137 |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
138 |
#endif |
#endif |
139 |
|
|
140 |
|
#ifdef SEAICE_ITD |
141 |
|
c The change of mean ice area due to out-of-bounds values following |
142 |
|
c sea ice dynamics |
143 |
|
_RL d_AREAbyNEG (1:sNx,1:sNy) |
144 |
|
#endif |
145 |
c The change of mean ice thickness due to out-of-bounds values following |
c The change of mean ice thickness due to out-of-bounds values following |
146 |
c sea ice dyhnamics |
c sea ice dynamics |
147 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
148 |
|
|
149 |
c The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
c The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
197 |
_RL AREApreTH (1:sNx,1:sNy) |
_RL AREApreTH (1:sNx,1:sNy) |
198 |
_RL HEFFpreTH (1:sNx,1:sNy) |
_RL HEFFpreTH (1:sNx,1:sNy) |
199 |
_RL HSNWpreTH (1:sNx,1:sNy) |
_RL HSNWpreTH (1:sNx,1:sNy) |
200 |
|
#ifdef SEAICE_ITD |
201 |
|
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
202 |
|
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
203 |
|
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
204 |
|
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
205 |
|
_RL heffFracFactor (1:sNx,1:sNy,1:nITD) |
206 |
|
#endif |
207 |
|
|
208 |
C wind speed |
C wind speed |
209 |
_RL UG (1:sNx,1:sNy) |
_RL UG (1:sNx,1:sNy) |
228 |
#endif |
#endif |
229 |
|
|
230 |
INTEGER ilockey |
INTEGER ilockey |
231 |
INTEGER it |
CToM<<< |
232 |
|
C INTEGER it |
233 |
|
INTEGER IT, K |
234 |
|
C>>>ToM |
235 |
_RL pFac |
_RL pFac |
236 |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
237 |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
238 |
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
239 |
|
#ifdef SEAICE_ITD |
240 |
|
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
241 |
|
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
242 |
|
#endif |
243 |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
244 |
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
245 |
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
246 |
|
#ifdef SEAICE_ITD |
247 |
|
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
248 |
|
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
249 |
|
#endif |
250 |
C Helper variables: reciprocal of some constants |
C Helper variables: reciprocal of some constants |
251 |
_RL recip_multDim |
_RL recip_multDim |
252 |
_RL recip_deltaTtherm |
_RL recip_deltaTtherm |
360 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
361 |
#endif |
#endif |
362 |
|
|
363 |
|
#ifdef SEAICE_ITD |
364 |
|
d_AREAbyNEG(I,J) = 0.0 _d 0 |
365 |
|
#endif |
366 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
367 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
368 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
396 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
397 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
398 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
399 |
|
#ifdef SEAICE_ITD |
400 |
|
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
401 |
|
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
402 |
|
#endif |
403 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
404 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
405 |
#endif |
#endif |
436 |
#endif |
#endif |
437 |
ENDDO |
ENDDO |
438 |
ENDDO |
ENDDO |
439 |
|
#ifdef SEAICE_ITD |
440 |
|
DO K=1,nITD |
441 |
|
DO J=1,sNy |
442 |
|
DO I=1,sNx |
443 |
|
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
444 |
|
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
445 |
|
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
446 |
|
IF (AREA(I,J,bi,bj).GT.0) THEN |
447 |
|
areaFracFactor(I,J,K)=AREAITD(I,J,K,bi,bj)/AREA(I,J,bi,bj) |
448 |
|
ELSE |
449 |
|
areaFracFactor(I,J,K)=ZERO |
450 |
|
ENDIF |
451 |
|
IF (HEFF(I,J,bi,bj).GT.0) THEN |
452 |
|
heffFracFactor(I,J,K)=HEFFITD(I,J,K,bi,bj)/HEFF(I,J,bi,bj) |
453 |
|
ELSE |
454 |
|
heffFracFactor(I,J,K)=ZERO |
455 |
|
ENDIF |
456 |
|
ENDDO |
457 |
|
ENDDO |
458 |
|
ENDDO |
459 |
|
#endif |
460 |
|
|
461 |
#else /* SEAICE_GROWTH_LEGACY */ |
#else /* SEAICE_GROWTH_LEGACY */ |
462 |
|
|
484 |
C d_HEFFbyRLX(i,j) = 1. _d 1 * siEps * d_AREAbyRLX(i,j) |
C d_HEFFbyRLX(i,j) = 1. _d 1 * siEps * d_AREAbyRLX(i,j) |
485 |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
486 |
ENDIF |
ENDIF |
487 |
|
#ifdef SEAICE_ITD |
488 |
|
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
489 |
|
& + d_AREAbyRLX(i,j) |
490 |
|
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
491 |
|
& + d_HEFFbyRLX(i,j) |
492 |
|
#endif |
493 |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj) + d_AREAbyRLX(i,j) |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj) + d_AREAbyRLX(i,j) |
494 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + d_HEFFbyRLX(i,j) |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + d_HEFFbyRLX(i,j) |
495 |
ENDDO |
ENDDO |
506 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
507 |
DO J=1,sNy |
DO J=1,sNy |
508 |
DO I=1,sNx |
DO I=1,sNx |
509 |
|
#ifdef SEAICE_ITD |
510 |
|
DO K=1,nITD |
511 |
|
tmpscal2=0. _d 0 |
512 |
|
tmpscal3=0. _d 0 |
513 |
|
tmpscal4=0. _d 0 |
514 |
|
tmpscal2=MAX(-HEFFITD(I,J,K,bi,bj),0. _d 0) |
515 |
|
HEFFITD(I,J,K,bi,bj)=HEFFITD(I,J,K,bi,bj)+tmpscal2 |
516 |
|
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
517 |
|
tmpscal3=MAX(-HSNOWITD(I,J,K,bi,bj),0. _d 0) |
518 |
|
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
519 |
|
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
520 |
|
tmpscal4=MAX(-AREAITD(I,J,K,bi,bj),0. _d 0) |
521 |
|
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj)+tmpscal4 |
522 |
|
d_AREAbyNEG(I,J)=d_AREAbyNEG(I,J)+tmpscal4 |
523 |
|
ENDDO |
524 |
|
AREA(I,J,bi,bj)=AREA(I,J,bi,bj)+d_AREAbyNEG(I,J) |
525 |
|
#else |
526 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
|
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
|
527 |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
|
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
|
528 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
529 |
|
#endif |
530 |
|
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
531 |
|
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
532 |
ENDDO |
ENDDO |
533 |
ENDDO |
ENDDO |
534 |
|
|
539 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
540 |
DO J=1,sNy |
DO J=1,sNy |
541 |
DO I=1,sNx |
DO I=1,sNx |
542 |
|
#ifdef SEAICE_ITD |
543 |
|
DO K=1,nITD |
544 |
|
tmpscal2=0. _d 0 |
545 |
|
tmpscal3=0. _d 0 |
546 |
|
IF (HEFFITD(I,J,K,bi,bj).LE.siEps) THEN |
547 |
|
tmpscal2=-HEFFITD(I,J,K,bi,bj) |
548 |
|
tmpscal3=-HSNOWITD(I,J,K,bi,bj) |
549 |
|
TICES(I,J,K,bi,bj)=celsius2K |
550 |
|
HEFFITD(I,J,K,bi,bj) =HEFFITD(I,J,K,bi,bj) +tmpscal2 |
551 |
|
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
552 |
|
c |
553 |
|
TICE(I,J,bi,bj)=celsius2K |
554 |
|
c |
555 |
|
HEFF(I,J,bi,bj) =HEFF(I,J,bi,bj) +tmpscal2 |
556 |
|
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
557 |
|
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
558 |
|
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
559 |
|
ENDIF |
560 |
|
ENDDO |
561 |
|
#else |
562 |
tmpscal2=0. _d 0 |
tmpscal2=0. _d 0 |
563 |
tmpscal3=0. _d 0 |
tmpscal3=0. _d 0 |
564 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
573 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
574 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
575 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
576 |
|
#endif |
577 |
ENDDO |
ENDDO |
578 |
ENDDO |
ENDDO |
579 |
|
|
585 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
586 |
DO J=1,sNy |
DO J=1,sNy |
587 |
DO I=1,sNx |
DO I=1,sNx |
588 |
|
CToM<<< |
589 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
590 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
C & (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
591 |
|
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) THEN |
592 |
|
AREA(I,J,bi,bj)=0. _d 0 |
593 |
|
#ifdef SEAICE_ITD |
594 |
|
DO K=1,nITD |
595 |
|
AREAITD(I,J,K,bi,bj)=0. _d 0 |
596 |
|
HEFFITD(I,J,K,bi,bj)=0. _d 0 |
597 |
|
HSNOWITD(I,J,K,bi,bj)=0. _d 0 |
598 |
|
ENDDO |
599 |
|
#endif |
600 |
|
ENDIF |
601 |
|
C>>>ToM |
602 |
ENDDO |
ENDDO |
603 |
ENDDO |
ENDDO |
604 |
|
|
611 |
DO J=1,sNy |
DO J=1,sNy |
612 |
DO I=1,sNx |
DO I=1,sNx |
613 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
614 |
|
#ifdef SEAICE_ITD |
615 |
|
tmpscal2=AREA(I,J,bi,bj) |
616 |
|
#endif |
617 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
618 |
|
#ifdef SEAICE_ITD |
619 |
|
c ice area added (tmpscal3 is .ge.0): |
620 |
|
tmpscal3=AREA(I,J,bi,bj)-tmpscal2 |
621 |
|
c distribute this gain proportionally over categories |
622 |
|
DO K=1,nITD |
623 |
|
tmpscal4=AREAITD(I,J,K,bi,bj)/tmpscal2*tmpscal3 |
624 |
|
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj)+tmpscal4 |
625 |
|
ENDDO |
626 |
|
#endif |
627 |
ENDIF |
ENDIF |
628 |
ENDDO |
ENDDO |
629 |
ENDDO |
ENDDO |
636 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
637 |
DO J=1,sNy |
DO J=1,sNy |
638 |
DO I=1,sNx |
DO I=1,sNx |
639 |
|
#ifdef SEAICE_ITD |
640 |
|
tmpscal2=AREA(I,J,bi,bj) |
641 |
|
#endif |
642 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
643 |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
644 |
#endif |
#endif |
646 |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
647 |
#endif |
#endif |
648 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
649 |
|
#ifdef SEAICE_ITD |
650 |
|
c ice area subtracted (tmpscal3 is .ge.0): |
651 |
|
tmpscal3=tmpscal2-AREA(I,J,bi,bj) |
652 |
|
c distribute this loss proportionally over categories |
653 |
|
DO K=1,nITD |
654 |
|
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj) |
655 |
|
& -tmpscal3*areaFracFactor(I,J,K) |
656 |
|
ENDDO |
657 |
|
#endif |
658 |
ENDDO |
ENDDO |
659 |
ENDDO |
ENDDO |
660 |
|
|
661 |
|
#ifdef SEAICE_ITD |
662 |
|
C If AREAITD is changed due to regularization (but HEFFITD not) then the |
663 |
|
C actual ice thickness (HEFFITD/AREAITD) in a category can be changed so |
664 |
|
C that it does not fit its category limits anymore and redistribution is necessary |
665 |
|
CALL SEAICE_ITD_REDIST(myTime, myIter, myThid) |
666 |
|
C this should not affect the respective sums (AREA, HEFF, ...) |
667 |
|
C ... except a non-conserving redistribution scheme is used; then call: |
668 |
|
c CALL SEAICE_ITD_SUM(myTime, myIter, myThid) |
669 |
|
#endif |
670 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
671 |
ENDIF |
ENDIF |
672 |
#endif |
#endif |
688 |
#endif |
#endif |
689 |
ENDDO |
ENDDO |
690 |
ENDDO |
ENDDO |
691 |
|
#ifdef SEAICE_ITD |
692 |
|
DO K=1,nITD |
693 |
|
DO J=1,sNy |
694 |
|
DO I=1,sNx |
695 |
|
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
696 |
|
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
697 |
|
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
698 |
|
ENDDO |
699 |
|
ENDDO |
700 |
|
ENDDO |
701 |
|
#endif |
702 |
|
|
703 |
C 4) treat sea ice salinity pathological cases |
C 4) treat sea ice salinity pathological cases |
704 |
#ifdef SEAICE_VARIABLE_SALINITY |
#ifdef SEAICE_VARIABLE_SALINITY |
753 |
AREApreTH(I,J) = 0. _d 0 |
AREApreTH(I,J) = 0. _d 0 |
754 |
ENDDO |
ENDDO |
755 |
ENDDO |
ENDDO |
756 |
|
#ifdef SEAICE_ITD |
757 |
|
DO K=1,nITD |
758 |
|
DO J=1,sNy |
759 |
|
DO I=1,sNx |
760 |
|
HEFFITDpreTH(I,J,K) = 0. _d 0 |
761 |
|
HSNWITDpreTH(I,J,K) = 0. _d 0 |
762 |
|
AREAITDpreTH(I,J,K) = 0. _d 0 |
763 |
|
ENDDO |
764 |
|
ENDDO |
765 |
|
ENDDO |
766 |
|
#endif |
767 |
ENDIF |
ENDIF |
768 |
#endif |
#endif |
769 |
|
|
783 |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
784 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
785 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
786 |
|
#ifdef SEAICE_ITD |
787 |
|
DO K=1,nITD |
788 |
|
#endif |
789 |
DO J=1,sNy |
DO J=1,sNy |
790 |
DO I=1,sNx |
DO I=1,sNx |
791 |
|
|
792 |
|
#ifdef SEAICE_ITD |
793 |
|
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
794 |
|
#ifdef SEAICE_GROWTH_LEGACY |
795 |
|
tmpscal1 = MAX(SEAICE_area_reg,AREAITDpreTH(I,J,K)) |
796 |
|
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K)/tmpscal1 |
797 |
|
tmpscal2 = HEFFITDpreTH(I,J,K)/tmpscal1 |
798 |
|
heffActualMult(I,J,K) = MAX(tmpscal2,SEAICE_hice_reg) |
799 |
|
#else /* SEAICE_GROWTH_LEGACY */ |
800 |
|
cif regularize AREA with SEAICE_area_reg |
801 |
|
tmpscal1 = SQRT(AREAITDpreTH(I,J,K) * AREAITDpreTH(I,J,K) |
802 |
|
& + area_reg_sq) |
803 |
|
cif heffActual calculated with the regularized AREA |
804 |
|
tmpscal2 = HEFFITDpreTH(I,J,K) / tmpscal1 |
805 |
|
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
806 |
|
heffActualMult(I,J,K) = SQRT(tmpscal2 * tmpscal2 |
807 |
|
& + hice_reg_sq) |
808 |
|
cif hsnowActual calculated with the regularized AREA |
809 |
|
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K) / tmpscal1 |
810 |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
811 |
|
cif regularize the inverse of heffActual by hice_reg |
812 |
|
recip_heffActualMult(I,J,K) = AREAITDpreTH(I,J,K) / |
813 |
|
& sqrt(HEFFITDpreTH(I,J,K) * HEFFITDpreTH(I,J,K) |
814 |
|
& + hice_reg_sq) |
815 |
|
cif Do not regularize when HEFFpreTH = 0 |
816 |
|
ELSE |
817 |
|
heffActualMult(I,J,K) = ZERO |
818 |
|
hsnowActualMult(I,J,K) = ZERO |
819 |
|
recip_heffActualMult(I,J,K) = ZERO |
820 |
|
ENDIF |
821 |
|
#else |
822 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
823 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
824 |
tmpscal1 = MAX(SEAICE_area_reg,AREApreTH(I,J)) |
tmpscal1 = MAX(SEAICE_area_reg,AREApreTH(I,J)) |
844 |
hsnowActual(I,J) = ZERO |
hsnowActual(I,J) = ZERO |
845 |
recip_heffActual(I,J) = ZERO |
recip_heffActual(I,J) = ZERO |
846 |
ENDIF |
ENDIF |
847 |
|
#endif |
848 |
|
|
849 |
ENDDO |
ENDDO |
850 |
ENDDO |
ENDDO |
851 |
|
#ifdef SEAICE_ITD |
852 |
|
ENDDO |
853 |
|
#endif |
854 |
|
|
855 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
856 |
CALL ZERO_ADJ_1D( sNx*sNy, heffActual, myThid) |
CALL ZERO_ADJ_1D( sNx*sNy, heffActual, myThid) |
861 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
862 |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
863 |
C AND SNOW THICKNESS |
C AND SNOW THICKNESS |
864 |
|
#ifdef SEAICE_ITD |
865 |
|
DO K=1,nITD |
866 |
|
#endif |
867 |
DO J=1,sNy |
DO J=1,sNy |
868 |
DO I=1,sNx |
DO I=1,sNx |
869 |
c The latent heat flux over the sea ice which |
c The latent heat flux over the sea ice which |
870 |
c will sublimate all of the snow and ice over one time |
c will sublimate all of the snow and ice over one time |
871 |
c step (W/m^2) |
c step (W/m^2) |
872 |
|
#ifdef SEAICE_ITD |
873 |
|
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
874 |
|
latentHeatFluxMaxMult(I,J,K) = lhSublim*recip_deltaTtherm * |
875 |
|
& (HEFFITDpreTH(I,J,K)*SEAICE_rhoIce + |
876 |
|
& HSNWITDpreTH(I,J,K)*SEAICE_rhoSnow)/AREAITDpreTH(I,J,K) |
877 |
|
ELSE |
878 |
|
latentHeatFluxMaxMult(I,J,K) = ZERO |
879 |
|
ENDIF |
880 |
|
#else |
881 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
882 |
latentHeatFluxMax(I,J) = lhSublim * recip_deltaTtherm * |
latentHeatFluxMax(I,J) = lhSublim * recip_deltaTtherm * |
883 |
& (HEFFpreTH(I,J) * SEAICE_rhoIce + |
& (HEFFpreTH(I,J) * SEAICE_rhoIce + |
885 |
ELSE |
ELSE |
886 |
latentHeatFluxMax(I,J) = ZERO |
latentHeatFluxMax(I,J) = ZERO |
887 |
ENDIF |
ENDIF |
888 |
|
#endif |
889 |
ENDDO |
ENDDO |
890 |
ENDDO |
ENDDO |
891 |
|
#ifdef SEAICE_ITD |
892 |
|
ENDDO |
893 |
|
#endif |
894 |
#endif /* SEAICE_CAP_SUBLIM */ |
#endif /* SEAICE_CAP_SUBLIM */ |
895 |
|
|
896 |
C =================================================================== |
C =================================================================== |
964 |
C-- Start loop over multi-categories |
C-- Start loop over multi-categories |
965 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
966 |
c homogeneous distribution between 0 and 2 x heffActual |
c homogeneous distribution between 0 and 2 x heffActual |
967 |
|
#ifndef SEAICE_ITD |
968 |
pFac = (2.0 _d 0*real(IT)-1.0 _d 0)*recip_multDim |
pFac = (2.0 _d 0*real(IT)-1.0 _d 0)*recip_multDim |
969 |
|
#endif |
970 |
DO J=1,sNy |
DO J=1,sNy |
971 |
DO I=1,sNx |
DO I=1,sNx |
972 |
|
#ifndef SEAICE_ITD |
973 |
|
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
974 |
|
C (instead of heffActual and latentHeatFluxMax) |
975 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
976 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
977 |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
978 |
#endif |
#endif |
979 |
|
#endif |
980 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
981 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
982 |
TICE(I,J,bi,bj) = ZERO |
TICE(I,J,bi,bj) = ZERO |
1002 |
|
|
1003 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
1004 |
CALL SEAICE_SOLVE4TEMP( |
CALL SEAICE_SOLVE4TEMP( |
1005 |
|
#ifdef SEAICE_ITD |
1006 |
|
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
1007 |
|
#else |
1008 |
I UG, heffActualMult(1,1,IT), hsnowActual, |
I UG, heffActualMult(1,1,IT), hsnowActual, |
1009 |
|
#endif |
1010 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1011 |
I latentHeatFluxMaxMult(1,1,IT), |
I latentHeatFluxMaxMult(1,1,IT), |
1012 |
#endif |
#endif |
1035 |
DO J=1,sNy |
DO J=1,sNy |
1036 |
DO I=1,sNx |
DO I=1,sNx |
1037 |
C update TICE & TICES |
C update TICE & TICES |
1038 |
|
#ifdef SEAICE_ITD |
1039 |
|
C calculate area weighted mean |
1040 |
|
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1041 |
|
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,K) |
1042 |
|
#else |
1043 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1044 |
& + ticeOutMult(I,J,IT)*recip_multDim |
& + ticeOutMult(I,J,IT)*recip_multDim |
1045 |
|
#endif |
1046 |
TICES(I,J,IT,bi,bj) = ticeOutMult(I,J,IT) |
TICES(I,J,IT,bi,bj) = ticeOutMult(I,J,IT) |
1047 |
C average over categories |
C average over categories |
1048 |
|
#ifdef SEAICE_ITD |
1049 |
|
C calculate area weighted mean |
1050 |
|
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1051 |
|
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
1052 |
|
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1053 |
|
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
1054 |
|
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1055 |
|
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,K) |
1056 |
|
#else |
1057 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1058 |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1059 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1060 |
& + a_QSWbyATMmult_cover(I,J,IT)*recip_multDim |
& + a_QSWbyATMmult_cover(I,J,IT)*recip_multDim |
1061 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1062 |
& + a_FWbySublimMult(I,J,IT)*recip_multDim |
& + a_FWbySublimMult(I,J,IT)*recip_multDim |
1063 |
|
#endif |
1064 |
ENDDO |
ENDDO |
1065 |
ENDDO |
ENDDO |
1066 |
ENDDO |
ENDDO |
1111 |
#ifdef SEAICE_DISABLE_SUBLIM |
#ifdef SEAICE_DISABLE_SUBLIM |
1112 |
cgf just for those who may need to omit this term to reproduce old results |
cgf just for those who may need to omit this term to reproduce old results |
1113 |
a_FWbySublim(I,J) = ZERO |
a_FWbySublim(I,J) = ZERO |
1114 |
#endif /* SEAICE_CAP_SUBLIM */ |
#endif |
1115 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
1116 |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
1117 |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
1118 |
ENDDO |
ENDDO |
1119 |
ENDDO |
ENDDO |
1120 |
|
#ifdef SEAICE_ITD |
1121 |
|
DO K=1,nITD |
1122 |
|
DO J=1,sNy |
1123 |
|
DO I=1,sNx |
1124 |
|
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
1125 |
|
& * convertQ2HI * AREAITDpreTH(I,J,K) |
1126 |
|
a_QSWbyATMmult_cover(I,J,K) = a_QSWbyATMmult_cover(I,J,K) |
1127 |
|
& * convertQ2HI * AREAITDpreTH(I,J,K) |
1128 |
|
r_QbyATMmult_cover(I,J,K)=a_QbyATMmult_cover(I,J,K) |
1129 |
|
#ifdef SEAICE_DISABLE_SUBLIM |
1130 |
|
a_FWbySublimMult(I,J,K) = ZERO |
1131 |
|
#endif |
1132 |
|
a_FWbySublimMult(I,J,K) = SEAICE_deltaTtherm*recip_rhoIce |
1133 |
|
& * a_FWbySublimMult(I,J,K)*AREAITDpreTH(I,J,K) |
1134 |
|
r_FWbySublimMult(I,J,K)=a_FWbySublimMult(I,J,K) |
1135 |
|
ENDDO |
1136 |
|
ENDDO |
1137 |
|
ENDDO |
1138 |
|
#endif |
1139 |
|
|
1140 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1141 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1159 |
a_QSWbyATM_cover(I,J) = 0. _d 0 |
a_QSWbyATM_cover(I,J) = 0. _d 0 |
1160 |
ENDDO |
ENDDO |
1161 |
ENDDO |
ENDDO |
1162 |
|
#ifdef SEAICE_ITD |
1163 |
|
DO K=1,nITD |
1164 |
|
DO J=1,sNy |
1165 |
|
DO I=1,sNx |
1166 |
|
a_QbyATMmult_cover(I,J,K) = 0. _d 0 |
1167 |
|
r_QbyATMmult_cover(I,J,K) = 0. _d 0 |
1168 |
|
a_QSWbyATMmult_cover(I,J,K) = 0. _d 0 |
1169 |
|
ENDDO |
1170 |
|
ENDDO |
1171 |
|
ENDDO |
1172 |
|
#endif |
1173 |
ENDIF |
ENDIF |
1174 |
#endif |
#endif |
1175 |
|
|
1233 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1234 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1235 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1236 |
|
#ifdef SEAICE_ITD |
1237 |
|
DO K=1,nITD |
1238 |
|
#endif |
1239 |
DO J=1,sNy |
DO J=1,sNy |
1240 |
DO I=1,sNx |
DO I=1,sNx |
1241 |
C First sublimate/deposite snow |
C First sublimate/deposite snow |
1242 |
tmpscal2 = |
tmpscal2 = |
1243 |
|
#ifdef SEAICE_ITD |
1244 |
|
& MAX(MIN(r_FWbySublimMult(I,J,K),HSNOWITD(I,J,K,bi,bj) |
1245 |
|
& *SNOW2ICE),ZERO) |
1246 |
|
C accumulate change over ITD categories |
1247 |
|
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1248 |
|
& *ICE2SNOW |
1249 |
|
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal2 |
1250 |
|
& *ICE2SNOW |
1251 |
|
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
1252 |
|
C keep total up to date, too |
1253 |
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1254 |
|
#else |
1255 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1256 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1257 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) - tmpscal2*ICE2SNOW |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) - tmpscal2*ICE2SNOW |
1258 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1259 |
|
#endif |
1260 |
ENDDO |
ENDDO |
1261 |
ENDDO |
ENDDO |
1262 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1267 |
DO I=1,sNx |
DO I=1,sNx |
1268 |
C If anything is left, sublimate ice |
C If anything is left, sublimate ice |
1269 |
tmpscal2 = |
tmpscal2 = |
1270 |
|
#ifdef SEAICE_ITD |
1271 |
|
& MAX(MIN(r_FWbySublimMult(I,J,K),HEFFITD(I,J,K,bi,bj)),ZERO) |
1272 |
|
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1273 |
|
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) - tmpscal2 |
1274 |
|
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
1275 |
|
C keep total up to date, too |
1276 |
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1277 |
|
#else |
1278 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1279 |
d_HEFFbySublim(I,J) = - tmpscal2 |
d_HEFFbySublim(I,J) = - tmpscal2 |
1280 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) - tmpscal2 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) - tmpscal2 |
1281 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1282 |
|
#endif |
1283 |
ENDDO |
ENDDO |
1284 |
ENDDO |
ENDDO |
1285 |
DO J=1,sNy |
DO J=1,sNy |
1286 |
DO I=1,sNx |
DO I=1,sNx |
1287 |
C If anything is left, it will be evaporated from the ocean rather than sublimated. |
C If anything is left, it will be evaporated from the ocean rather than sublimated. |
1288 |
C Since a_QbyATM_cover was computed for sublimation, not simple evapation, we need to |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1289 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1290 |
|
#ifdef SEAICE_ITD |
1291 |
|
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
1292 |
|
& - r_FWbySublimMult(I,J,K) |
1293 |
|
r_QbyATMmult_cover(I,J,K) = r_QbyATMmult_cover(I,J,K) |
1294 |
|
& - r_FWbySublimMult(I,J,K) |
1295 |
|
ENDDO |
1296 |
|
ENDDO |
1297 |
|
C end K loop |
1298 |
|
ENDDO |
1299 |
|
C then update totals |
1300 |
|
DO J=1,sNy |
1301 |
|
DO I=1,sNx |
1302 |
|
#endif |
1303 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1304 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1305 |
ENDDO |
ENDDO |
1313 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1314 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1315 |
|
|
1316 |
|
#ifdef SEAICE_ITD |
1317 |
|
DO K=1,nITD |
1318 |
|
DO J=1,sNy |
1319 |
|
DO I=1,sNx |
1320 |
|
C ice growth/melt due to ocean heat is equally distributed under the ice |
1321 |
|
C and hence weighted by fractional area of each thickness category |
1322 |
|
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,K), |
1323 |
|
& -HEFFITD(I,J,K,bi,bj)) |
1324 |
|
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
1325 |
|
d_HEFFbyOCNonICE(I,J)=d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1326 |
|
ENDDO |
1327 |
|
ENDDO |
1328 |
|
ENDDO |
1329 |
|
#endif |
1330 |
DO J=1,sNy |
DO J=1,sNy |
1331 |
DO I=1,sNx |
DO I=1,sNx |
1332 |
|
#ifndef SEAICE_ITD |
1333 |
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
1334 |
|
#endif |
1335 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1336 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj) + d_HEFFbyOCNonICE(I,J) |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj) + d_HEFFbyOCNonICE(I,J) |
1337 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1348 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1349 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1350 |
|
|
1351 |
|
#ifdef SEAICE_ITD |
1352 |
|
DO K=1,nITD |
1353 |
|
DO J=1,sNy |
1354 |
|
DO I=1,sNx |
1355 |
|
C Convert to standard units (meters of ice) rather than to meters |
1356 |
|
C of snow. This appears to be more robust. |
1357 |
|
tmpscal1=MAX(r_QbyATMmult_cover(I,J,K),-HSNOWITD(I,J,K,bi,bj) |
1358 |
|
& *SNOW2ICE) |
1359 |
|
tmpscal2=MIN(tmpscal1,0. _d 0) |
1360 |
|
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1361 |
|
Cgf no additional dependency through snow |
1362 |
|
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1363 |
|
#endif |
1364 |
|
d_HSNWbyATMonSNW(I,J)=d_HSNWbyATMonSNW(I,J)+tmpscal2*ICE2SNOW |
1365 |
|
r_QbyATMmult_cover(I,J,K)=r_QbyATMmult_cover(I,J,K) - tmpscal2 |
1366 |
|
C keep the total up to date, too |
1367 |
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1368 |
|
ENDDO |
1369 |
|
ENDDO |
1370 |
|
ENDDO |
1371 |
|
#else |
1372 |
DO J=1,sNy |
DO J=1,sNy |
1373 |
DO I=1,sNx |
DO I=1,sNx |
1374 |
C Convert to standard units (meters of ice) rather than to meters |
C Convert to standard units (meters of ice) rather than to meters |
1380 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1381 |
#endif |
#endif |
1382 |
d_HSNWbyATMonSNW(I,J)= tmpscal2*ICE2SNOW |
d_HSNWbyATMonSNW(I,J)= tmpscal2*ICE2SNOW |
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + tmpscal2*ICE2SNOW |
|
1383 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1384 |
ENDDO |
ENDDO |
1385 |
ENDDO |
ENDDO |
1386 |
|
#endif /* SEAICE_ITD */ |
1387 |
|
DO J=1,sNy |
1388 |
|
DO I=1,sNx |
1389 |
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyATMonSNW(I,J) |
1390 |
|
ENDDO |
1391 |
|
ENDDO |
1392 |
|
|
1393 |
C compute ice thickness tendency due to the atmosphere |
C compute ice thickness tendency due to the atmosphere |
1394 |
C ==================================================== |
C ==================================================== |
1403 |
Cgf the v1.81=>v1.82 revision would change results in |
Cgf the v1.81=>v1.82 revision would change results in |
1404 |
Cgf warming conditions, the lab_sea results were not changed. |
Cgf warming conditions, the lab_sea results were not changed. |
1405 |
|
|
1406 |
|
#ifdef SEAICE_ITD |
1407 |
|
DO K=1,nITD |
1408 |
|
DO J=1,sNy |
1409 |
|
DO I=1,sNx |
1410 |
|
#ifdef SEAICE_GROWTH_LEGACY |
1411 |
|
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K)) |
1412 |
|
#else |
1413 |
|
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K) |
1414 |
|
c Limit ice growth by potential melt by ocean |
1415 |
|
& + AREAITDpreTH(I,J,K) * r_QbyOCN(I,J)*areaFracFactor(I,J,K)) |
1416 |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
1417 |
|
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1418 |
|
& + tmpscal2 |
1419 |
|
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1420 |
|
& + tmpscal2 |
1421 |
|
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
1422 |
|
& - tmpscal2 |
1423 |
|
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal2 |
1424 |
|
ENDDO |
1425 |
|
ENDDO |
1426 |
|
ENDDO |
1427 |
|
#else |
1428 |
DO J=1,sNy |
DO J=1,sNy |
1429 |
DO I=1,sNx |
DO I=1,sNx |
1430 |
|
|
1439 |
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
1440 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
1441 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J)-tmpscal2 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J)-tmpscal2 |
1442 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal2 |
ENDDO |
1443 |
|
ENDDO |
1444 |
|
#endif /* SEAICE_ITD */ |
1445 |
|
DO J=1,sNy |
1446 |
|
DO I=1,sNx |
1447 |
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) +d_HEFFbyATMonOCN_cover(I,J) |
1448 |
|
|
1449 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1450 |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
1480 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1481 |
ENDDO |
ENDDO |
1482 |
ENDDO |
ENDDO |
1483 |
|
#ifdef SEAICE_ITD |
1484 |
|
DO K=1,nITD |
1485 |
|
DO J=1,sNy |
1486 |
|
DO I=1,sNx |
1487 |
|
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) |
1488 |
|
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,K) |
1489 |
|
ENDDO |
1490 |
|
ENDDO |
1491 |
|
ENDDO |
1492 |
|
#endif |
1493 |
Cgf note: this does not affect air-sea heat flux, |
Cgf note: this does not affect air-sea heat flux, |
1494 |
Cgf since the implied air heat gain to turn |
Cgf since the implied air heat gain to turn |
1495 |
Cgf rain to snow is not a surface process. |
Cgf rain to snow is not a surface process. |
1505 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1506 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1507 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1508 |
|
|
1509 |
|
#ifdef SEAICE_ITD |
1510 |
|
DO K=1,nITD |
1511 |
|
DO J=1,sNy |
1512 |
|
DO I=1,sNx |
1513 |
|
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,K), |
1514 |
|
& -HSNOW(I,J,bi,bj)) |
1515 |
|
tmpscal2=MIN(tmpscal1,0. _d 0) |
1516 |
|
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1517 |
|
Cgf no additional dependency through snow |
1518 |
|
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1519 |
|
#endif |
1520 |
|
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) + tmpscal2 |
1521 |
|
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1522 |
|
ENDDO |
1523 |
|
ENDDO |
1524 |
|
ENDDO |
1525 |
|
#endif |
1526 |
DO J=1,sNy |
DO J=1,sNy |
1527 |
DO I=1,sNx |
DO I=1,sNx |
1528 |
|
#ifndef SEAICE_ITD |
1529 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
1530 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1531 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1533 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1534 |
#endif |
#endif |
1535 |
d_HSNWbyOCNonSNW(I,J) = tmpscal2 |
d_HSNWbyOCNonSNW(I,J) = tmpscal2 |
1536 |
|
#endif |
1537 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) |
r_QbyOCN(I,J)=r_QbyOCN(I,J) |
1538 |
& -d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
& -d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
1539 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
1568 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1569 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1570 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
1571 |
|
#ifdef SEAICE_ITD |
1572 |
|
C determine thickness of new ice |
1573 |
|
C considering the entire open water area to refreeze |
1574 |
|
tmpscal4 = tmpscal3/(ONE-AREApreTH(I,J)) |
1575 |
|
C then add new ice volume to appropriate thickness category |
1576 |
|
DO K=1,nITD |
1577 |
|
IF (tmpscal4.LT.Hlimit(K)) THEN |
1578 |
|
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal3 |
1579 |
|
AREAITD(I,J,K,bi,bj) = AREAITD(I,J,K,bi,bj) |
1580 |
|
& + ONE-AREApreTH(I,J) |
1581 |
|
ENDIF |
1582 |
|
ENDDO |
1583 |
|
C in this case no open water is left after this step |
1584 |
|
AREA(I,J,bi,bj) = ONE |
1585 |
|
#endif |
1586 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
1587 |
ENDDO |
ENDDO |
1588 |
ENDDO |
ENDDO |
1606 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1607 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1608 |
IF ( SEAICEuseFlooding ) THEN |
IF ( SEAICEuseFlooding ) THEN |
1609 |
|
#ifdef SEAICE_ITD |
1610 |
|
DO K=1,nITD |
1611 |
|
DO J=1,sNy |
1612 |
|
DO I=1,sNx |
1613 |
|
tmpscal0 = (HSNOWITD(I,J,K,bi,bj)*SEAICE_rhoSnow |
1614 |
|
& +HEFFITD(I,J,K,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
1615 |
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,K,bi,bj)) |
1616 |
|
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1617 |
|
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
1618 |
|
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal1 |
1619 |
|
& * ICE2SNOW |
1620 |
|
ENDDO |
1621 |
|
ENDDO |
1622 |
|
ENDDO |
1623 |
|
#else |
1624 |
DO J=1,sNy |
DO J=1,sNy |
1625 |
DO I=1,sNx |
DO I=1,sNx |
1626 |
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1627 |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
1628 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
1629 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
1630 |
|
ENDDO |
1631 |
|
ENDDO |
1632 |
|
#endif |
1633 |
|
DO J=1,sNy |
1634 |
|
DO I=1,sNx |
1635 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1636 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1637 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1664 |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1665 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1666 |
|
|
1667 |
|
#ifdef SEAICE_ITD |
1668 |
|
C replaces Hibler '79 scheme and lead closing parameter |
1669 |
|
C because ITD accounts explicitly for lead openings and |
1670 |
|
C different melt rates due to varying ice thickness |
1671 |
|
C |
1672 |
|
C only consider ice area loss due to total ice thickness loss |
1673 |
|
C ice area gain due to freezing of open water as handled above |
1674 |
|
C under "gain of new ice over open water" |
1675 |
|
C |
1676 |
|
C does not account for lateral melt of ice floes |
1677 |
|
C |
1678 |
|
DO K=1,nITD |
1679 |
|
DO J=1,sNy |
1680 |
|
DO I=1,sNx |
1681 |
|
IF (HEFFITD(I,J,K,bi,bj).LE.ZERO) THEN |
1682 |
|
AREAITD(I,J,K,bi,bj)=ZERO |
1683 |
|
ENDIF |
1684 |
|
ENDDO |
1685 |
|
ENDDO |
1686 |
|
ENDDO |
1687 |
|
C update total AREA, HEFF, HSNOW |
1688 |
|
CALL SEAICE_ITD_SUM(myTime,myIter,myThid) |
1689 |
|
#else |
1690 |
DO J=1,sNy |
DO J=1,sNy |
1691 |
DO I=1,sNx |
DO I=1,sNx |
1692 |
|
|
1756 |
#endif /* ALLOW_DIAGNOSTICS */ |
#endif /* ALLOW_DIAGNOSTICS */ |
1757 |
ENDDO |
ENDDO |
1758 |
ENDDO |
ENDDO |
1759 |
|
#endif /* SEAICE_ITD */ |
1760 |
|
|
1761 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1762 |
Cgf 'bulk' linearization of area=f(HEFF) |
Cgf 'bulk' linearization of area=f(HEFF) |
1763 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
IF ( SEAICEadjMODE.GE.1 ) THEN |
1764 |
|
#ifdef SEAICE_ITD |
1765 |
|
DO K=1,nITD |
1766 |
|
DO J=1,sNy |
1767 |
|
DO I=1,sNx |
1768 |
|
AREAITD(I,J,K,bi,bj) = AREAITDpreTH(I,J,K) + 0.1 _d 0 * |
1769 |
|
& ( HEFFITD(I,J,K,bi,bj) - HEFFITDpreTH(I,J,K) ) |
1770 |
|
ENDDO |
1771 |
|
ENDDO |
1772 |
|
ENDDO |
1773 |
|
C update total AREA, HEFF, HSNOW |
1774 |
|
CALL SEAICE_ITD_SUM(myTime,myIter,myThid) |
1775 |
|
#else |
1776 |
DO J=1,sNy |
DO J=1,sNy |
1777 |
DO I=1,sNx |
DO I=1,sNx |
1778 |
C AREA(I,J,bi,bj) = 0.1 _d 0 * HEFF(I,J,bi,bj) |
C AREA(I,J,bi,bj) = 0.1 _d 0 * HEFF(I,J,bi,bj) |
1780 |
& ( HEFF(I,J,bi,bj) - HEFFpreTH(I,J) ) |
& ( HEFF(I,J,bi,bj) - HEFFpreTH(I,J) ) |
1781 |
ENDDO |
ENDDO |
1782 |
ENDDO |
ENDDO |
1783 |
|
#endif |
1784 |
ENDIF |
ENDIF |
1785 |
#endif |
#endif |
1786 |
|
|