134 |
|
|
135 |
C temporary variables available for the various computations |
C temporary variables available for the various computations |
136 |
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
137 |
|
#ifdef SEAICE_ITD |
138 |
|
_RL tmpscal1itd(1:sNx,1:sNy), tmpscal2itd(1:sNx,1:sNy) |
139 |
|
_RL tmpscal3itd(1:sNx,1:sNy) |
140 |
|
#endif |
141 |
|
|
142 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
143 |
INTEGER iTr |
INTEGER iTr |
263 |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
264 |
#endif |
#endif |
265 |
|
|
266 |
|
#ifdef SEAICE_ITD |
267 |
|
_RL d_HEFFbySublim_ITD (1:sNx,1:sNy,1:nITD) |
268 |
|
_RL d_HSNWbySublim_ITD (1:sNx,1:sNy,1:nITD) |
269 |
|
_RL d_HEFFbyOCNonICE_ITD (1:sNx,1:sNy,1:nITD) |
270 |
|
_RL d_HSNWbyATMonSNW_ITD (1:sNx,1:sNy,1:nITD) |
271 |
|
_RL d_HEFFbyATMonOCN_ITD (1:sNx,1:sNy,1:nITD) |
272 |
|
_RL d_HEFFbyATMonOCN_cover_ITD (1:sNx,1:sNy,1:nITD) |
273 |
|
_RL d_HEFFbyATMonOCN_open_ITD (1:sNx,1:sNy,1:nITD) |
274 |
|
_RL d_HSNWbyRAIN_ITD (1:sNx,1:sNy,1:nITD) |
275 |
|
_RL d_HSNWbyOCNonSNW_ITD (1:sNx,1:sNy,1:nITD) |
276 |
|
_RL d_HEFFbyFLOODING_ITD (1:sNx,1:sNy,1:nITD) |
277 |
|
#endif |
278 |
|
|
279 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
280 |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
281 |
_RL d_AREAbyATM (1:sNx,1:sNy) |
_RL d_AREAbyATM (1:sNx,1:sNy) |
430 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
431 |
#endif |
#endif |
432 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
433 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
d_HEFFbySublim_ITD(I,J,IT) = 0.0 _d 0 |
434 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
d_HSNWbySublim_ITD(I,J,IT) = 0.0 _d 0 |
435 |
|
d_HEFFbyOCNonICE_ITD(I,J,IT) = 0.0 _d 0 |
436 |
|
d_HSNWbyATMonSNW_ITD(I,J,IT) = 0.0 _d 0 |
437 |
|
d_HEFFbyATMonOCN_ITD(I,J,IT) = 0.0 _d 0 |
438 |
|
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = 0.0 _d 0 |
439 |
|
d_HEFFbyATMonOCN_open_ITD(I,J,IT) = 0.0 _d 0 |
440 |
|
d_HSNWbyRAIN_ITD(I,J,IT) = 0.0 _d 0 |
441 |
|
d_HSNWbyOCNonSNW_ITD(I,J,IT) = 0.0 _d 0 |
442 |
|
d_HEFFbyFLOODING_ITD(I,J,IT) = 0.0 _d 0 |
443 |
|
r_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
444 |
|
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
445 |
#endif |
#endif |
446 |
ENDDO |
ENDDO |
447 |
ENDDO |
ENDDO |
533 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
534 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
535 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
536 |
|
#ifdef SEAICE_ITD |
537 |
|
DO IT=1,nITD |
538 |
|
#endif |
539 |
DO J=1,sNy |
DO J=1,sNy |
540 |
DO I=1,sNx |
DO I=1,sNx |
541 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
542 |
DO IT=1,nITD |
tmpscal2=0. _d 0 |
543 |
tmpscal2=0. _d 0 |
tmpscal3=0. _d 0 |
544 |
tmpscal3=0. _d 0 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
545 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
546 |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
547 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
548 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
549 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
550 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
|
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
|
|
ENDDO |
|
551 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
552 |
C by calling SEAICE_ITD_SUM |
C by calling SEAICE_ITD_SUM |
553 |
#else |
#else |
559 |
#endif |
#endif |
560 |
ENDDO |
ENDDO |
561 |
ENDDO |
ENDDO |
562 |
|
#ifdef SEAICE_ITD |
563 |
|
ENDDO |
564 |
|
#endif |
565 |
|
|
566 |
C 1.25) treat the case of very thin ice: |
C 1.25) treat the case of very thin ice: |
567 |
|
|
568 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
569 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
570 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
571 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
572 |
DO IT=1,nITD |
DO IT=1,nITD |
573 |
#endif |
#endif |
574 |
|
DO J=1,sNy |
575 |
|
DO I=1,sNx |
576 |
tmpscal2=0. _d 0 |
tmpscal2=0. _d 0 |
577 |
tmpscal3=0. _d 0 |
tmpscal3=0. _d 0 |
578 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
579 |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
580 |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
581 |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
582 |
TICES(I,J,IT,bi,bj)=celsius2K |
TICES(I,J,IT,bi,bj)=celsius2K |
583 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
584 |
ENDIF |
ENDIF |
585 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
586 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
587 |
#else |
#else |
588 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
589 |
tmpscal2=-HEFF(I,J,bi,bj) |
tmpscal2=-HEFF(I,J,bi,bj) |
598 |
#endif |
#endif |
599 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
600 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
|
#ifdef SEAICE_ITD |
|
|
ENDDO |
|
|
#endif |
|
601 |
ENDDO |
ENDDO |
602 |
ENDDO |
ENDDO |
603 |
|
#ifdef SEAICE_ITD |
604 |
|
ENDDO |
605 |
|
#endif |
606 |
|
|
607 |
C 1.5) treat the case of area but no ice/snow: |
C 1.5) treat the case of area but no ice/snow: |
608 |
|
|
610 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
611 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
612 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
613 |
|
#ifdef SEAICE_ITD |
614 |
|
DO IT=1,nITD |
615 |
|
#endif |
616 |
DO J=1,sNy |
DO J=1,sNy |
617 |
DO I=1,sNx |
DO I=1,sNx |
618 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
619 |
DO IT=1,nITD |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
620 |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
621 |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
|
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
|
|
ENDDO |
|
622 |
#else |
#else |
623 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
624 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
625 |
#endif |
#endif |
626 |
ENDDO |
ENDDO |
627 |
ENDDO |
ENDDO |
628 |
|
#ifdef SEAICE_ITD |
629 |
|
ENDDO |
630 |
|
#endif |
631 |
|
|
632 |
C 2) treat the case of very small area: |
C 2) treat the case of very small area: |
633 |
|
|
635 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
636 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
637 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
638 |
|
#ifdef SEAICE_ITD |
639 |
|
DO IT=1,nITD |
640 |
|
#endif |
641 |
DO J=1,sNy |
DO J=1,sNy |
642 |
DO I=1,sNx |
DO I=1,sNx |
643 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
644 |
DO IT=1,nITD |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
645 |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
646 |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
647 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
C hence use SEAICE_area_floor devided by nITD |
648 |
C hence use SEAICE_area_floor devided by nITD |
C (or install a warning in e.g. seaice_readparms.F) |
649 |
C (or install a warning in e.g. seaice_readparms.F) |
AREAITD(I,J,IT,bi,bj)= |
650 |
AREAITD(I,J,IT,bi,bj)= |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
651 |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
ENDIF |
|
ENDIF |
|
|
ENDDO |
|
652 |
#else |
#else |
653 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
654 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
656 |
#endif |
#endif |
657 |
ENDDO |
ENDDO |
658 |
ENDDO |
ENDDO |
659 |
|
#ifdef SEAICE_ITD |
660 |
|
ENDDO |
661 |
|
#endif |
662 |
#endif /* DISABLE_AREA_FLOOR */ |
#endif /* DISABLE_AREA_FLOOR */ |
663 |
|
|
664 |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
684 |
|
|
685 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
686 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
687 |
DO J=1,sNy |
DO IT=1,nITD |
688 |
DO I=1,sNx |
DO J=1,sNy |
689 |
|
DO I=1,sNx |
690 |
C TICES was changed above (item 1.25), now update TICE as ice volume |
C TICES was changed above (item 1.25), now update TICE as ice volume |
691 |
C weighted average of TICES |
C weighted average of TICES |
692 |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
693 |
tmpscal1 = 0. _d 0 |
IF (IT .eq. 1) THEN |
694 |
tmpscal2 = 0. _d 0 |
tmpscal1itd(i,j) = 0. _d 0 |
695 |
tmpscal3 = 0. _d 0 |
tmpscal2itd(i,j) = 0. _d 0 |
696 |
DO IT=1,nITD |
tmpscal3itd(i,j) = 0. _d 0 |
697 |
tmpscal1=tmpscal1 + TICES(I,J,IT,bi,bj)*HEFFITD(I,J,IT,bi,bj) |
ENDIF |
698 |
tmpscal2=tmpscal2 + HEFFITD(I,J,IT,bi,bj) |
tmpscal1itd(i,j)=tmpscal1itd(i,j) + TICES(I,J,IT,bi,bj) |
699 |
tmpscal3=tmpscal3 + AREAITD(I,J,IT,bi,bj) |
& * HEFFITD(I,J,IT,bi,bj) |
700 |
ENDDO |
tmpscal2itd(i,j)=tmpscal2itd(i,j) + HEFFITD(I,J,IT,bi,bj) |
701 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
tmpscal3itd(i,j)=tmpscal3itd(i,j) + AREAITD(I,J,IT,bi,bj) |
702 |
|
IF (IT .eq. nITD) THEN |
703 |
|
TICE(I,J,bi,bj)=tmpscal1itd(i,j)/tmpscal2itd(i,j) |
704 |
C lines of item 2.5 that were omitted: |
C lines of item 2.5 that were omitted: |
705 |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
706 |
C hence we execute them here before SEAICE_ITD_REDIST is called |
C hence we execute them here before SEAICE_ITD_REDIST is called |
707 |
C although this means that AREA has not been completely regularized |
C although this means that AREA has not been completely regularized |
708 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
709 |
DIAGarrayA(I,J) = tmpscal3 |
DIAGarrayA(I,J) = tmpscal3itd(i,j) |
710 |
#endif |
#endif |
711 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
712 |
SItrAREA(I,J,bi,bj,1)=tmpscal3 |
SItrAREA(I,J,bi,bj,1)=tmpscal3itd(i,j) |
713 |
#endif |
#endif |
714 |
|
ENDIF |
715 |
|
ENDDO |
716 |
ENDDO |
ENDDO |
717 |
ENDDO |
ENDDO |
718 |
|
|
794 |
ENDDO |
ENDDO |
795 |
ENDDO |
ENDDO |
796 |
ENDDO |
ENDDO |
797 |
|
#ifdef ALLOW_SITRACER |
798 |
C prepare SItrHEFF to be computed as cumulative sum |
C prepare SItrHEFF to be computed as cumulative sum |
799 |
DO iTr=2,5 |
DO iTr=2,5 |
800 |
DO J=1,sNy |
DO J=1,sNy |
810 |
ENDDO |
ENDDO |
811 |
ENDDO |
ENDDO |
812 |
#endif |
#endif |
813 |
|
#endif /* SEAICE_ITD */ |
814 |
|
|
815 |
C 4) treat sea ice salinity pathological cases |
C 4) treat sea ice salinity pathological cases |
816 |
#ifdef SEAICE_VARIABLE_SALINITY |
#ifdef SEAICE_VARIABLE_SALINITY |
1075 |
|
|
1076 |
C-- Start loop over multi-categories |
C-- Start loop over multi-categories |
1077 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1078 |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
DO IT=1,nITD |
1079 |
#endif |
DO J=1,sNy |
1080 |
|
DO I=1,sNx |
1081 |
|
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
1082 |
|
C (instead of heffActual and latentHeatFluxMax) |
1083 |
|
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1084 |
|
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1085 |
|
TICE(I,J,bi,bj) = ZERO |
1086 |
|
TICES(I,J,IT,bi,bj) = ZERO |
1087 |
|
ENDDO |
1088 |
|
ENDDO |
1089 |
|
ENDDO |
1090 |
|
#else |
1091 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
1092 |
C homogeneous distribution between 0 and 2 x heffActual |
C homogeneous distribution between 0 and 2 x heffActual |
|
#ifndef SEAICE_ITD |
|
1093 |
pFac = (2.0 _d 0*IT - 1.0 _d 0)*recip_multDim |
pFac = (2.0 _d 0*IT - 1.0 _d 0)*recip_multDim |
1094 |
pFacSnow = 1. _d 0 |
pFacSnow = 1. _d 0 |
1095 |
IF ( SEAICE_useMultDimSnow ) pFacSnow=pFac |
IF ( SEAICE_useMultDimSnow ) pFacSnow=pFac |
|
#endif |
|
1096 |
DO J=1,sNy |
DO J=1,sNy |
1097 |
DO I=1,sNx |
DO I=1,sNx |
|
#ifndef SEAICE_ITD |
|
|
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
|
|
C (instead of heffActual and latentHeatFluxMax) |
|
1098 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
1099 |
hsnowActualMult(I,J,IT)=hsnowActual(I,J)*pFacSnow |
hsnowActualMult(I,J,IT)=hsnowActual(I,J)*pFacSnow |
1100 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1101 |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
1102 |
#endif |
#endif |
|
#endif |
|
1103 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1104 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1105 |
TICE(I,J,bi,bj) = ZERO |
TICE(I,J,bi,bj) = ZERO |
1107 |
ENDDO |
ENDDO |
1108 |
ENDDO |
ENDDO |
1109 |
ENDDO |
ENDDO |
1110 |
|
#endif |
1111 |
|
|
1112 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1113 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1386 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1387 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1388 |
& *SNOW2ICE),ZERO) |
& *SNOW2ICE),ZERO) |
1389 |
|
d_HSNWbySublim_ITD(I,J,IT) = - tmpscal2 * ICE2SNOW |
1390 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1391 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1392 |
& *ICE2SNOW |
& *ICE2SNOW |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
|
|
& *ICE2SNOW |
|
1393 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
1394 |
#else |
#else |
1395 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1409 |
tmpscal2 = |
tmpscal2 = |
1410 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1411 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1412 |
|
d_HEFFbySublim_ITD(I,J,IT) = - tmpscal2 |
1413 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1414 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HEFFbySublim(I,J) = d_HEFFbySublim(I,J) - tmpscal2 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
|
1415 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
1416 |
#else |
#else |
1417 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1444 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1445 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1446 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1447 |
|
& ' SEAICE_GROWTH: Heff increments 1, d_HSNWySublim = ', |
1448 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1449 |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
& d_HSNWbySublim_ITD(1,1,:) |
1450 |
& HEFFITD(1,1,:,bi,bj) |
#else |
1451 |
|
& d_HSNWbySublim(1,1) |
1452 |
|
#endif |
1453 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1454 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1455 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1456 |
& ' SEAICE_GROWTH: Area increments 1, AREAITD = ', |
& ' SEAICE_GROWTH: Heff increments 1, d_HEFFbySublim = ', |
1457 |
& AREAITD(1,1,:,bi,bj) |
#ifdef SEAICE_ITD |
1458 |
|
& d_HEFFbySublim_ITD(1,1,:) |
1459 |
#else |
#else |
1460 |
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
& d_HEFFbySublim(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1461 |
#endif |
#endif |
1462 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1463 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1481 |
C fractional area of each thickness category |
C fractional area of each thickness category |
1482 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1483 |
& -HEFFITD(I,J,IT,bi,bj)) |
& -HEFFITD(I,J,IT,bi,bj)) |
1484 |
|
d_HEFFbyOCNonICE_ITD(I,J,IT)=tmpscal1 |
1485 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
|
|
#ifdef ALLOW_SITRACER |
|
|
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
|
|
& + HEFFITD(I,J,IT,bi,bj) |
|
|
#endif |
|
1486 |
ENDDO |
ENDDO |
1487 |
ENDDO |
ENDDO |
1488 |
ENDDO |
ENDDO |
1489 |
|
#ifdef ALLOW_SITRACER |
1490 |
|
DO J=1,sNy |
1491 |
|
DO I=1,sNx |
1492 |
|
SItrHEFF(I,J,bi,bj,2) = HEFFpreTH(I,J) |
1493 |
|
& - d_HEFFbySublim(I,J) |
1494 |
|
& + d_HEFFbyOCNonICE(I,J) |
1495 |
|
ENDDO |
1496 |
|
ENDDO |
1497 |
|
#endif |
1498 |
DO J=1,sNy |
DO J=1,sNy |
1499 |
DO I=1,sNx |
DO I=1,sNx |
1500 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1515 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1516 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1517 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1518 |
|
& ' SEAICE_GROWTH: Heff increments 2, d_HEFFbyOCNonICE = ', |
1519 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1520 |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
& d_HEFFbyOCNonICE_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 2, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1521 |
#else |
#else |
1522 |
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
& d_HEFFbyOCNonICE(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1523 |
#endif |
#endif |
1524 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1525 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1547 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1548 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1549 |
#endif |
#endif |
1550 |
|
d_HSNWbyATMonSNW_ITD(I,J,IT) = tmpscal2*ICE2SNOW |
1551 |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1552 |
& + tmpscal2*ICE2SNOW |
& + tmpscal2*ICE2SNOW |
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) |
|
|
& + tmpscal2*ICE2SNOW |
|
1553 |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1554 |
& - tmpscal2 |
& - tmpscal2 |
1555 |
ENDDO |
ENDDO |
1575 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1576 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1577 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1578 |
|
& ' SEAICE_GROWTH: Heff increments 3, d_HSNWbyATMonSNW = ', |
1579 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1580 |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
& d_HSNWbyATMonSNW_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 3, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1581 |
#else |
#else |
1582 |
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
& d_HSNWbyATMonSNW(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1583 |
#endif |
#endif |
1584 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1585 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1612 |
c Limit ice growth by potential melt by ocean |
c Limit ice growth by potential melt by ocean |
1613 |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1614 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1615 |
|
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = tmpscal2 |
1616 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1617 |
& + tmpscal2 |
& + tmpscal2 |
1618 |
|
d_HEFFbyATMonOCN_ITD(I,J,IT) = d_HEFFbyATMonOCN_ITD(I,J,IT) |
1619 |
|
& + tmpscal2 |
1620 |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1621 |
& + tmpscal2 |
& + tmpscal2 |
1622 |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1623 |
& - tmpscal2 |
& - tmpscal2 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
|
|
|
|
|
#ifdef ALLOW_SITRACER |
|
|
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
|
|
& + HEFFITD(I,J,IT,bi,bj) |
|
|
#endif |
|
1624 |
ENDDO |
ENDDO |
1625 |
ENDDO |
ENDDO |
1626 |
ENDDO |
ENDDO |
1627 |
|
#ifdef ALLOW_SITRACER |
1628 |
|
DO J=1,sNy |
1629 |
|
DO I=1,sNx |
1630 |
|
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,2) |
1631 |
|
& + d_HEFFbyATMonOCN_cover(I,J) |
1632 |
|
ENDDO |
1633 |
|
ENDDO |
1634 |
|
#endif |
1635 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
1636 |
DO J=1,sNy |
DO J=1,sNy |
1637 |
DO I=1,sNx |
DO I=1,sNx |
1658 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1659 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1660 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1661 |
|
& ' SEAICE_GROWTH: Heff increments 4, d_HEFFbyATMonOCN_cover = ', |
1662 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1663 |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
& d_HEFFbyATMonOCN_cover_ITD(1,1,:) |
1664 |
& HEFFITD(1,1,:,bi,bj) |
#else |
1665 |
|
& d_HEFFbyATMonOCN_cover(1,1) |
1666 |
|
#endif |
1667 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1668 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1669 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1670 |
& ' SEAICE_GROWTH: Area increments 4, AREAITD = ', |
& ' SEAICE_GROWTH: Heff increments 4, d_HEFFbyATMonOCN = ', |
1671 |
& AREAITD(1,1,:,bi,bj) |
#ifdef SEAICE_ITD |
1672 |
|
& d_HEFFbyATMonOCN_ITD(1,1,:) |
1673 |
#else |
#else |
1674 |
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
& d_HEFFbyATMonOCN(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1675 |
#endif |
#endif |
1676 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1677 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1723 |
DO IT=1,nITD |
DO IT=1,nITD |
1724 |
DO J=1,sNy |
DO J=1,sNy |
1725 |
DO I=1,sNx |
DO I=1,sNx |
1726 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
d_HSNWbyRAIN_ITD(I,J,IT) |
1727 |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
& = d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1728 |
ENDDO |
ENDDO |
1729 |
ENDDO |
ENDDO |
1730 |
ENDDO |
ENDDO |
1744 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1745 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1746 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1747 |
|
& ' SEAICE_GROWTH: Hsnow increments 5, d_HSNWbyRAIN = ', |
1748 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1749 |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
& d_HSNWbyRAIN_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 5, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1750 |
#else |
#else |
1751 |
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
& d_HSNWbyRAIN(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1752 |
#endif |
#endif |
1753 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1754 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1770 |
DO IT=1,nITD |
DO IT=1,nITD |
1771 |
DO J=1,sNy |
DO J=1,sNy |
1772 |
DO I=1,sNx |
DO I=1,sNx |
1773 |
|
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1774 |
|
& - d_HSNWbySublim_ITD(I,J,IT) |
1775 |
|
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1776 |
|
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1777 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1778 |
& -HSNOWITD(I,J,IT,bi,bj)) |
& -tmpscal4) |
1779 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1780 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1781 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1782 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1783 |
#endif |
#endif |
1784 |
|
d_HSNWbyOCNonSNW_ITD(I,J,IT) = tmpscal2 |
1785 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1786 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) + tmpscal2 |
|
1787 |
ENDDO |
ENDDO |
1788 |
ENDDO |
ENDDO |
1789 |
ENDDO |
ENDDO |
1809 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1810 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1811 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1812 |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
& ' SEAICE_GROWTH: Hsnow increments 6, d_HSNWbyOCNonSNW = ', |
1813 |
& HEFFITD(1,1,:,bi,bj) |
& d_HSNWbyOCNonSNW_ITD(1,1,:) |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 6, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1814 |
#else |
#else |
1815 |
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
& d_HSNWbyOCNonSNW(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1816 |
#endif |
#endif |
1817 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1818 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1831 |
|
|
1832 |
DO J=1,sNy |
DO J=1,sNy |
1833 |
DO I=1,sNx |
DO I=1,sNx |
1834 |
|
#ifdef SEAICE_ITD |
1835 |
|
C HEFF will be updated at the end of PART 3, |
1836 |
|
C hence sum of tendencies so far is needed |
1837 |
|
tmpscal4 = HEFFpreTH(I,J) |
1838 |
|
& - d_HEFFbySublim(I,J) |
1839 |
|
& + d_HEFFbyOCNonICE(I,J) |
1840 |
|
& + d_HEFFbyATMonOCN(I,J) |
1841 |
|
#else |
1842 |
|
C HEFF is updated step by step throughout seaice_growth |
1843 |
|
tmpscal4 = HEFF(I,J,bi,bj) |
1844 |
|
#endif |
1845 |
C Initial ice growth is triggered by open water |
C Initial ice growth is triggered by open water |
1846 |
C heat flux overcoming potential melt by ocean |
C heat flux overcoming potential melt by ocean |
1847 |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
1852 |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
1853 |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1854 |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
1855 |
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
& -tmpscal4*facOpenMelt)*HEFFM(I,J,bi,bj) |
1856 |
|
#ifdef SEAICE_ITD |
1857 |
|
C ice growth in open water adds to first category |
1858 |
|
d_HEFFbyATMonOCN_open_ITD(I,J,1)=tmpscal3 |
1859 |
|
d_HEFFbyATMonOCN_ITD(I,J,1) =d_HEFFbyATMonOCN_ITD(I,J,1) |
1860 |
|
& +tmpscal3 |
1861 |
|
#endif |
1862 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1863 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1864 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
|
#ifdef SEAICE_ITD |
|
|
C open water area fraction |
|
|
tmpscal0 = ONE-AREApreTH(I,J) |
|
|
C determine thickness of new ice |
|
|
ctomC considering the entire open water area to refreeze |
|
|
ctom tmpscal1 = tmpscal3/tmpscal0 |
|
|
C considering a minimum lead ice thickness of 10 cm |
|
|
C WATCH that leadIceThickMin is smaller that Hlimit(1)! |
|
|
leadIceThickMin = 0.1 |
|
|
tmpscal1 = MAX(leadIceThickMin,tmpscal3/tmpscal0) |
|
|
C adjust ice area fraction covered by new ice |
|
|
tmpscal0 = tmpscal3/tmpscal1 |
|
|
C then add new ice volume to appropriate thickness category |
|
|
DO IT=1,nITD |
|
|
IF (tmpscal1.LT.Hlimit(IT)) THEN |
|
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
|
|
tmpscal3=ZERO |
|
|
C not sure if AREAITD should be changed here since AREA is incremented |
|
|
C in PART 4 below in non-itd code |
|
|
C in this scenario all open water is covered by new ice instantaneously, |
|
|
C i.e. no delayed lead closing is concidered such as is associated with |
|
|
C Hibler's h_0 parameter |
|
|
AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
|
|
& + tmpscal0 |
|
|
tmpscal0=ZERO |
|
|
ENDIF |
|
|
ENDDO |
|
|
#else |
|
1865 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
|
#endif |
|
1866 |
ENDDO |
ENDDO |
1867 |
ENDDO |
ENDDO |
1868 |
|
|
1869 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
|
#ifdef SEAICE_ITD |
|
|
DO IT=1,nITD |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
c needs to be here to allow use also with LEGACY branch |
|
|
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
|
|
& + HEFFITD(I,J,IT,bi,bj) |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
#else |
|
1870 |
DO J=1,sNy |
DO J=1,sNy |
1871 |
DO I=1,sNx |
DO I=1,sNx |
1872 |
C needs to be here to allow use also with LEGACY branch |
C needs to be here to allow use also with LEGACY branch |
1873 |
|
#ifdef SEAICE_ITD |
1874 |
|
SItrHEFF(I,J,bi,bj,4)=SItrHEFF(I,J,bi,bj,3) |
1875 |
|
& +d_HEFFbyATMonOCN_open(I,J) |
1876 |
|
#else |
1877 |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1878 |
|
#endif |
1879 |
ENDDO |
ENDDO |
1880 |
ENDDO |
ENDDO |
|
#endif |
|
1881 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1882 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1883 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1884 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1885 |
|
& ' SEAICE_GROWTH: Heff increments 7, d_HEFFbyATMonOCN_open = ', |
1886 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1887 |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
& d_HEFFbyATMonOCN_open_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 7, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1888 |
#else |
#else |
1889 |
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
& d_HEFFbyATMonOCN_open(1,1) |
1890 |
& HEFF(1,1,bi,bj) |
#endif |
1891 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1892 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1893 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1894 |
& ' SEAICE_GROWTH: Area increments 7, AREA = ', |
& ' SEAICE_GROWTH: Heff increments 7, d_HEFFbyATMonOCN = ', |
1895 |
& AREA(1,1,bi,bj) |
#ifdef SEAICE_ITD |
1896 |
|
& d_HEFFbyATMonOCN_ITD(1,1,:) |
1897 |
|
#else |
1898 |
|
& d_HEFFbyATMonOCN(1,1) |
1899 |
#endif |
#endif |
1900 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1901 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1916 |
DO IT=1,nITD |
DO IT=1,nITD |
1917 |
DO J=1,sNy |
DO J=1,sNy |
1918 |
DO I=1,sNx |
DO I=1,sNx |
1919 |
tmpscal0 = (HSNOWITD(I,J,IT,bi,bj)*SEAICE_rhoSnow |
tmpscal3 = HEFFITDpreTH(I,J,IT) |
1920 |
& + HEFFITD(I,J,IT,bi,bj) *SEAICE_rhoIce) |
& - d_HEFFbySublim_ITD(I,J,IT) |
1921 |
& *recip_rhoConst |
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1922 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,IT,bi,bj)) |
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1923 |
|
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1924 |
|
& - d_HSNWbySublim_ITD(I,J,IT) |
1925 |
|
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1926 |
|
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1927 |
|
tmpscal0 = (tmpscal4*SEAICE_rhoSnow |
1928 |
|
& + tmpscal3*SEAICE_rhoIce) |
1929 |
|
& * recip_rhoConst |
1930 |
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - tmpscal3) |
1931 |
|
d_HEFFbyFLOODING_ITD(I,J,IT) = tmpscal1 |
1932 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
|
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) - tmpscal1 |
|
|
& * ICE2SNOW |
|
1933 |
ENDDO |
ENDDO |
1934 |
ENDDO |
ENDDO |
1935 |
ENDDO |
ENDDO |
1951 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1952 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1953 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1954 |
|
& ' SEAICE_GROWTH: Heff increments 8, d_HEFFbyFLOODING = ', |
1955 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1956 |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
& d_HEFFbyFLOODING_ITD(1,1,:) |
1957 |
& HEFFITD(1,1,:,bi,bj) |
#else |
1958 |
|
& d_HEFFbyFLOODING(1,1) |
1959 |
|
#endif |
1960 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1961 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1962 |
|
c ToM>>> |
1963 |
|
#endif |
1964 |
|
#ifdef SEAICE_ITD |
1965 |
|
C apply ice and snow thickness changes |
1966 |
|
C ================================================================= |
1967 |
|
DO IT=1,nITD |
1968 |
|
DO J=1,sNy |
1969 |
|
DO I=1,sNx |
1970 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) |
1971 |
|
& - d_HEFFbySublim_ITD(I,J,IT) |
1972 |
|
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1973 |
|
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1974 |
|
& + d_HEFFbyFLOODING_ITD(I,J,IT) |
1975 |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1976 |
|
& - d_HSNWbySublim_ITD(I,J,IT) |
1977 |
|
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1978 |
|
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1979 |
|
& + d_HSNWbyOCNonSNW_ITD(I,J,IT) |
1980 |
|
& - d_HEFFbyFLOODING_ITD(I,J,IT) |
1981 |
|
& * ICE2SNOW |
1982 |
|
ENDDO |
1983 |
|
ENDDO |
1984 |
|
ENDDO |
1985 |
|
#endif |
1986 |
|
c ToM<<< debug seaice_growth |
1987 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1988 |
& ' SEAICE_GROWTH: Area increments 8, AREAITD = ', |
& ' SEAICE_GROWTH: Heff increments 9, HEFF = ', |
1989 |
& AREAITD(1,1,:,bi,bj) |
#ifdef SEAICE_ITD |
1990 |
|
& HEFFITD(1,1,:,bi,bj) |
1991 |
#else |
#else |
|
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
|
1992 |
& HEFF(1,1,bi,bj) |
& HEFF(1,1,bi,bj) |
1993 |
|
#endif |
1994 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1995 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1996 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,'(A,7F8.4)') |
1997 |
& ' SEAICE_GROWTH: Area increments 8, AREA = ', |
& ' SEAICE_GROWTH: Heff increments 9, AREA = ', |
1998 |
|
#ifdef SEAICE_ITD |
1999 |
|
& AREAITD(1,1,:,bi,bj) |
2000 |
|
#else |
2001 |
& AREA(1,1,bi,bj) |
& AREA(1,1,bi,bj) |
2002 |
#endif |
#endif |
2003 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2004 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
2005 |
c ToM>>> |
c ToM>>> |
|
#endif |
|
2006 |
|
|
2007 |
C =================================================================== |
C =================================================================== |
2008 |
C ==========PART 4: determine ice cover fraction increments=========- |
C ==========PART 4: determine ice cover fraction increments=========- |
2029 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2030 |
|
|
2031 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
2032 |
C replaces Hibler '79 scheme and lead closing parameter |
C-- account for lateral ice growth and melt only in thinnest category |
2033 |
C because ITD accounts explicitly for lead openings and |
C-- use HEFF, ARE, HSNOW, etc. temporarily for 1st category |
2034 |
C different melt rates due to varying ice thickness |
C (this way we can use same code for ITD and non-ITD case) |
2035 |
C |
DO J=1,sNy |
|
C only consider ice area loss due to total ice thickness loss; |
|
|
C ice area gain due to freezing of open water is handled above |
|
|
C under "gain of new ice over open water" |
|
|
C |
|
|
C does not account for lateral melt of ice floes |
|
|
C |
|
|
C AREAITD is incremented in section "gain of new ice over open water" above |
|
|
C |
|
|
DO IT=1,nITD |
|
|
DO J=1,sNy |
|
2036 |
DO I=1,sNx |
DO I=1,sNx |
2037 |
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
HEFF(I,J,bi,bj)=HEFFITD(I,J,1,bi,bj) |
2038 |
AREAITD(I,J,IT,bi,bj)=ZERO |
AREA(I,J,bi,bj)=AREAITD(I,J,1,bi,bj) |
2039 |
ENDIF |
HSNOW(I,J,bi,bj)=HSNOWITD(I,J,1,bi,bj) |
2040 |
#ifdef ALLOW_SITRACER |
HEFFpreTH(I,J)=HEFFITDpreTH(I,J,1) |
2041 |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
AREApreTH(I,J)=AREAITDpreTH(I,J,1) |
2042 |
& + AREAITD(I,J,IT,bi,bj) |
recip_heffActual(I,J)=recip_heffActualMult(I,J,1) |
|
#endif /* ALLOW_SITRACER */ |
|
|
ENDDO |
|
2043 |
ENDDO |
ENDDO |
2044 |
ENDDO |
ENDDO |
2045 |
#else /* SEAICE_ITD */ |
C all other categories only experience basal growth or melt, |
2046 |
|
C i.e. change sin AREA only occur when all ice in a category is melted |
2047 |
|
IF (nITD .gt. 1) THEN |
2048 |
|
DO IT=2,nITD |
2049 |
|
DO J=1,sNy |
2050 |
|
DO I=1,sNx |
2051 |
|
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
2052 |
|
AREAITD(I,J,IT,bi,bj)=ZERO |
2053 |
|
ENDIF |
2054 |
|
ENDDO |
2055 |
|
ENDDO |
2056 |
|
ENDDO |
2057 |
|
ENDIF |
2058 |
|
#endif |
2059 |
DO J=1,sNy |
DO J=1,sNy |
2060 |
DO I=1,sNx |
DO I=1,sNx |
2061 |
|
|
2125 |
#endif /* ALLOW_DIAGNOSTICS */ |
#endif /* ALLOW_DIAGNOSTICS */ |
2126 |
ENDDO |
ENDDO |
2127 |
ENDDO |
ENDDO |
2128 |
#endif /* SEAICE_ITD */ |
#ifdef SEAICE_ITD |
2129 |
|
C transfer 1st category values back into ITD variables |
2130 |
|
DO J=1,sNy |
2131 |
|
DO I=1,sNx |
2132 |
|
HEFFITD(I,J,1,bi,bj)=HEFF(I,J,bi,bj) |
2133 |
|
AREAITD(I,J,1,bi,bj)=AREA(I,J,bi,bj) |
2134 |
|
HSNOWITD(I,J,1,bi,bj)=HSNOW(I,J,bi,bj) |
2135 |
|
ENDDO |
2136 |
|
ENDDO |
2137 |
|
#endif |
2138 |
|
|
2139 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
2140 |
Cgf 'bulk' linearization of area=f(HEFF) |
Cgf 'bulk' linearization of area=f(HEFF) |