
1.3 |
C the temperature here is a result of the fluxes through the ice surface |
1103 |
|
|
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1104 |
|
|
C and hence is averaged area weighted [areaFracFactor]) |
1105 |
dimitri |
1.2 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1106 |
torge |
1.5 |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
1107 |
dimitri |
1.2 |
#else |
1108 |
dimitri |
1.1 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1109 |
|
|
& + ticeOutMult(I,J,IT)*recip_multDim |
1110 |
dimitri |
1.2 |
#endif |
1111 |
dimitri |
1.1 |
TICES(I,J,IT,bi,bj) = ticeOutMult(I,J,IT) |
1112 |
|
|
C average over categories |
1113 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1114 |
|
|
C calculate area weighted mean |
1115 |
torge |
1.3 |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
1116 |
dimitri |
1.2 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1117 |
torge |
1.5 |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1118 |
dimitri |
1.2 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1119 |
torge |
1.5 |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1120 |
dimitri |
1.2 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1121 |
torge |
1.5 |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,IT) |
1122 |
dimitri |
1.2 |
#else |
1123 |
dimitri |
1.1 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1124 |
|
|
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1125 |
|
|
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1126 |
|
|
& + a_QSWbyATMmult_cover(I,J,IT)*recip_multDim |
1127 |
|
|
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1128 |
|
|
& + a_FWbySublimMult(I,J,IT)*recip_multDim |
1129 |
dimitri |
1.2 |
#endif |
1130 |
dimitri |
1.1 |
ENDDO |
1131 |
|
|
ENDDO |
1132 |
|
|
ENDDO |
1133 |
torge |
1.8 |
c ToM<<< debugging |
1134 |
|
|
print*,' ' |
1135 |
|
|
print*,'after SOLVE4TEMP: ' |
1136 |
|
|
print*,'TICE = ',TICE(1,1,bi,bj) |
1137 |
|
|
print*,'TICES = ',TICES(1,1,:,bi,bj) |
1138 |
|
|
print*,'a_QSWbyATM_cover = ',a_QSWbyATM_cover(1,1) |
1139 |
|
|
print*,'a_QSWbyATMmult_cover = ',a_QSWbyATMmult_cover(1,1,:) |
1140 |
|
|
print*,' ' |
1141 |
|
|
c ToM>>> |
1142 |
dimitri |
1.1 |
|
1143 |
|
|
#ifdef SEAICE_CAP_SUBLIM |
1144 |
|
|
# ifdef ALLOW_DIAGNOSTICS |
1145 |
|
|
DO J=1,sNy |
1146 |
|
|
DO I=1,sNx |
1147 |
|
|
c The actual latent heat flux realized by SOLVE4TEMP |
1148 |
|
|
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
1149 |
|
|
ENDDO |
1150 |
|
|
ENDDO |
1151 |
|
|
cif The actual vs. maximum latent heat flux |
1152 |
|
|
IF ( useDiagnostics ) THEN |
1153 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
1154 |
|
|
& 'SIactLHF',0,1,3,bi,bj,myThid) |
1155 |
|
|
CALL DIAGNOSTICS_FILL(latentHeatFluxMax, |
1156 |
|
|
& 'SImaxLHF',0,1,3,bi,bj,myThid) |
1157 |
|
|
ENDIF |
1158 |
|
|
# endif /* ALLOW_DIAGNOSTICS */ |
1159 |
|
|
#endif /* SEAICE_CAP_SUBLIM */ |
1160 |
|
|
|
1161 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1162 |
|
|
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1163 |
|
|
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1164 |
|
|
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
1165 |
|
|
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1166 |
|
|
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1167 |
|
|
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1168 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1169 |
|
|
|
1170 |
|
|
C switch heat fluxes from W/m2 to 'effective' ice meters |
1171 |
torge |
1.3 |
#ifdef SEAICE_ITD |
1172 |
torge |
1.5 |
DO IT=1,nITD |
1173 |
torge |
1.3 |
DO J=1,sNy |
1174 |
|
|
DO I=1,sNx |
1175 |
torge |
1.5 |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1176 |
|
|
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1177 |
|
|
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
1178 |
|
|
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1179 |
torge |
1.8 |
C and initialize r_QbyATMmult_cover |
1180 |
torge |
1.5 |
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
1181 |
torge |
1.3 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1182 |
|
|
C Negative sublimation is resublimation and will be added as snow. |
1183 |
|
|
#ifdef SEAICE_DISABLE_SUBLIM |
1184 |
torge |
1.5 |
a_FWbySublimMult(I,J,IT) = ZERO |
1185 |
torge |
1.3 |
#endif |
1186 |
torge |
1.5 |
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
1187 |
|
|
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
1188 |
|
|
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
1189 |
torge |
1.3 |
ENDDO |
1190 |
|
|
ENDDO |
1191 |
|
|
ENDDO |
1192 |
|
|
DO J=1,sNy |
1193 |
|
|
DO I=1,sNx |
1194 |
torge |
1.4 |
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1195 |
|
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1196 |
|
|
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1197 |
|
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1198 |
torge |
1.3 |
C and initialize r_QbyATM_open |
1199 |
|
|
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1200 |
|
|
ENDDO |
1201 |
|
|
ENDDO |
1202 |
|
|
#else /* SEAICE_ITD */ |
1203 |
dimitri |
1.1 |
DO J=1,sNy |
1204 |
|
|
DO I=1,sNx |
1205 |
|
|
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J) |
1206 |
|
|
& * convertQ2HI * AREApreTH(I,J) |
1207 |
|
|
a_QSWbyATM_cover(I,J) = a_QSWbyATM_cover(I,J) |
1208 |
|
|
& * convertQ2HI * AREApreTH(I,J) |
1209 |
|
|
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1210 |
|
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1211 |
|
|
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1212 |
|
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1213 |
|
|
C and initialize r_QbyATM_cover/r_QbyATM_open |
1214 |
|
|
r_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
1215 |
|
|
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1216 |
|
|
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1217 |
|
|
C Negative sublimation is resublimation and will be added as snow. |
1218 |
|
|
#ifdef SEAICE_DISABLE_SUBLIM |
1219 |
|
|
cgf just for those who may need to omit this term to reproduce old results |
1220 |
|
|
a_FWbySublim(I,J) = ZERO |
1221 |
dimitri |
1.2 |
#endif |
1222 |
dimitri |
1.1 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
1223 |
|
|
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
1224 |
|
|
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
1225 |
|
|
ENDDO |
1226 |
|
|
ENDDO |
1227 |
torge |
1.3 |
#endif /* SEAICE_ITD */ |
1228 |
dimitri |
1.1 |
|
1229 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1230 |
|
|
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1231 |
|
|
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1232 |
|
|
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
1233 |
|
|
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1234 |
|
|
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1235 |
|
|
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1236 |
|
|
CADJ STORE r_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1237 |
|
|
CADJ STORE r_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1238 |
|
|
CADJ STORE r_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1239 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1240 |
|
|
|
1241 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1242 |
|
|
Cgf no additional dependency through ice cover |
1243 |
|
|
IF ( SEAICEadjMODE.GE.3 ) THEN |
1244 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1245 |
torge |
1.5 |
DO IT=1,nITD |
1246 |
dimitri |
1.2 |
DO J=1,sNy |
1247 |
|
|
DO I=1,sNx |
1248 |
torge |
1.5 |
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1249 |
|
|
r_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1250 |
|
|
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
1251 |
dimitri |
1.2 |
ENDDO |
1252 |
|
|
ENDDO |
1253 |
|
|
ENDDO |
1254 |
torge |
1.3 |
#else |
1255 |
|
|
DO J=1,sNy |
1256 |
|
|
DO I=1,sNx |
1257 |
|
|
a_QbyATM_cover(I,J) = 0. _d 0 |
1258 |
|
|
r_QbyATM_cover(I,J) = 0. _d 0 |
1259 |
|
|
a_QSWbyATM_cover(I,J) = 0. _d 0 |
1260 |
|
|
ENDDO |
1261 |
|
|
ENDDO |
1262 |
dimitri |
1.2 |
#endif |
1263 |
dimitri |
1.1 |
ENDIF |
1264 |
|
|
#endif |
1265 |
|
|
|
1266 |
|
|
C determine available heat due to the ice pack tying the |
1267 |
|
|
C underlying surface water temperature to freezing point |
1268 |
|
|
C ====================================================== |
1269 |
|
|
|
1270 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1271 |
|
|
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
1272 |
|
|
CADJ & key = iicekey, byte = isbyte |
1273 |
|
|
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1274 |
|
|
CADJ & key = iicekey, byte = isbyte |
1275 |
|
|
#endif |
1276 |
|
|
|
1277 |
|
|
DO J=1,sNy |
1278 |
|
|
DO I=1,sNx |
1279 |
|
|
c FREEZING TEMP. OF SEA WATER (deg C) |
1280 |
|
|
tempFrz = SEAICE_tempFrz0 + |
1281 |
|
|
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
1282 |
|
|
c efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
1283 |
|
|
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
1284 |
|
|
tmpscal1 = SEAICE_mcPheePiston |
1285 |
|
|
ELSE |
1286 |
|
|
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
1287 |
|
|
ENDIF |
1288 |
|
|
c efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
1289 |
|
|
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1290 |
|
|
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
1291 |
|
|
MixedLayerTurbulenceFactor = ONE - |
1292 |
|
|
& SEAICE_mcPheeTaper * AREApreTH(I,J) |
1293 |
|
|
ELSEIF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1294 |
|
|
& (SEAICE_mcPheeStepFunc) ) THEN |
1295 |
|
|
MixedLayerTurbulenceFactor = ONE - SEAICE_mcPheeTaper |
1296 |
|
|
ELSE |
1297 |
|
|
MixedLayerTurbulenceFactor = ONE |
1298 |
|
|
ENDIF |
1299 |
|
|
c maximum turbulent flux, in ice meters |
1300 |
|
|
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
1301 |
|
|
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
1302 |
|
|
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
1303 |
|
|
c available turbulent flux |
1304 |
|
|
a_QbyOCN(i,j) = |
1305 |
|
|
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
1306 |
|
|
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
1307 |
torge |
1.8 |
c ToM<<< debugging |
1308 |
|
|
if (i.eq.1 .and. j.eq.1) then |
1309 |
|
|
print *, 'salt [psu] = ',salt(i,j,kSurface,bi,bj) |
1310 |
|
|
print *, 'theta [degC] = ',theta(i,j,kSurface,bi,bj) |
1311 |
|
|
print *, 'tempFrz [degC] = ',tempFrz |
1312 |
|
|
print *, 'max turb flx [m] = ',tmpscal2 |
1313 |
|
|
print *, 'avail trub flx [m] = ',a_QbyOCN(i,j) |
1314 |
|
|
endif |
1315 |
|
|
c ToM>>> |
1316 |
dimitri |
1.1 |
ENDDO |
1317 |
|
|
ENDDO |
1318 |
|
|
|
1319 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1320 |
|
|
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
1321 |
|
|
#endif |
1322 |
|
|
|
1323 |
|
|
|
1324 |
|
|
C =================================================================== |
1325 |
|
|
C =========PART 3: determine effective thicknesses increments======== |
1326 |
|
|
C =================================================================== |
1327 |
|
|
|
1328 |
|
|
C compute snow/ice tendency due to sublimation |
1329 |
|
|
C ============================================ |
1330 |
|
|
|
1331 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1332 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1333 |
|
|
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1334 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1335 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1336 |
torge |
1.5 |
DO IT=1,nITD |
1337 |
dimitri |
1.2 |
#endif |
1338 |
dimitri |
1.1 |
DO J=1,sNy |
1339 |
|
|
DO I=1,sNx |
1340 |
|
|
C First sublimate/deposite snow |
1341 |
|
|
tmpscal2 = |
1342 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1343 |
torge |
1.5 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1344 |
dimitri |
1.2 |
& *SNOW2ICE),ZERO) |
1345 |
|
|
C accumulate change over ITD categories |
1346 |
torge |
1.5 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1347 |
dimitri |
1.2 |
& *ICE2SNOW |
1348 |
torge |
1.5 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
1349 |
dimitri |
1.2 |
& *ICE2SNOW |
1350 |
torge |
1.5 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
1351 |
dimitri |
1.2 |
#else |
1352 |
dimitri |
1.1 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1353 |
|
|
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1354 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) - tmpscal2*ICE2SNOW |
1355 |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1356 |
dimitri |
1.2 |
#endif |
1357 |
dimitri |
1.1 |
ENDDO |
1358 |
|
|
ENDDO |
1359 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1360 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1361 |
|
|
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1362 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1363 |
|
|
DO J=1,sNy |
1364 |
|
|
DO I=1,sNx |
1365 |
|
|
C If anything is left, sublimate ice |
1366 |
|
|
tmpscal2 = |
1367 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1368 |
torge |
1.5 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1369 |
torge |
1.3 |
C accumulate change over ITD categories |
1370 |
torge |
1.8 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1371 |
torge |
1.5 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
1372 |
|
|
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
1373 |
dimitri |
1.2 |
#else |
1374 |
dimitri |
1.1 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1375 |
|
|
d_HEFFbySublim(I,J) = - tmpscal2 |
1376 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) - tmpscal2 |
1377 |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1378 |
dimitri |
1.2 |
#endif |
1379 |
dimitri |
1.1 |
ENDDO |
1380 |
|
|
ENDDO |
1381 |
|
|
DO J=1,sNy |
1382 |
|
|
DO I=1,sNx |
1383 |
|
|
C If anything is left, it will be evaporated from the ocean rather than sublimated. |
1384 |
dimitri |
1.2 |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1385 |
dimitri |
1.1 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1386 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1387 |
torge |
1.5 |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1388 |
|
|
& - r_FWbySublimMult(I,J,IT) |
1389 |
|
|
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1390 |
|
|
& - r_FWbySublimMult(I,J,IT) |
1391 |
torge |
1.8 |
#else |
1392 |
|
|
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1393 |
|
|
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1394 |
|
|
#endif |
1395 |
dimitri |
1.2 |
ENDDO |
1396 |
|
|
ENDDO |
1397 |
torge |
1.8 |
#ifdef SEAICE_ITD |
1398 |
torge |
1.5 |
C end IT loop |
1399 |
dimitri |
1.2 |
ENDDO |
1400 |
|
|
#endif |
1401 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
1402 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
1403 |
torge |
1.4 |
#ifdef SEAICE_ITD |
1404 |
torge |
1.3 |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
1405 |
torge |
1.8 |
& HEFFITD(1,1,:,bi,bj) |
1406 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1407 |
|
|
& SQUEEZE_RIGHT , myThid) |
1408 |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
1409 |
|
|
& ' SEAICE_GROWTH: Area increments 1, AREAITD = ', |
1410 |
|
|
& AREAITD(1,1,:,bi,bj) |
1411 |
torge |
1.4 |
#else |
1412 |
|
|
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
1413 |
torge |
1.8 |
& HEFF(1,1,bi,bj) |
1414 |
torge |
1.4 |
#endif |
1415 |
torge |
1.3 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1416 |
|
|
& SQUEEZE_RIGHT , myThid) |
1417 |
|
|
c ToM>>> |
1418 |
dimitri |
1.1 |
|
1419 |
|
|
C compute ice thickness tendency due to ice-ocean interaction |
1420 |
|
|
C =========================================================== |
1421 |
|
|
|
1422 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1423 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1424 |
|
|
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1425 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1426 |
|
|
|
1427 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1428 |
torge |
1.5 |
DO IT=1,nITD |
1429 |
dimitri |
1.2 |
DO J=1,sNy |
1430 |
|
|
DO I=1,sNx |
1431 |
torge |
1.7 |
C ice growth/melt due to ocean heat r_QbyOCN (W/m^2) is |
1432 |
|
|
C equally distributed under the ice and hence weighted by |
1433 |
|
|
C fractional area of each thickness category |
1434 |
torge |
1.5 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1435 |
|
|
& -HEFFITD(I,J,IT,bi,bj)) |
1436 |
torge |
1.7 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1437 |
|
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1438 |
torge |
1.3 |
#ifdef ALLOW_SITRACER |
1439 |
|
|
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
1440 |
torge |
1.5 |
& + HEFFITD(I,J,IT,bi,bj) |
1441 |
torge |
1.3 |
#endif |
1442 |
dimitri |
1.2 |
ENDDO |
1443 |
|
|
ENDDO |
1444 |
|
|
ENDDO |
1445 |
torge |
1.7 |
DO J=1,sNy |
1446 |
|
|
DO I=1,sNx |
1447 |
|
|
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1448 |
|
|
ENDDO |
1449 |
|
|
ENDDO |
1450 |
torge |
1.3 |
#else /* SEAICE_ITD */ |
1451 |
dimitri |
1.1 |
DO J=1,sNy |
1452 |
|
|
DO I=1,sNx |
1453 |
|
|
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
1454 |
|
|
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1455 |
|
|
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj) + d_HEFFbyOCNonICE(I,J) |
1456 |
|
|
#ifdef ALLOW_SITRACER |
1457 |
|
|
SItrHEFF(I,J,bi,bj,2)=HEFF(I,J,bi,bj) |
1458 |
|
|
#endif |
1459 |
|
|
ENDDO |
1460 |
|
|
ENDDO |
1461 |
torge |
1.3 |
#endif /* SEAICE_ITD */ |
1462 |
|
|
c ToM<<< debug seaice_growth |
1463 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
1464 |
torge |
1.4 |
#ifdef SEAICE_ITD |
1465 |
torge |
1.3 |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
1466 |
torge |
1.8 |
& HEFFITD(1,1,:,bi,bj) |
1467 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1468 |
|
|
& SQUEEZE_RIGHT , myThid) |
1469 |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
1470 |
|
|
& ' SEAICE_GROWTH: Area increments 2, AREAITD = ', |
1471 |
|
|
& AREAITD(1,1,:,bi,bj) |
1472 |
torge |
1.4 |
#else |
1473 |
|
|
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
1474 |
torge |
1.8 |
& HEFF(1,1,bi,bj) |
1475 |
torge |
1.4 |
#endif |
1476 |
torge |
1.3 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1477 |
|
|
& SQUEEZE_RIGHT , myThid) |
1478 |
|
|
c ToM>>> |
1479 |
dimitri |
1.1 |
|
1480 |
|
|
C compute snow melt tendency due to snow-atmosphere interaction |
1481 |
|
|
C ================================================================== |
1482 |
|
|
|
1483 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1484 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1485 |
|
|
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1486 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1487 |
|
|
|
1488 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1489 |
torge |
1.5 |
DO IT=1,nITD |
1490 |
dimitri |
1.2 |
DO J=1,sNy |
1491 |
|
|
DO I=1,sNx |
1492 |
|
|
C Convert to standard units (meters of ice) rather than to meters |
1493 |
|
|
C of snow. This appears to be more robust. |
1494 |
torge |
1.5 |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,IT), |
1495 |
|
|
& -HSNOWITD(I,J,IT,bi,bj)*SNOW2ICE) |
1496 |
|
|
tmpscal2=MIN(tmpscal1,0. _d 0) |
1497 |
dimitri |
1.2 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1498 |
|
|
Cgf no additional dependency through snow |
1499 |
torge |
1.5 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1500 |
dimitri |
1.2 |
#endif |
1501 |
torge |
1.5 |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1502 |
|
|
& + tmpscal2*ICE2SNOW |
1503 |
|
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) |
1504 |
|
|
& + tmpscal2*ICE2SNOW |
1505 |
|
|
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1506 |
|
|
& - tmpscal2 |
1507 |
dimitri |
1.2 |
ENDDO |
1508 |
|
|
ENDDO |
1509 |
|
|
ENDDO |
1510 |
torge |
1.3 |
#else /* SEAICE_ITD */ |
1511 |
dimitri |
1.1 |
DO J=1,sNy |
1512 |
|
|
DO I=1,sNx |
1513 |
|
|
C Convert to standard units (meters of ice) rather than to meters |
1514 |
|
|
C of snow. This appears to be more robust. |
1515 |
|
|
tmpscal1=MAX(r_QbyATM_cover(I,J),-HSNOW(I,J,bi,bj)*SNOW2ICE) |
1516 |
|
|
tmpscal2=MIN(tmpscal1,0. _d 0) |
1517 |
|
|
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1518 |
|
|
Cgf no additional dependency through snow |
1519 |
|
|
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1520 |
|
|
#endif |
1521 |
|
|
d_HSNWbyATMonSNW(I,J)= tmpscal2*ICE2SNOW |
1522 |
torge |
1.3 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + tmpscal2*ICE2SNOW |
1523 |
dimitri |
1.1 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1524 |
|
|
ENDDO |
1525 |
|
|
ENDDO |
1526 |
dimitri |
1.2 |
#endif /* SEAICE_ITD */ |
1527 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
1528 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
1529 |
torge |
1.4 |
#ifdef SEAICE_ITD |
1530 |
torge |
1.3 |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
1531 |
torge |
1.8 |
& HEFFITD(1,1,:,bi,bj) |
1532 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1533 |
|
|
& SQUEEZE_RIGHT , myThid) |
1534 |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
1535 |
|
|
& ' SEAICE_GROWTH: Area increments 3, AREAITD = ', |
1536 |
|
|
& AREAITD(1,1,:,bi,bj) |
1537 |
torge |
1.4 |
#else |
1538 |
|
|
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
1539 |
torge |
1.8 |
& HEFF(1,1,bi,bj) |
1540 |
torge |
1.4 |
#endif |
1541 |
torge |
1.3 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1542 |
|
|
& SQUEEZE_RIGHT , myThid) |
1543 |
|
|
c ToM>>> |
1544 |
dimitri |
1.1 |
|
1545 |
|
|
C compute ice thickness tendency due to the atmosphere |
1546 |
|
|
C ==================================================== |
1547 |
|
|
|
1548 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1549 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1550 |
|
|
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1551 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1552 |
|
|
|
1553 |
|
|
Cgf note: this block is not actually tested by lab_sea |
1554 |
|
|
Cgf where all experiments start in January. So even though |
1555 |
|
|
Cgf the v1.81=>v1.82 revision would change results in |
1556 |
|
|
Cgf warming conditions, the lab_sea results were not changed. |
1557 |
|
|
|
1558 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1559 |
torge |
1.5 |
DO IT=1,nITD |
1560 |
dimitri |
1.2 |
DO J=1,sNy |
1561 |
|
|
DO I=1,sNx |
1562 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
1563 |
torge |
1.5 |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1564 |
|
|
& r_QbyATMmult_cover(I,J,IT)) |
1565 |
dimitri |
1.2 |
#else |
1566 |
torge |
1.5 |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1567 |
|
|
& r_QbyATMmult_cover(I,J,IT) |
1568 |
dimitri |
1.2 |
c Limit ice growth by potential melt by ocean |
1569 |
torge |
1.5 |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1570 |
dimitri |
1.2 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1571 |
|
|
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1572 |
|
|
& + tmpscal2 |
1573 |
|
|
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1574 |
|
|
& + tmpscal2 |
1575 |
torge |
1.8 |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1576 |
dimitri |
1.2 |
& - tmpscal2 |
1577 |
torge |
1.5 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
1578 |
torge |
1.3 |
|
1579 |
|
|
#ifdef ALLOW_SITRACER |
1580 |
|
|
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
1581 |
torge |
1.5 |
& + HEFFITD(I,J,IT,bi,bj) |
1582 |
torge |
1.3 |
#endif |
1583 |
dimitri |
1.2 |
ENDDO |
1584 |
|
|
ENDDO |
1585 |
|
|
ENDDO |
1586 |
torge |
1.3 |
#else /* SEAICE_ITD */ |
1587 |
dimitri |
1.1 |
DO J=1,sNy |
1588 |
|
|
DO I=1,sNx |
1589 |
|
|
|
1590 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
1591 |
|
|
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
1592 |
|
|
#else |
1593 |
|
|
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
1594 |
|
|
c Limit ice growth by potential melt by ocean |
1595 |
|
|
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
1596 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
1597 |
|
|
|
1598 |
|
|
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
1599 |
|
|
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
1600 |
|
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J)-tmpscal2 |
1601 |
torge |
1.3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal2 |
1602 |
dimitri |
1.1 |
|
1603 |
|
|
#ifdef ALLOW_SITRACER |
1604 |
|
|
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
1605 |
|
|
#endif |
1606 |
torge |
1.3 |
ENDDO |
1607 |
|
|
ENDDO |
1608 |
|
|
#endif /* SEAICE_ITD */ |
1609 |
|
|
c ToM<<< debug seaice_growth |
1610 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
1611 |
torge |
1.4 |
#ifdef SEAICE_ITD |
1612 |
torge |
1.3 |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
1613 |
torge |
1.8 |
& HEFFITD(1,1,:,bi,bj) |
1614 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1615 |
|
|
& SQUEEZE_RIGHT , myThid) |
1616 |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
1617 |
|
|
& ' SEAICE_GROWTH: Area increments 4, AREAITD = ', |
1618 |
|
|
& AREAITD(1,1,:,bi,bj) |
1619 |
torge |
1.4 |
#else |
1620 |
|
|
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
1621 |
torge |
1.8 |
& HEFF(1,1,bi,bj) |
1622 |
torge |
1.4 |
#endif |
1623 |
torge |
1.3 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1624 |
|
|
& SQUEEZE_RIGHT , myThid) |
1625 |
|
|
c ToM>>> |
1626 |
dimitri |
1.1 |
|
1627 |
|
|
C attribute precip to fresh water or snow stock, |
1628 |
|
|
C depending on atmospheric conditions. |
1629 |
|
|
C ================================================= |
1630 |
|
|
#ifdef ALLOW_ATM_TEMP |
1631 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1632 |
|
|
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1633 |
|
|
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1634 |
|
|
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1635 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1636 |
|
|
DO J=1,sNy |
1637 |
|
|
DO I=1,sNx |
1638 |
|
|
C possible alternatives to the a_QbyATM_cover criterium |
1639 |
|
|
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
1640 |
|
|
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
1641 |
|
|
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
1642 |
|
|
C add precip as snow |
1643 |
|
|
d_HFRWbyRAIN(I,J)=0. _d 0 |
1644 |
|
|
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
1645 |
|
|
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1646 |
|
|
ELSE |
1647 |
|
|
C add precip to the fresh water bucket |
1648 |
|
|
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
1649 |
|
|
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1650 |
|
|
d_HSNWbyRAIN(I,J)=0. _d 0 |
1651 |
|
|
ENDIF |
1652 |
|
|
ENDDO |
1653 |
|
|
ENDDO |
1654 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1655 |
torge |
1.5 |
DO IT=1,nITD |
1656 |
dimitri |
1.2 |
DO J=1,sNy |
1657 |
|
|
DO I=1,sNx |
1658 |
torge |
1.5 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1659 |
|
|
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1660 |
dimitri |
1.2 |
ENDDO |
1661 |
|
|
ENDDO |
1662 |
|
|
ENDDO |
1663 |
torge |
1.3 |
#else |
1664 |
|
|
DO J=1,sNy |
1665 |
|
|
DO I=1,sNx |
1666 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1667 |
|
|
ENDDO |
1668 |
|
|
ENDDO |
1669 |
dimitri |
1.2 |
#endif |
1670 |
dimitri |
1.1 |
Cgf note: this does not affect air-sea heat flux, |
1671 |
|
|
Cgf since the implied air heat gain to turn |
1672 |
|
|
Cgf rain to snow is not a surface process. |
1673 |
|
|
#endif /* ALLOW_ATM_TEMP */ |
1674 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
1675 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
1676 |
torge |
1.4 |
#ifdef SEAICE_ITD |
1677 |
torge |
1.3 |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
1678 |
torge |
1.8 |
& HEFFITD(1,1,:,bi,bj) |
1679 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1680 |
|
|
& SQUEEZE_RIGHT , myThid) |
1681 |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
1682 |
|
|
& ' SEAICE_GROWTH: Area increments 5, AREAITD = ', |
1683 |
|
|
& AREAITD(1,1,:,bi,bj) |
1684 |
torge |
1.4 |
#else |
1685 |
|
|
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
1686 |
torge |
1.8 |
& HEFF(1,1,bi,bj) |
1687 |
torge |
1.4 |
#endif |
1688 |
torge |
1.3 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1689 |
|
|
& SQUEEZE_RIGHT , myThid) |
1690 |
|
|
c ToM>>> |
1691 |
dimitri |
1.1 |
|
1692 |
|
|
C compute snow melt due to heat available from ocean. |
1693 |
|
|
C ================================================================= |
1694 |
|
|
|
1695 |
|
|
Cgf do we need to keep this comment and cpp bracket? |
1696 |
|
|
Cph( very sensitive bit here by JZ |
1697 |
|
|
#ifndef SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING |
1698 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1699 |
|
|
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1700 |
|
|
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1701 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1702 |
dimitri |
1.2 |
|
1703 |
|
|
#ifdef SEAICE_ITD |
1704 |
torge |
1.5 |
DO IT=1,nITD |
1705 |
dimitri |
1.2 |
DO J=1,sNy |
1706 |
|
|
DO I=1,sNx |
1707 |
torge |
1.5 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1708 |
|
|
& -HSNOWITD(I,J,IT,bi,bj)) |
1709 |
dimitri |
1.2 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1710 |
|
|
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1711 |
|
|
Cgf no additional dependency through snow |
1712 |
|
|
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1713 |
|
|
#endif |
1714 |
torge |
1.3 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1715 |
|
|
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
1716 |
torge |
1.5 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) + tmpscal2 |
1717 |
dimitri |
1.2 |
ENDDO |
1718 |
|
|
ENDDO |
1719 |
|
|
ENDDO |
1720 |
torge |
1.3 |
#else /* SEAICE_ITD */ |
1721 |
dimitri |
1.1 |
DO J=1,sNy |
1722 |
|
|
DO I=1,sNx |
1723 |
|
|
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
1724 |
|
|
tmpscal2=MIN(tmpscal1,0. _d 0) |
1725 |
|
|
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1726 |
|
|
Cgf no additional dependency through snow |
1727 |
|
|
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1728 |
|
|
#endif |
1729 |
|
|
d_HSNWbyOCNonSNW(I,J) = tmpscal2 |
1730 |
|
|
r_QbyOCN(I,J)=r_QbyOCN(I,J) |
1731 |
|
|
& -d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
1732 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
1733 |
|
|
ENDDO |
1734 |
|
|
ENDDO |
1735 |
torge |
1.3 |
#endif /* SEAICE_ITD */ |
1736 |
dimitri |
1.1 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1737 |
|
|
Cph) |
1738 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
1739 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
1740 |
torge |
1.4 |
#ifdef SEAICE_ITD |
1741 |
torge |
1.3 |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
1742 |
torge |
1.8 |
& HEFFITD(1,1,:,bi,bj) |
1743 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1744 |
|
|
& SQUEEZE_RIGHT , myThid) |
1745 |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
1746 |
|
|
& ' SEAICE_GROWTH: Area increments 6, AREAITD = ', |
1747 |
|
|
& AREAITD(1,1,:,bi,bj) |
1748 |
torge |
1.4 |
#else |
1749 |
|
|
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
1750 |
torge |
1.8 |
& HEFF(1,1,bi,bj) |
1751 |
torge |
1.4 |
#endif |
1752 |
torge |
1.3 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1753 |
|
|
& SQUEEZE_RIGHT , myThid) |
1754 |
|
|
c ToM>>> |
1755 |
dimitri |
1.1 |
|
1756 |
|
|
C gain of new ice over open water |
1757 |
|
|
C =============================== |
1758 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1759 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1760 |
|
|
CADJ STORE r_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1761 |
|
|
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1762 |
|
|
CADJ STORE a_QSWbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1763 |
|
|
CADJ STORE a_QSWbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1764 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1765 |
|
|
|
1766 |
|
|
DO J=1,sNy |
1767 |
|
|
DO I=1,sNx |
1768 |
|
|
c Initial ice growth is triggered by open water |
1769 |
|
|
c heat flux overcoming potential melt by ocean |
1770 |
|
|
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
1771 |
|
|
& (1.0 _d 0 - AREApreTH(I,J)) |
1772 |
|
|
c Penetrative shortwave flux beyond first layer |
1773 |
|
|
c that is therefore not available to ice growth/melt |
1774 |
|
|
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
1775 |
|
|
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
1776 |
|
|
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1777 |
|
|
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
1778 |
|
|
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
1779 |
torge |
1.8 |
c ToM<<< debugging |
1780 |
|
|
if (I.eq.1 .and. J.eq.1) then |
1781 |
|
|
print*,'r_QbyATM_open(I,J) = ', r_QbyATM_open(I,J) |
1782 |
|
|
print*,'r_QbyOCN(i,j) = ', r_QbyOCN(i,j) |
1783 |
|
|
print*,'1 - AREApreTH = ', (1.0 _d 0 - AREApreTH(I,J)) |
1784 |
|
|
print*,'tmpscal1 = ', tmpscal1 |
1785 |
|
|
print*,' ' |
1786 |
|
|
print*,'SWFracB = ', SWFracB |
1787 |
|
|
print*,'a_QSWbyATM_open(I,J) = ', a_QSWbyATM_open(I,J) |
1788 |
|
|
print*,'tmpscal2 = ', tmpscal2 |
1789 |
|
|
print*,' ' |
1790 |
|
|
print*,'facOpenGrow = ', facOpenGrow |
1791 |
|
|
print*,'HEFF(I,J,bi,bj) = ', HEFF(I,J,bi,bj) |
1792 |
|
|
print*,'facOpenMelt = ', facOpenMelt |
1793 |
|
|
print*,'MAX = ', MAX(tmpscal1-tmpscal2, |
1794 |
|
|
& -HEFF(I,J,bi,bj)*facOpenMelt) |
1795 |
|
|
print*,'HEFFM(I,J,bi,bj) = ', HEFFM(I,J,bi,bj) |
1796 |
|
|
print*,'tmpscal3 = ', tmpscal3 |
1797 |
|
|
print*,' ' |
1798 |
|
|
endif |
1799 |
|
|
c ToM>>> |
1800 |
dimitri |
1.1 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1801 |
|
|
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1802 |
|
|
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
1803 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1804 |
torge |
1.8 |
cC open water area fraction |
1805 |
|
|
c tmpscal0 = ONE-AREApreTH(I,J) |
1806 |
|
|
cC determine thickness of new ice |
1807 |
|
|
cctomC considering the entire open water area to refreeze |
1808 |
|
|
cctom tmpscal1 = tmpscal3/tmpscal0 |
1809 |
|
|
cC considering a minimum lead ice thickness of 10 cm |
1810 |
|
|
cC WATCH that leadIceThickMin is smaller that Hlimit(1)! |
1811 |
|
|
c leadIceThickMin = 0.1 |
1812 |
|
|
c tmpscal1 = MAX(leadIceThickMin,tmpscal3/tmpscal0) |
1813 |
|
|
cC adjust ice area fraction covered by new ice |
1814 |
|
|
c tmpscal0 = tmpscal3/tmpscal1 |
1815 |
|
|
cC then add new ice volume to appropriate thickness category |
1816 |
|
|
c DO IT=1,nITD |
1817 |
|
|
c IF (tmpscal1.LT.Hlimit(IT)) THEN |
1818 |
|
|
c HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
1819 |
|
|
c tmpscal3=ZERO |
1820 |
|
|
cC not sure if AREAITD should be changed here since AREA is incremented |
1821 |
|
|
cC in PART 4 below in non-itd code |
1822 |
|
|
cC in this scenario all open water is covered by new ice instantaneously, |
1823 |
|
|
cC i.e. no delayed lead closing is concidered such as is associated with |
1824 |
|
|
cC Hibler's h_0 parameter |
1825 |
|
|
c AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
1826 |
|
|
c & + tmpscal0 |
1827 |
|
|
c tmpscal0=ZERO |
1828 |
|
|
c ENDIF |
1829 |
|
|
c ENDDO |
1830 |
|
|
ctom debugging: 1 category only |
1831 |
|
|
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) + tmpscal3 |
1832 |
torge |
1.3 |
#else |
1833 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
1834 |
dimitri |
1.2 |
#endif |
1835 |
dimitri |
1.1 |
ENDDO |
1836 |
|
|
ENDDO |
1837 |
|
|
|
1838 |
|
|
#ifdef ALLOW_SITRACER |
1839 |
torge |
1.3 |
#ifdef SEAICE_ITD |
1840 |
torge |
1.5 |
DO IT=1,nITD |
1841 |
torge |
1.3 |
DO J=1,sNy |
1842 |
|
|
DO I=1,sNx |
1843 |
|
|
c needs to be here to allow use also with LEGACY branch |
1844 |
|
|
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
1845 |
torge |
1.5 |
& + HEFFITD(I,J,IT,bi,bj) |
1846 |
torge |
1.3 |
ENDDO |
1847 |
|
|
ENDDO |
1848 |
|
|
ENDDO |
1849 |
|
|
#else |
1850 |
dimitri |
1.1 |
DO J=1,sNy |
1851 |
|
|
DO I=1,sNx |
1852 |
|
|
c needs to be here to allow use also with LEGACY branch |
1853 |
|
|
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1854 |
|
|
ENDDO |
1855 |
|
|
ENDDO |
1856 |
torge |
1.3 |
#endif |
1857 |
dimitri |
1.1 |
#endif /* ALLOW_SITRACER */ |
1858 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
1859 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
1860 |
torge |
1.4 |
#ifdef SEAICE_ITD |
1861 |
torge |
1.3 |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
1862 |
torge |
1.8 |
& HEFFITD(1,1,:,bi,bj) |
1863 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1864 |
|
|
& SQUEEZE_RIGHT , myThid) |
1865 |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
1866 |
|
|
& ' SEAICE_GROWTH: Area increments 7, AREAITD = ', |
1867 |
|
|
& AREAITD(1,1,:,bi,bj) |
1868 |
torge |
1.4 |
#else |
1869 |
|
|
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
1870 |
torge |
1.8 |
& HEFF(1,1,bi,bj) |
1871 |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1872 |
|
|
& SQUEEZE_RIGHT , myThid) |
1873 |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
1874 |
|
|
& ' SEAICE_GROWTH: Area increments 7, AREA = ', |
1875 |
|
|
& AREA(1,1,bi,bj) |
1876 |
torge |
1.4 |
#endif |
1877 |
torge |
1.3 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1878 |
|
|
& SQUEEZE_RIGHT , myThid) |
1879 |
|
|
c ToM>>> |
1880 |
dimitri |
1.1 |
|
1881 |
|
|
C convert snow to ice if submerged. |
1882 |
|
|
C ================================= |
1883 |
|
|
|
1884 |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
1885 |
|
|
C note: in legacy, this process is done at the end |
1886 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1887 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1888 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1889 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1890 |
|
|
IF ( SEAICEuseFlooding ) THEN |
1891 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
1892 |
torge |
1.5 |
DO IT=1,nITD |
1893 |
dimitri |
1.2 |
DO J=1,sNy |
1894 |
|
|
DO I=1,sNx |
1895 |
torge |
1.5 |
tmpscal0 = (HSNOWITD(I,J,IT,bi,bj)*SEAICE_rhoSnow |
1896 |
|
|
& + HEFFITD(I,J,IT,bi,bj) *SEAICE_rhoIce) |
1897 |
|
|
& *recip_rhoConst |
1898 |
|
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,IT,bi,bj)) |
1899 |
|
|
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1900 |
|
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1901 |
|
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) - tmpscal1 |
1902 |
dimitri |
1.2 |
& * ICE2SNOW |
1903 |
|
|
ENDDO |
1904 |
|
|
ENDDO |
1905 |
|
|
ENDDO |
1906 |
|
|
#else |
1907 |
dimitri |
1.1 |
DO J=1,sNy |
1908 |
|
|
DO I=1,sNx |
1909 |
|
|
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1910 |
|
|
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
1911 |
|
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
1912 |
|
|
d_HEFFbyFLOODING(I,J)=tmpscal1 |
1913 |
torge |
1.3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1914 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1915 |
|
|
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1916 |
dimitri |
1.2 |
ENDDO |
1917 |
|
|
ENDDO |
1918 |
|
|
#endif |
1919 |
dimitri |
1.1 |
ENDIF |
1920 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
1921 |
torge |
1.3 |
c ToM<<< debug seaice_growth |
1922 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
1923 |
torge |
1.4 |
#ifdef SEAICE_ITD |
1924 |
torge |
1.3 |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
1925 |
torge |
1.8 |
& HEFFITD(1,1,:,bi,bj) |
1926 |
torge |
1.7 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1927 |
|
|
& SQUEEZE_RIGHT , myThid) |
1928 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
1929 |
torge |
1.7 |
& ' SEAICE_GROWTH: Area increments 8, AREAITD = ', |
1930 |
torge |
1.8 |
& AREAITD(1,1,:,bi,bj) |
1931 |
torge |
1.4 |
#else |
1932 |
|
|
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
1933 |
torge |
1.8 |
& HEFF(1,1,bi,bj) |
1934 |
torge |
1.7 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1935 |
|
|
& SQUEEZE_RIGHT , myThid) |
1936 |
torge |
1.8 |
WRITE(msgBuf,'(A,7F8.4)') |
1937 |
torge |
1.7 |
& ' SEAICE_GROWTH: Area increments 8, AREA = ', |
1938 |
torge |
1.8 |
& AREA(1,1,bi,bj) |
1939 |
torge |
1.4 |
#endif |
1940 |
torge |
1.3 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1941 |
|
|
& SQUEEZE_RIGHT , myThid) |
1942 |
|
|
c ToM>>> |
1943 |
dimitri |
1.1 |
|
1944 |
|
|
C =================================================================== |
1945 |
|
|
C ==========PART 4: determine ice cover fraction increments=========- |
1946 |
|
|
C =================================================================== |
1947 |
|
|
|
1948 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
1949 |
|
|
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1950 |
|
|
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1951 |
|
|
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
1952 |
|
|
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
1953 |
|
|
CADJ STORE recip_heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
1954 |
|
|
CADJ STORE d_hsnwbyatmonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
1955 |
|
|
cph( |
1956 |
|
|
cphCADJ STORE d_AREAbyATM = comlev1_bibj,key=iicekey,byte=isbyte |
1957 |
|
|
cphCADJ STORE d_AREAbyICE = comlev1_bibj,key=iicekey,byte=isbyte |
1958 |
|
|
cphCADJ STORE d_AREAbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1959 |
|
|
cph) |
1960 |
|
|
CADJ STORE a_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1961 |
|
|
CADJ STORE heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
1962 |
|
|
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1963 |
|
|
CADJ STORE HEFF(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1964 |
|
|
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1965 |
|
|
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1966 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
1967 |
|
|
|
1968 |
torge |
1.8 |
c#ifdef SEAICE_ITD |
1969 |
|
|
cC replaces Hibler '79 scheme and lead closing parameter |
1970 |
|
|
cC because ITD accounts explicitly for lead openings and |
1971 |
|
|
cC different melt rates due to varying ice thickness |
1972 |
|
|
cC |
1973 |
|
|
cC only consider ice area loss due to total ice thickness loss; |
1974 |
|
|
cC ice area gain due to freezing of open water is handled above |
1975 |
|
|
cC under "gain of new ice over open water" |
1976 |
|
|
cC |
1977 |
|
|
cC does not account for lateral melt of ice floes |
1978 |
|
|
cC |
1979 |
|
|
cC AREAITD is incremented in section "gain of new ice over open water" above |
1980 |
|
|
cC |
1981 |
|
|
c DO IT=1,nITD |
1982 |
|
|
c DO J=1,sNy |
1983 |
|
|
c DO I=1,sNx |
1984 |
|
|
c IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
1985 |
|
|
c AREAITD(I,J,IT,bi,bj)=ZERO |
1986 |
|
|
c ENDIF |
1987 |
|
|
c#ifdef ALLOW_SITRACER |
1988 |
|
|
c SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
1989 |
|
|
c & + AREAITD(I,J,IT,bi,bj) |
1990 |
|
|
c#endif /* ALLOW_SITRACER */ |
1991 |
|
|
c ENDDO |
1992 |
|
|
c ENDDO |
1993 |
|
|
c ENDDO |
1994 |
|
|
c#else /* SEAICE_ITD */ |
1995 |
dimitri |
1.1 |
DO J=1,sNy |
1996 |
|
|
DO I=1,sNx |
1997 |
|
|
|
1998 |
torge |
1.8 |
ctom<<< debugging |
1999 |
|
|
#ifdef SEAICE_ITD |
2000 |
|
|
HEFF(I,J,bi,bj)=HEFFITD(I,J,1,bi,bj) |
2001 |
|
|
AREA(I,J,bi,bj)=AREAITD(I,J,1,bi,bj) |
2002 |
|
|
HSNOW(I,J,bi,bj)=HSNOWITD(I,J,1,bi,bj) |
2003 |
|
|
HEFFpreTH(I,J)=HEFFITDpreTH(I,J,1) |
2004 |
|
|
AREApreTH(I,J)=AREAITDpreTH(I,J,1) |
2005 |
|
|
recip_heffActual(I,J)=recip_heffActualMult(I,J,1) |
2006 |
|
|
#endif |
2007 |
|
|
ctom>>> debugging |
2008 |
|
|
|
2009 |
dimitri |
1.1 |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
2010 |
|
|
recip_HO=1. _d 0 / HO_south |
2011 |
|
|
ELSE |
2012 |
|
|
recip_HO=1. _d 0 / HO |
2013 |
|
|
ENDIF |
2014 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
2015 |
|
|
tmpscal0=HEFF(I,J,bi,bj) - d_HEFFbyATMonOCN(I,J) |
2016 |
|
|
recip_HH = AREApreTH(I,J) /(tmpscal0+.00001 _d 0) |
2017 |
|
|
#else |
2018 |
|
|
recip_HH = recip_heffActual(I,J) |
2019 |
|
|
#endif |
2020 |
|
|
|
2021 |
|
|
C gain of ice over open water : computed from |
2022 |
|
|
C (SEAICE_areaGainFormula.EQ.1) from growth by ATM |
2023 |
|
|
C (SEAICE_areaGainFormula.EQ.2) from predicted growth by ATM |
2024 |
|
|
IF (SEAICE_areaGainFormula.EQ.1) THEN |
2025 |
|
|
tmpscal4 = MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
2026 |
|
|
ELSE |
2027 |
|
|
tmpscal4=MAX(ZERO,a_QbyATM_open(I,J)) |
2028 |
|
|
ENDIF |
2029 |
|
|
|
2030 |
|
|
C loss of ice cover by melting : computed from |
2031 |
|
|
C (SEAICE_areaLossFormula.EQ.1) from all but only melt conributions by ATM and OCN |
2032 |
|
|
C (SEAICE_areaLossFormula.EQ.2) from net melt-growth>0 by ATM and OCN |
2033 |
|
|
C (SEAICE_areaLossFormula.EQ.3) from predicted melt by ATM |
2034 |
|
|
IF (SEAICE_areaLossFormula.EQ.1) THEN |
2035 |
|
|
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) ) |
2036 |
|
|
& + MIN( 0. _d 0 , d_HEFFbyATMonOCN_open(I,J) ) |
2037 |
|
|
& + MIN( 0. _d 0 , d_HEFFbyOCNonICE(I,J) ) |
2038 |
|
|
ELSEIF (SEAICE_areaLossFormula.EQ.2) THEN |
2039 |
|
|
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) |
2040 |
|
|
& + d_HEFFbyATMonOCN_open(I,J) + d_HEFFbyOCNonICE(I,J) ) |
2041 |
|
|
ELSE |
2042 |
|
|
C compute heff after ice melt by ocn: |
2043 |
|
|
tmpscal0=HEFF(I,J,bi,bj) - d_HEFFbyATMonOCN(I,J) |
2044 |
|
|
C compute available heat left after snow melt by atm: |
2045 |
|
|
tmpscal1= a_QbyATM_open(I,J)+a_QbyATM_cover(I,J) |
2046 |
|
|
& - d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2047 |
|
|
C could not melt more than all the ice |
2048 |
|
|
tmpscal2 = MAX(-tmpscal0,tmpscal1) |
2049 |
|
|
tmpscal3 = MIN(ZERO,tmpscal2) |
2050 |
|
|
ENDIF |
2051 |
|
|
|
2052 |
|
|
C apply tendency |
2053 |
|
|
IF ( (HEFF(i,j,bi,bj).GT.0. _d 0).OR. |
2054 |
|
|
& (HSNOW(i,j,bi,bj).GT.0. _d 0) ) THEN |
2055 |
|
|
AREA(I,J,bi,bj)=MAX(0. _d 0, |
2056 |
|
|
& MIN( SEAICE_area_max, AREA(I,J,bi,bj) |
2057 |
|
|
& + recip_HO*tmpscal4+HALF*recip_HH*tmpscal3 )) |
2058 |
|
|
ELSE |
2059 |
|
|
AREA(I,J,bi,bj)=0. _d 0 |
2060 |
|
|
ENDIF |
2061 |
|
|
#ifdef ALLOW_SITRACER |
2062 |
|
|
SItrAREA(I,J,bi,bj,3)=AREA(I,J,bi,bj) |
2063 |
|
|
#endif /* ALLOW_SITRACER */ |
2064 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
2065 |
|
|
d_AREAbyATM(I,J)= |
2066 |
|
|
& recip_HO*MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
2067 |
|
|
& +HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_open(I,J)) |
2068 |
|
|
d_AREAbyICE(I,J)= |
2069 |
|
|
& HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_cover(I,J)) |
2070 |
|
|
d_AREAbyOCN(I,J)= |
2071 |
|
|
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
2072 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
2073 |
torge |
1.8 |
ctom<<< debugging |
2074 |
|
|
#ifdef SEAICE_ITD |
2075 |
|
|
HEFFITD(I,J,1,bi,bj)=HEFF(I,J,bi,bj) |
2076 |
|
|
AREAITD(I,J,1,bi,bj)=AREA(I,J,bi,bj) |
2077 |
|
|
HSNOWITD(I,J,1,bi,bj)=HSNOW(I,J,bi,bj) |
2078 |
|
|
#endif |
2079 |
|
|
ctom>>> debugging |
2080 |
dimitri |
1.1 |
ENDDO |
2081 |
|
|
ENDDO |
2082 |
torge |
1.8 |
c#endif /* SEAICE_ITD */ |
2083 |
dimitri |
1.1 |
|
2084 |
|
|
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
2085 |
|
|
Cgf 'bulk' linearization of area=f(HEFF) |
2086 |
|
|
IF ( SEAICEadjMODE.GE.1 ) THEN |
2087 |
dimitri |
1.2 |
#ifdef SEAICE_ITD |
2088 |
torge |
1.5 |
DO IT=1,nITD |
2089 |
dimitri |
1.2 |
DO J=1,sNy |
2090 |
|
|
DO I=1,sNx |
2091 |
torge |
1.5 |
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
2092 |
|
|
& ( HEFFITD(I,J,IT,bi,bj) - HEFFITDpreTH(I,J,IT) ) |
2093 |
dimitri |
1.2 |
ENDDO |
2094 |
|
|
ENDDO |
2095 |
|
|
ENDDO |
2096 |
|
|
#else |
2097 |
dimitri |
1.1 |
DO J=1,sNy |
2098 |
|
|
DO I=1,sNx |
2099 |
|
|
C AREA(I,J,bi,bj) = 0.1 _d 0 * HEFF(I,J,bi,bj) |
2100 |
|
|
AREA(I,J,bi,bj) = AREApreTH(I,J) + 0.1 _d 0 * |
2101 |
|
|
& ( HEFF(I,J,bi,bj) - HEFFpreTH(I,J) ) |
2102 |
|
|
ENDDO |
2103 |
|
|
ENDDO |
2104 |
dimitri |
1.2 |
#endif |
2105 |
dimitri |
1.1 |
ENDIF |
2106 |
|
|
#endif |
2107 |
torge |
1.3 |
#ifdef SEAICE_ITD |
2108 |
|
|
C check categories for consistency with limits after growth/melt |
2109 |
|
|
CALL SEAICE_ITD_REDIST(bi, bj, myTime,myIter,myThid) |
2110 |
|
|
C finally update total AREA, HEFF, HSNOW |
2111 |
|
|
CALL SEAICE_ITD_SUM(bi, bj, myTime,myIter,myThid) |
2112 |
|
|
#endif |
2113 |
dimitri |
1.1 |
|
2114 |
torge |
1.8 |
c ToM<<< debugging |
2115 |
|
|
DO J=1,sNy |
2116 |
|
|
DO I=1,sNx |
2117 |
|
|
if (I.eq.1 .and. J.eq.1) then |
2118 |
|
|
print *, 'd_HEFFbyNEG(I,J) = ', d_HEFFbyNEG(I,J) |
2119 |
|
|
print *, 'd_HEFFbyOCNonICE(I,J) = ', d_HEFFbyOCNonICE(I,J) |
2120 |
|
|
print *, 'd_HEFFbyATMonOCN(I,J) = ', d_HEFFbyATMonOCN(I,J) |
2121 |
|
|
print *, 'd_HEFFbyATMonOCN_cover(I,J) = ', |
2122 |
|
|
& d_HEFFbyATMonOCN_cover(I,J) |
2123 |
|
|
print *, 'd_HEFFbyATMonOCN_open(I,J) = ', |
2124 |
|
|
& d_HEFFbyATMonOCN_open(I,J) |
2125 |
|
|
print *, 'd_HEFFbyFLOODING(I,J) = ', d_HEFFbyFLOODING(I,J) |
2126 |
|
|
print *, 'd_HEFFbySublim(I,J) = ', d_HEFFbySublim(I,J) |
2127 |
|
|
endif |
2128 |
|
|
ENDDO |
2129 |
|
|
ENDDO |
2130 |
|
|
c ToM>>> |
2131 |
dimitri |
1.1 |
C =================================================================== |
2132 |
|
|
C =============PART 5: determine ice salinity increments============= |
2133 |
|
|
C =================================================================== |
2134 |
|
|
|
2135 |
|
|
#ifndef SEAICE_VARIABLE_SALINITY |
2136 |
|
|
# if (defined ALLOW_AUTODIFF_TAMC && defined ALLOW_SALT_PLUME) |
2137 |
|
|
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2138 |
|
|
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
2139 |
|
|
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
2140 |
|
|
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
2141 |
|
|
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
2142 |
|
|
CADJ STORE d_HEFFbyFLOODING = comlev1_bibj,key=iicekey,byte=isbyte |
2143 |
|
|
CADJ STORE d_HEFFbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
2144 |
|
|
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
2145 |
|
|
CADJ & key = iicekey, byte = isbyte |
2146 |
|
|
# endif /* ALLOW_AUTODIFF_TAMC and ALLOW_SALT_PLUME */ |
2147 |
|
|
DO J=1,sNy |
2148 |
|
|
DO I=1,sNx |
2149 |
|
|
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
2150 |
|
|
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
2151 |
|
|
& + d_HEFFbySublim(I,J) |
2152 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
2153 |
|
|
+ d_HEFFbyRLX(I,J) |
2154 |
|
|
#endif |
2155 |
|
|
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
2156 |
|
|
& * recip_deltaTtherm * SEAICE_rhoIce |
2157 |
|
|
saltFlux(I,J,bi,bj) = tmpscal2 |
2158 |
|
|
#ifdef ALLOW_SALT_PLUME |
2159 |
|
|
tmpscal3 = tmpscal1*salt(I,J,kSurface,bi,bj)*HEFFM(I,J,bi,bj) |
2160 |
|
|
& * recip_deltaTtherm * SEAICE_rhoIce |
2161 |
|
|
saltPlumeFlux(I,J,bi,bj) = MAX( tmpscal3-tmpscal2 , 0. _d 0) |
2162 |
|
|
& *SPsalFRAC |
2163 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
2164 |
|
|
ENDDO |
2165 |
|
|
ENDDO |
2166 |
|
|
#endif /* ndef SEAICE_VARIABLE_SALINITY */ |
2167 |
|
|
|
2168 |
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
2169 |
|
|
|
2170 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
2171 |
|
|
# ifdef ALLOW_AUTODIFF_TAMC |
2172 |
|
|
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2173 |
|
|
# endif /* ALLOW_AUTODIFF_TAMC */ |
2174 |
|
|
DO J=1,sNy |
2175 |
|
|
DO I=1,sNx |
2176 |
|
|
C set HSALT = 0 if HSALT < 0 and compute salt to remove from ocean |
2177 |
|
|
IF ( HSALT(I,J,bi,bj) .LT. 0.0 ) THEN |
2178 |
|
|
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
2179 |
|
|
& HSALT(I,J,bi,bj) * recip_deltaTtherm |
2180 |
|
|
HSALT(I,J,bi,bj) = 0.0 _d 0 |
2181 |
|
|
ENDIF |
2182 |
|
|
ENDDO |
2183 |
|
|
ENDDO |
2184 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
2185 |
|
|
|
2186 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
2187 |
|
|
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2188 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
2189 |
|
|
|
2190 |
|
|
DO J=1,sNy |
2191 |
|
|
DO I=1,sNx |
2192 |
|
|
C sum up the terms that affect the salt content of the ice pack |
2193 |
|
|
tmpscal1=d_HEFFbyOCNonICE(I,J)+d_HEFFbyATMonOCN(I,J) |
2194 |
|
|
|
2195 |
|
|
C recompute HEFF before thermodynamic updates (which is not AREApreTH in legacy code) |
2196 |
|
|
tmpscal2=HEFF(I,J,bi,bj)-tmpscal1-d_HEFFbyFLOODING(I,J) |
2197 |
|
|
C tmpscal1 > 0 : m of sea ice that is created |
2198 |
|
|
IF ( tmpscal1 .GE. 0.0 ) THEN |
2199 |
|
|
saltFlux(I,J,bi,bj) = |
2200 |
|
|
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2201 |
|
|
& *SEAICE_saltFrac*salt(I,J,kSurface,bi,bj) |
2202 |
|
|
& *tmpscal1*SEAICE_rhoIce |
2203 |
|
|
#ifdef ALLOW_SALT_PLUME |
2204 |
|
|
C saltPlumeFlux is defined only during freezing: |
2205 |
|
|
saltPlumeFlux(I,J,bi,bj)= |
2206 |
|
|
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2207 |
|
|
& *(ONE-SEAICE_saltFrac)*salt(I,J,kSurface,bi,bj) |
2208 |
|
|
& *tmpscal1*SEAICE_rhoIce |
2209 |
|
|
& *SPsalFRAC |
2210 |
|
|
C if SaltPlumeSouthernOcean=.FALSE. turn off salt plume in Southern Ocean |
2211 |
|
|
IF ( .NOT. SaltPlumeSouthernOcean ) THEN |
2212 |
|
|
IF ( YC(I,J,bi,bj) .LT. 0.0 _d 0 ) |
2213 |
|
|
& saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2214 |
|
|
ENDIF |
2215 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
2216 |
|
|
|
2217 |
|
|
C tmpscal1 < 0 : m of sea ice that is melted |
2218 |
|
|
ELSE |
2219 |
|
|
saltFlux(I,J,bi,bj) = |
2220 |
|
|
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2221 |
|
|
& *HSALT(I,J,bi,bj) |
2222 |
|
|
& *tmpscal1/tmpscal2 |
2223 |
|
|
#ifdef ALLOW_SALT_PLUME |
2224 |
|
|
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2225 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
2226 |
|
|
ENDIF |
2227 |
|
|
C update HSALT based on surface saltFlux |
2228 |
|
|
HSALT(I,J,bi,bj) = HSALT(I,J,bi,bj) + |
2229 |
|
|
& saltFlux(I,J,bi,bj) * SEAICE_deltaTtherm |
2230 |
|
|
saltFlux(I,J,bi,bj) = |
2231 |
|
|
& saltFlux(I,J,bi,bj) + saltFluxAdjust(I,J) |
2232 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
2233 |
|
|
C set HSALT = 0 if HEFF = 0 and compute salt to dump into ocean |
2234 |
|
|
IF ( HEFF(I,J,bi,bj) .EQ. 0.0 ) THEN |
2235 |
|
|
saltFlux(I,J,bi,bj) = saltFlux(I,J,bi,bj) - |
2236 |
|
|
& HEFFM(I,J,bi,bj) * HSALT(I,J,bi,bj) * recip_deltaTtherm |
2237 |
|
|
HSALT(I,J,bi,bj) = 0.0 _d 0 |
2238 |
|
|
#ifdef ALLOW_SALT_PLUME |
2239 |
|
|
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2240 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
2241 |
|
|
ENDIF |
2242 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
2243 |
|
|
ENDDO |
2244 |
|
|
ENDDO |
2245 |
|
|
#endif /* SEAICE_VARIABLE_SALINITY */ |
2246 |
|
|
|
2247 |
|
|
|
2248 |
|
|
C ======================================================================= |
2249 |
|
|
C ==LEGACY PART 6 (LEGACY) treat pathological cases, then do flooding === |
2250 |
|
|
C ======================================================================= |
2251 |
|
|
|
2252 |
|
|
#ifdef SEAICE_GROWTH_LEGACY |
2253 |
|
|
|
2254 |
|
|
C treat values of ice cover fraction oustide |
2255 |
|
|
C the [0 1] range, and other such issues. |
2256 |
|
|
C =========================================== |
2257 |
|
|
|
2258 |
|
|
Cgf note: this part cannot be heat and water conserving |
2259 |
|
|
|
2260 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
2261 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
2262 |
|
|
CADJ & key = iicekey, byte = isbyte |
2263 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, |
2264 |
|
|
CADJ & key = iicekey, byte = isbyte |
2265 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
2266 |
|
|
DO J=1,sNy |
2267 |
|
|
DO I=1,sNx |
2268 |
|
|
C NOW SET AREA(I,J,bi,bj)=0 WHERE THERE IS NO ICE |
2269 |
|
|
CML replaced "/.0001 _d 0" by "*1. _d 4", 1e-4 is probably |
2270 |
|
|
CML meant to be something like a minimum thickness |
2271 |
|
|
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),HEFF(I,J,bi,bj)*1. _d 4) |
2272 |
|
|
ENDDO |
2273 |
|
|
ENDDO |
2274 |
|
|
|
2275 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
2276 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
2277 |
|
|
CADJ & key = iicekey, byte = isbyte |
2278 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
2279 |
|
|
DO J=1,sNy |
2280 |
|
|
DO I=1,sNx |
2281 |
|
|
C NOW TRUNCATE AREA |
2282 |
|
|
AREA(I,J,bi,bj)=MIN(ONE,AREA(I,J,bi,bj)) |
2283 |
|
|
ENDDO |
2284 |
|
|
ENDDO |
2285 |
|
|
|
2286 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
2287 |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
2288 |
|
|
CADJ & key = iicekey, byte = isbyte |
2289 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, |
2290 |
|
|
CADJ & key = iicekey, byte = isbyte |
2291 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
2292 |
|
|
DO J=1,sNy |
2293 |
|
|
DO I=1,sNx |
2294 |
|
|
AREA(I,J,bi,bj) = MAX(ZERO,AREA(I,J,bi,bj)) |
2295 |
|
|
HSNOW(I,J,bi,bj) = MAX(ZERO,HSNOW(I,J,bi,bj)) |
2296 |
|
|
AREA(I,J,bi,bj) = AREA(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
2297 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
2298 |
|
|
#ifdef SEAICE_CAP_HEFF |
2299 |
|
|
C This is not energy conserving, but at least it conserves fresh water |
2300 |
|
|
tmpscal0 = -MAX(HEFF(I,J,bi,bj)-MAX_HEFF,0. _d 0) |
2301 |
|
|
d_HEFFbyNeg(I,J) = d_HEFFbyNeg(I,J) + tmpscal0 |
2302 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal0 |
2303 |
|
|
#endif /* SEAICE_CAP_HEFF */ |
2304 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
2305 |
|
|
ENDDO |
2306 |
|
|
ENDDO |
2307 |
|
|
|
2308 |
|
|
C convert snow to ice if submerged. |
2309 |
|
|
C ================================= |
2310 |
|
|
|
2311 |
|
|
IF ( SEAICEuseFlooding ) THEN |
2312 |
|
|
DO J=1,sNy |
2313 |
|
|
DO I=1,sNx |
2314 |
|
|
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2315 |
|
|
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
2316 |
|
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
2317 |
|
|
d_HEFFbyFLOODING(I,J)=tmpscal1 |
2318 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
2319 |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
2320 |
|
|
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
2321 |
|
|
ENDDO |
2322 |
|
|
ENDDO |
2323 |
|
|
ENDIF |
2324 |
|
|
|
2325 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
2326 |
|
|
|
2327 |
|
|
#ifdef ALLOW_SITRACER |
2328 |
|
|
DO J=1,sNy |
2329 |
|
|
DO I=1,sNx |
2330 |
|
|
c needs to be here to allow use also with LEGACY branch |
2331 |
|
|
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
2332 |
|
|
ENDDO |
2333 |
|
|
ENDDO |
2334 |
|
|
#endif /* ALLOW_SITRACER */ |
2335 |
|
|
|
2336 |
|
|
C =================================================================== |
2337 |
|
|
C ==============PART 7: determine ocean model forcing================ |
2338 |
|
|
C =================================================================== |
2339 |
|
|
|
2340 |
|
|
C compute net heat flux leaving/entering the ocean, |
2341 |
|
|
C accounting for the part used in melt/freeze processes |
2342 |
|
|
C ===================================================== |
2343 |
|
|
|
2344 |
torge |
1.8 |
#ifdef SEAICE_ITD |
2345 |
|
|
C compute total of "mult" fluxes for ocean forcing |
2346 |
|
|
DO J=1,sNy |
2347 |
|
|
DO I=1,sNx |
2348 |
|
|
a_QbyATM_cover(I,J) = 0.0 _d 0 |
2349 |
|
|
r_QbyATM_cover(I,J) = 0.0 _d 0 |
2350 |
|
|
a_QSWbyATM_cover(I,J) = 0.0 _d 0 |
2351 |
|
|
r_FWbySublim(I,J) = 0.0 _d 0 |
2352 |
|
|
ENDDO |
2353 |
|
|
ENDDO |
2354 |
|
|
DO IT=1,nITD |
2355 |
|
|
DO J=1,sNy |
2356 |
|
|
DO I=1,sNx |
2357 |
|
|
cToM if fluxes in W/m^2 then |
2358 |
|
|
c a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2359 |
|
|
c & + a_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2360 |
|
|
c r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2361 |
|
|
c & + r_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2362 |
|
|
c a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2363 |
|
|
c & + a_QSWbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2364 |
|
|
c r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2365 |
|
|
c & + r_FWbySublimMult(I,J,IT) * areaFracFactor(I,J,IT) |
2366 |
|
|
cToM if fluxes in effective ice meters, i.e. ice volume per area, then |
2367 |
|
|
a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2368 |
|
|
& + a_QbyATMmult_cover(I,J,IT) |
2369 |
|
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2370 |
|
|
& + r_QbyATMmult_cover(I,J,IT) |
2371 |
|
|
a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2372 |
|
|
& + a_QSWbyATMmult_cover(I,J,IT) |
2373 |
|
|
r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2374 |
|
|
& + r_FWbySublimMult(I,J,IT) |
2375 |
|
|
ENDDO |
2376 |
|
|
ENDDO |
2377 |
|
|
ENDDO |
2378 |
|
|
#endif |
2379 |
|
|
|
2380 |
dimitri |
1.1 |
#ifdef ALLOW_AUTODIFF_TAMC |
2381 |
|
|
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
2382 |
|
|
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
2383 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
2384 |
|
|
|
2385 |
|
|
DO J=1,sNy |
2386 |
|
|
DO I=1,sNx |
2387 |
|
|
QNET(I,J,bi,bj) = r_QbyATM_cover(I,J) + r_QbyATM_open(I,J) |
2388 |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
2389 |
|
|
C in principle a_QSWbyATM_cover should always be included here, however |
2390 |
|
|
C for backward compatibility it is left out of the LEGACY branch |
2391 |
|
|
& + a_QSWbyATM_cover(I,J) |
2392 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
2393 |
|
|
& - ( d_HEFFbyOCNonICE(I,J) + |
2394 |
|
|
& d_HSNWbyOCNonSNW(I,J)*SNOW2ICE + |
2395 |
|
|
& d_HEFFbyNEG(I,J) + |
2396 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
2397 |
|
|
& d_HEFFbyRLX(I,J) + |
2398 |
|
|
#endif |
2399 |
|
|
& d_HSNWbyNEG(I,J)*SNOW2ICE ) |
2400 |
|
|
& * maskC(I,J,kSurface,bi,bj) |
2401 |
|
|
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
2402 |
|
|
ENDDO |
2403 |
|
|
ENDDO |
2404 |
torge |
1.8 |
cToM<<< debugging |
2405 |
|
|
print*,'------------------' |
2406 |
|
|
print*,'OcnModFrc: QNET = ',QNET(1,1,bi,bj) |
2407 |
|
|
print*,'OcnModFrc: QSW = ',QSW(1,1,bi,bj) |
2408 |
|
|
print*,' ' |
2409 |
|
|
print*,'r_QbyATM_cover = ', r_QbyATM_cover(1,1) |
2410 |
|
|
print*,'r_QbyATM_open = ', r_QbyATM_open(1,1) |
2411 |
|
|
print*,'a_QSWbyATM_cover = ', a_QSWbyATM_cover(1,1) |
2412 |
|
|
print*,'d_HEFFbyOCNonICE = ', d_HEFFbyOCNonICE(1,1) |
2413 |
|
|
print*,'d_HSNWbyOCNonSNW = ', d_HSNWbyOCNonSNW(1,1) |
2414 |
|
|
print*,'d_HEFFbyNEG = ', d_HEFFbyNEG(1,1) |
2415 |
|
|
print*,'d_HSNWbyNEG = ', d_HSNWbyNEG(1,1) |
2416 |
|
|
print*,'SNOW2ICE = ',SNOW2ICE |
2417 |
|
|
print*,'maskC = ', maskC(1,1,kSurface,bi,bj) |
2418 |
|
|
print*,'------------------' |
2419 |
|
|
cToM>>> |
2420 |
dimitri |
1.1 |
|
2421 |
|
|
C switch heat fluxes from 'effective' ice meters to W/m2 |
2422 |
|
|
C ====================================================== |
2423 |
|
|
|
2424 |
|
|
DO J=1,sNy |
2425 |
|
|
DO I=1,sNx |
2426 |
|
|
QNET(I,J,bi,bj) = QNET(I,J,bi,bj)*convertHI2Q |
2427 |
|
|
QSW(I,J,bi,bj) = QSW(I,J,bi,bj)*convertHI2Q |
2428 |
|
|
ENDDO |
2429 |
|
|
ENDDO |
2430 |
|
|
|
2431 |
|
|
#ifndef SEAICE_DISABLE_HEATCONSFIX |
2432 |
|
|
C treat advective heat flux by ocean to ice water exchange (at 0decC) |
2433 |
|
|
C =================================================================== |
2434 |
|
|
# ifdef ALLOW_AUTODIFF_TAMC |
2435 |
|
|
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2436 |
|
|
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
2437 |
|
|
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
2438 |
|
|
CADJ STORE d_HSNWbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2439 |
|
|
CADJ STORE d_HSNWbyOCNonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
2440 |
|
|
CADJ STORE d_HSNWbyATMonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
2441 |
|
|
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
2442 |
|
|
CADJ & key = iicekey, byte = isbyte |
2443 |
|
|
# endif /* ALLOW_AUTODIFF_TAMC */ |
2444 |
|
|
IF ( SEAICEheatConsFix ) THEN |
2445 |
|
|
c Unlike for evap and precip, the temperature of gained/lost |
2446 |
|
|
c ocean liquid water due to melt/freeze of solid water cannot be chosen |
2447 |
|
|
c to be e.g. the ocean SST. It must be done at 0degC. The fix below anticipates |
2448 |
|
|
c on external_forcing_surf.F and applies the correction to QNET. |
2449 |
|
|
IF ((convertFW2Salt.EQ.-1.).OR.(temp_EvPrRn.EQ.UNSET_RL)) THEN |
2450 |
|
|
c I leave alone the exotic case when onvertFW2Salt.NE.-1 and temp_EvPrRn.NE.UNSET_RL and |
2451 |
|
|
c the small error of the synchronous time stepping case (see external_forcing_surf.F). |
2452 |
|
|
DO J=1,sNy |
2453 |
|
|
DO I=1,sNx |
2454 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
2455 |
|
|
c store unaltered QNET for diagnostic purposes |
2456 |
|
|
DIAGarrayA(I,J)=QNET(I,J,bi,bj) |
2457 |
|
|
#endif |
2458 |
|
|
c compute the ocean water going to ice/snow, in precip units |
2459 |
|
|
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
2460 |
|
|
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2461 |
|
|
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2462 |
|
|
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
2463 |
|
|
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
2464 |
|
|
& * convertHI2PRECIP |
2465 |
|
|
c factor in the heat content that external_forcing_surf.F |
2466 |
|
|
c will associate with EMPMR, and remove it from QNET, so that |
2467 |
|
|
c melt/freez water is in effect consistently gained/lost at 0degC |
2468 |
|
|
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
2469 |
|
|
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
2470 |
|
|
& HeatCapacity_Cp * temp_EvPrRn |
2471 |
|
|
ELSE |
2472 |
|
|
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
2473 |
|
|
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2474 |
|
|
ENDIF |
2475 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
2476 |
|
|
c back out the eventual TFLUX adjustement and fill diag |
2477 |
|
|
DIAGarrayA(I,J)=QNET(I,J,bi,bj)-DIAGarrayA(I,J) |
2478 |
|
|
#endif |
2479 |
|
|
ENDDO |
2480 |
|
|
ENDDO |
2481 |
|
|
ENDIF |
2482 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
2483 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2484 |
|
|
& 'SIaaflux',0,1,3,bi,bj,myThid) |
2485 |
|
|
#endif |
2486 |
|
|
ENDIF |
2487 |
|
|
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
2488 |
|
|
|
2489 |
|
|
C compute net fresh water flux leaving/entering |
2490 |
|
|
C the ocean, accounting for fresh/salt water stocks. |
2491 |
|
|
C ================================================== |
2492 |
|
|
|
2493 |
|
|
#ifdef ALLOW_ATM_TEMP |
2494 |
|
|
DO J=1,sNy |
2495 |
|
|
DO I=1,sNx |
2496 |
|
|
tmpscal1= d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2497 |
|
|
& +d_HFRWbyRAIN(I,J) |
2498 |
|
|
& +d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2499 |
|
|
& +d_HEFFbyOCNonICE(I,J) |
2500 |
|
|
& +d_HEFFbyATMonOCN(I,J) |
2501 |
|
|
& +d_HEFFbyNEG(I,J) |
2502 |
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
2503 |
|
|
& +d_HEFFbyRLX(I,J) |
2504 |
|
|
#endif |
2505 |
|
|
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
2506 |
|
|
C If r_FWbySublim>0, then it is evaporated from ocean. |
2507 |
|
|
& +r_FWbySublim(I,J) |
2508 |
|
|
EmPmR(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2509 |
|
|
& ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2510 |
|
|
& * ( ONE - AREApreTH(I,J) ) |
2511 |
|
|
#ifdef ALLOW_RUNOFF |
2512 |
|
|
& - RUNOFF(I,J,bi,bj) |
2513 |
|
|
#endif /* ALLOW_RUNOFF */ |
2514 |
|
|
& + tmpscal1*convertHI2PRECIP |
2515 |
|
|
& )*rhoConstFresh |
2516 |
|
|
ENDDO |
2517 |
|
|
ENDDO |
2518 |
|
|
|
2519 |
|
|
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
2520 |
|
|
C-- |
2521 |
|
|
DO J=1,sNy |
2522 |
|
|
DO I=1,sNx |
2523 |
|
|
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2524 |
|
|
& PRECIP(I,J,bi,bj) |
2525 |
|
|
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2526 |
|
|
# ifdef ALLOW_RUNOFF |
2527 |
|
|
& + RUNOFF(I,J,bi,bj) |
2528 |
|
|
# endif /* ALLOW_RUNOFF */ |
2529 |
|
|
& )*rhoConstFresh |
2530 |
|
|
# ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
2531 |
|
|
& - a_FWbySublim(I,J)*AREApreTH(I,J) |
2532 |
|
|
# endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
2533 |
|
|
ENDDO |
2534 |
|
|
ENDDO |
2535 |
|
|
C-- |
2536 |
|
|
#else /* ndef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
2537 |
|
|
C-- |
2538 |
|
|
# ifdef ALLOW_MEAN_SFLUX_COST_CONTRIBUTION |
2539 |
|
|
DO J=1,sNy |
2540 |
|
|
DO I=1,sNx |
2541 |
|
|
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2542 |
|
|
& PRECIP(I,J,bi,bj) |
2543 |
|
|
& - EVAP(I,J,bi,bj) |
2544 |
|
|
& *( ONE - AREApreTH(I,J) ) |
2545 |
|
|
# ifdef ALLOW_RUNOFF |
2546 |
|
|
& + RUNOFF(I,J,bi,bj) |
2547 |
|
|
# endif /* ALLOW_RUNOFF */ |
2548 |
|
|
& )*rhoConstFresh |
2549 |
|
|
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2550 |
|
|
ENDDO |
2551 |
|
|
ENDDO |
2552 |
|
|
# endif |
2553 |
|
|
C-- |
2554 |
|
|
#endif /* ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
2555 |
|
|
|
2556 |
|
|
#endif /* ALLOW_ATM_TEMP */ |
2557 |
|
|
|
2558 |
|
|
#ifdef SEAICE_DEBUG |
2559 |
|
|
CALL PLOT_FIELD_XYRL( QSW,'Current QSW ', myIter, myThid ) |
2560 |
|
|
CALL PLOT_FIELD_XYRL( QNET,'Current QNET ', myIter, myThid ) |
2561 |
|
|
CALL PLOT_FIELD_XYRL( EmPmR,'Current EmPmR ', myIter, myThid ) |
2562 |
|
|
#endif /* SEAICE_DEBUG */ |
2563 |
|
|
|
2564 |
|
|
C Sea Ice Load on the sea surface. |
2565 |
|
|
C ================================= |
2566 |
|
|
|
2567 |
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
2568 |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2569 |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2570 |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
2571 |
|
|
|
2572 |
|
|
IF ( useRealFreshWaterFlux ) THEN |
2573 |
|
|
DO J=1,sNy |
2574 |
|
|
DO I=1,sNx |
2575 |
|
|
#ifdef SEAICE_CAP_ICELOAD |
2576 |
|
|
tmpscal1 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
2577 |
|
|
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2578 |
|
|
tmpscal2 = MIN(tmpscal1,heffTooHeavy*rhoConst) |
2579 |
|
|
#else |
2580 |
|
|
tmpscal2 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
2581 |
|
|
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2582 |
|
|
#endif |
2583 |
|
|
sIceLoad(i,j,bi,bj) = tmpscal2 |
2584 |
|
|
ENDDO |
2585 |
|
|
ENDDO |
2586 |
|
|
ENDIF |
2587 |
|
|
|
2588 |
|
|
C =================================================================== |
2589 |
|
|
C ======================PART 8: diagnostics========================== |
2590 |
|
|
C =================================================================== |
2591 |
|
|
|
2592 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
2593 |
|
|
IF ( useDiagnostics ) THEN |
2594 |
|
|
tmpscal1=1. _d 0 * recip_deltaTtherm |
2595 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_cover, |
2596 |
|
|
& tmpscal1,1,'SIaQbATC',0,1,3,bi,bj,myThid) |
2597 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_open, |
2598 |
|
|
& tmpscal1,1,'SIaQbATO',0,1,3,bi,bj,myThid) |
2599 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(a_QbyOCN, |
2600 |
|
|
& tmpscal1,1,'SIaQbOCN',0,1,3,bi,bj,myThid) |
2601 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyOCNonICE, |
2602 |
|
|
& tmpscal1,1,'SIdHbOCN',0,1,3,bi,bj,myThid) |
2603 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_cover, |
2604 |
|
|
& tmpscal1,1,'SIdHbATC',0,1,3,bi,bj,myThid) |
2605 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_open, |
2606 |
|
|
& tmpscal1,1,'SIdHbATO',0,1,3,bi,bj,myThid) |
2607 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyFLOODING, |
2608 |
|
|
& tmpscal1,1,'SIdHbFLO',0,1,3,bi,bj,myThid) |
2609 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyOCNonSNW, |
2610 |
|
|
& tmpscal1,1,'SIdSbOCN',0,1,3,bi,bj,myThid) |
2611 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyATMonSNW, |
2612 |
|
|
& tmpscal1,1,'SIdSbATC',0,1,3,bi,bj,myThid) |
2613 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyATM, |
2614 |
|
|
& tmpscal1,1,'SIdAbATO',0,1,3,bi,bj,myThid) |
2615 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyICE, |
2616 |
|
|
& tmpscal1,1,'SIdAbATC',0,1,3,bi,bj,myThid) |
2617 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyOCN, |
2618 |
|
|
& tmpscal1,1,'SIdAbOCN',0,1,3,bi,bj,myThid) |
2619 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_open, |
2620 |
|
|
& convertHI2Q,1, 'SIqneto ',0,1,3,bi,bj,myThid) |
2621 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_cover, |
2622 |
|
|
& convertHI2Q,1, 'SIqneti ',0,1,3,bi,bj,myThid) |
2623 |
|
|
C three that actually need intermediate storage |
2624 |
|
|
DO J=1,sNy |
2625 |
|
|
DO I=1,sNx |
2626 |
|
|
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2627 |
|
|
& * d_HSNWbyRAIN(I,J)*SEAICE_rhoSnow*recip_deltaTtherm |
2628 |
|
|
DIAGarrayB(I,J) = AREA(I,J,bi,bj)-AREApreTH(I,J) |
2629 |
|
|
ENDDO |
2630 |
|
|
ENDDO |
2631 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2632 |
|
|
& 'SIsnPrcp',0,1,3,bi,bj,myThid) |
2633 |
|
|
CALL DIAGNOSTICS_SCALE_FILL(DIAGarrayB, |
2634 |
|
|
& tmpscal1,1,'SIdA ',0,1,3,bi,bj,myThid) |
2635 |
|
|
#ifdef ALLOW_ATM_TEMP |
2636 |
|
|
DO J=1,sNy |
2637 |
|
|
DO I=1,sNx |
2638 |
|
|
CML If I consider the atmosphere above the ice, the surface flux |
2639 |
|
|
CML which is relevant for the air temperature dT/dt Eq |
2640 |
|
|
CML accounts for sensible and radiation (with different treatment |
2641 |
|
|
CML according to wave-length) fluxes but not for "latent heat flux", |
2642 |
|
|
CML since it does not contribute to heating the air. |
2643 |
|
|
CML So this diagnostic is only good for heat budget calculations within |
2644 |
|
|
CML the ice-ocean system. |
2645 |
|
|
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
2646 |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
2647 |
|
|
& a_QSWbyATM_cover(I,J) + |
2648 |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
2649 |
|
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
2650 |
|
|
C |
2651 |
|
|
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
2652 |
|
|
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2653 |
|
|
C |
2654 |
|
|
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj)*( |
2655 |
|
|
& PRECIP(I,J,bi,bj) |
2656 |
|
|
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2657 |
|
|
#ifdef ALLOW_RUNOFF |
2658 |
|
|
& + RUNOFF(I,J,bi,bj) |
2659 |
|
|
#endif /* ALLOW_RUNOFF */ |
2660 |
|
|
& )*rhoConstFresh |
2661 |
|
|
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2662 |
|
|
ENDDO |
2663 |
|
|
ENDDO |
2664 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2665 |
|
|
& 'SIatmQnt',0,1,3,bi,bj,myThid) |
2666 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
2667 |
|
|
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
2668 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayC, |
2669 |
|
|
& 'SIatmFW ',0,1,3,bi,bj,myThid) |
2670 |
|
|
C |
2671 |
|
|
DO J=1,sNy |
2672 |
|
|
DO I=1,sNx |
2673 |
|
|
C the actual Freshwater flux of sublimated ice, >0 decreases ice |
2674 |
|
|
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2675 |
|
|
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
2676 |
|
|
& * SEAICE_rhoIce * recip_deltaTtherm |
2677 |
|
|
c the residual Freshwater flux of sublimated ice |
2678 |
|
|
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
2679 |
|
|
& * r_FWbySublim(I,J) |
2680 |
|
|
& * SEAICE_rhoIce * recip_deltaTtherm |
2681 |
|
|
C the latent heat flux |
2682 |
|
|
tmpscal1= EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2683 |
|
|
& + r_FWbySublim(I,J)*convertHI2PRECIP |
2684 |
|
|
tmpscal2= ( a_FWbySublim(I,J)-r_FWbySublim(I,J) ) |
2685 |
|
|
& * convertHI2PRECIP |
2686 |
|
|
tmpscal3= SEAICE_lhEvap+SEAICE_lhFusion |
2687 |
|
|
DIAGarrayB(I,J) = -maskC(I,J,kSurface,bi,bj)*rhoConstFresh |
2688 |
|
|
& * ( tmpscal1*SEAICE_lhEvap + tmpscal2*tmpscal3 ) |
2689 |
|
|
ENDDO |
2690 |
|
|
ENDDO |
2691 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
2692 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
2693 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
2694 |
|
|
|
2695 |
|
|
DO J=1,sNy |
2696 |
|
|
DO I=1,sNx |
2697 |
|
|
c compute ice/snow water going to atm, in precip units |
2698 |
|
|
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
2699 |
|
|
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
2700 |
|
|
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
2701 |
|
|
c compute ocean water going to atm, in precip units |
2702 |
|
|
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
2703 |
|
|
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2704 |
|
|
& * ( ONE - AREApreTH(I,J) ) |
2705 |
|
|
#ifdef ALLOW_RUNOFF |
2706 |
|
|
& - RUNOFF(I,J,bi,bj) |
2707 |
|
|
#endif /* ALLOW_RUNOFF */ |
2708 |
|
|
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
2709 |
|
|
& *convertHI2PRECIP ) |
2710 |
|
|
c factor in the advected specific energy (referenced to 0 for 0deC liquid water) |
2711 |
|
|
tmpscal1= - tmpscal1* |
2712 |
|
|
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
2713 |
|
|
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
2714 |
|
|
tmpscal2= - tmpscal2* |
2715 |
|
|
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2716 |
|
|
ELSE |
2717 |
|
|
tmpscal2= - tmpscal2* |
2718 |
|
|
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2719 |
|
|
ENDIF |
2720 |
|
|
c add to SIatmQnt, leading to SItflux, which is analogous to TFLUX |
2721 |
|
|
DIAGarrayA(I,J)=maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
2722 |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
2723 |
|
|
& a_QSWbyATM_cover(I,J) + |
2724 |
|
|
#endif |
2725 |
|
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
2726 |
|
|
& -tmpscal1-tmpscal2 |
2727 |
|
|
ENDDO |
2728 |
|
|
ENDDO |
2729 |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2730 |
|
|
& 'SItflux ',0,1,3,bi,bj,myThid) |
2731 |
|
|
#endif /* ALLOW_ATM_TEMP */ |
2732 |
|
|
|
2733 |
|
|
ENDIF |
2734 |
|
|
#endif /* ALLOW_DIAGNOSTICS */ |
2735 |
|
|
|
2736 |
|
|
C close bi,bj loops |
2737 |
|
|
ENDDO |
2738 |
|
|
ENDDO |
2739 |
|
|
|
2740 |
|
|
RETURN |
2741 |
|
|
END |