58 |
|
|
59 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
60 |
C === Local variables === |
C === Local variables === |
|
c ToM<<< debug seaice_growth |
|
|
C msgBuf :: Informational/error message buffer |
|
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
|
|
c ToM>>> |
|
61 |
C |
C |
62 |
C unit/sign convention: |
C unit/sign convention: |
63 |
C Within the thermodynamic computation all stocks, except HSNOW, |
C Within the thermodynamic computation all stocks, except HSNOW, |
91 |
INTEGER i, j, bi, bj |
INTEGER i, j, bi, bj |
92 |
C number of surface interface layer |
C number of surface interface layer |
93 |
INTEGER kSurface |
INTEGER kSurface |
94 |
|
C IT :: ice thickness category index (MULTICATEGORIES and ITD code) |
95 |
|
INTEGER IT |
96 |
|
C msgBuf :: Informational/error message buffer |
97 |
|
#ifdef ALLOW_BALANCE_FLUXES |
98 |
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
99 |
|
#elif (defined (SEAICE_DEBUG)) |
100 |
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
101 |
|
CHARACTER*12 msgBufForm |
102 |
|
#endif |
103 |
C constants |
C constants |
104 |
|
_RL pFac |
105 |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
106 |
_RL QI, QS, recip_QI |
_RL QI, QS, recip_QI |
107 |
|
_RL lhSublim |
108 |
|
|
109 |
|
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
110 |
|
_RL convertQ2HI, convertHI2Q |
111 |
|
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
112 |
|
_RL convertPRECIP2HI, convertHI2PRECIP |
113 |
|
C Factor by which we increase the upper ocean friction velocity (u*) when |
114 |
|
C ice is absent in a grid cell (dimensionless) |
115 |
|
_RL MixedLayerTurbulenceFactor |
116 |
|
|
117 |
|
C wind speed square |
118 |
|
_RL SPEED_SQ |
119 |
|
|
120 |
|
C Regularization values squared |
121 |
|
_RL area_reg_sq, hice_reg_sq |
122 |
|
C pathological cases thresholds |
123 |
|
_RL heffTooHeavy |
124 |
|
|
125 |
|
C Helper variables: reciprocal of some constants |
126 |
|
_RL recip_multDim |
127 |
|
_RL recip_deltaTtherm |
128 |
|
_RL recip_rhoIce |
129 |
|
C local value (=1/HO or 1/HO_south) |
130 |
|
_RL recip_HO |
131 |
|
C local value (=1/ice thickness) |
132 |
|
_RL recip_HH |
133 |
|
C facilitate multi-category snow implementation |
134 |
|
_RL pFacSnow |
135 |
|
|
136 |
|
C temporary variables available for the various computations |
137 |
|
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
138 |
|
#ifdef SEAICE_ITD |
139 |
|
_RL tmpscal1itd(1:sNx,1:sNy), tmpscal2itd(1:sNx,1:sNy) |
140 |
|
_RL tmpscal3itd(1:sNx,1:sNy) |
141 |
|
#endif |
142 |
|
|
143 |
|
#ifdef ALLOW_SITRACER |
144 |
|
INTEGER iTr |
145 |
|
#ifdef ALLOW_DIAGNOSTICS |
146 |
|
CHARACTER*8 diagName |
147 |
|
#endif |
148 |
|
#endif /* ALLOW_SITRACER */ |
149 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
150 |
|
INTEGER ilockey |
151 |
|
#endif |
152 |
|
|
153 |
|
C== local arrays == |
154 |
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
155 |
_RL TmixLoc (1:sNx,1:sNy) |
_RL TmixLoc (1:sNx,1:sNy) |
156 |
|
|
157 |
|
C actual ice thickness (with upper and lower limit) |
158 |
|
_RL heffActual (1:sNx,1:sNy) |
159 |
|
C actual snow thickness |
160 |
|
_RL hsnowActual (1:sNx,1:sNy) |
161 |
|
C actual ice thickness (with lower limit only) Reciprocal |
162 |
|
_RL recip_heffActual (1:sNx,1:sNy) |
163 |
|
|
164 |
|
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
165 |
|
_RL AREApreTH (1:sNx,1:sNy) |
166 |
|
_RL HEFFpreTH (1:sNx,1:sNy) |
167 |
|
_RL HSNWpreTH (1:sNx,1:sNy) |
168 |
|
#ifdef SEAICE_ITD |
169 |
|
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
170 |
|
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
171 |
|
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
172 |
|
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
173 |
|
_RL leadIceThickMin |
174 |
|
#endif |
175 |
|
|
176 |
|
C wind speed |
177 |
|
_RL UG (1:sNx,1:sNy) |
178 |
|
|
179 |
|
C temporary variables available for the various computations |
180 |
|
_RL tmparr1 (1:sNx,1:sNy) |
181 |
|
#ifdef SEAICE_VARIABLE_SALINITY |
182 |
|
_RL saltFluxAdjust (1:sNx,1:sNy) |
183 |
|
#endif |
184 |
|
|
185 |
|
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
186 |
|
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
187 |
|
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
188 |
|
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
189 |
|
#ifdef SEAICE_ITD |
190 |
|
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
191 |
|
#endif |
192 |
|
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
193 |
|
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
194 |
|
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
195 |
|
#ifdef SEAICE_ITD |
196 |
|
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
197 |
|
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
198 |
|
#endif |
199 |
|
|
200 |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
201 |
C the atmosphere and the ocean surface - for ice covered water |
C the atmosphere and the ocean surface - for ice covered water |
202 |
C a_QbyATM_open :: same but for open water |
C a_QbyATM_open :: same but for open water |
210 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
211 |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
212 |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
213 |
C a_QbyOCN :: available heat (in in W/m^2) due to the |
C a_QbyOCN :: available heat (in W/m^2) due to the |
214 |
C interaction of the ice pack and the ocean surface |
C interaction of the ice pack and the ocean surface |
215 |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
216 |
C processes have been accounted for |
C processes have been accounted for |
217 |
_RL a_QbyOCN (1:sNx,1:sNy) |
_RL a_QbyOCN (1:sNx,1:sNy) |
218 |
_RL r_QbyOCN (1:sNx,1:sNy) |
_RL r_QbyOCN (1:sNx,1:sNy) |
219 |
|
|
220 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
C The change of mean ice thickness due to out-of-bounds values following |
221 |
_RL convertQ2HI, convertHI2Q |
C sea ice dyhnamics |
|
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
|
|
_RL convertPRECIP2HI, convertHI2PRECIP |
|
|
|
|
|
#ifdef ALLOW_DIAGNOSTICS |
|
|
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
|
|
_RL d_AREAbyATM (1:sNx,1:sNy) |
|
|
_RL d_AREAbyOCN (1:sNx,1:sNy) |
|
|
_RL d_AREAbyICE (1:sNx,1:sNy) |
|
|
#endif |
|
|
|
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
|
|
C ICE/SNOW stocks tendency associated with relaxation towards observation |
|
|
_RL d_AREAbyRLX (1:sNx,1:sNy) |
|
|
c The change of mean ice thickness due to relaxation |
|
|
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
|
|
#endif |
|
|
|
|
|
#ifdef SEAICE_ITD |
|
|
c The change of mean ice area due to out-of-bounds values following |
|
|
c sea ice dynamics |
|
|
_RL d_AREAbyNEG (1:sNx,1:sNy) |
|
|
#endif |
|
|
c The change of mean ice thickness due to out-of-bounds values following |
|
|
c sea ice dynamics |
|
222 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
223 |
|
|
224 |
c The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
C The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
225 |
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
226 |
|
|
227 |
c The sum of mean ice thickness increments due to atmospheric fluxes over the open water |
C The sum of mean ice thickness increments due to atmospheric fluxes over |
228 |
c fraction and ice-covered fractions of the grid cell |
C the open water fraction and ice-covered fractions of the grid cell |
229 |
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
230 |
c The change of mean ice thickness due to flooding by snow |
C The change of mean ice thickness due to flooding by snow |
231 |
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
232 |
|
|
233 |
c The mean ice thickness increments due to atmospheric fluxes over the open water |
C The mean ice thickness increments due to atmospheric fluxes over the open |
234 |
c fraction and ice-covered fractions of the grid cell, respectively |
C water fraction and ice-covered fractions of the grid cell, respectively |
235 |
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
236 |
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
237 |
|
|
241 |
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
242 |
|
|
243 |
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
244 |
C |
|
245 |
C a_FWbySublim :: fresh water flux implied by latent heat of |
C a_FWbySublim :: fresh water flux implied by latent heat of |
246 |
C sublimation to atmosphere, same sign convention |
C sublimation to atmosphere, same sign convention |
247 |
C as EVAP (positive upward) |
C as EVAP (positive upward) |
250 |
_RL d_HEFFbySublim (1:sNx,1:sNy) |
_RL d_HEFFbySublim (1:sNx,1:sNy) |
251 |
_RL d_HSNWbySublim (1:sNx,1:sNy) |
_RL d_HSNWbySublim (1:sNx,1:sNy) |
252 |
|
|
253 |
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
#ifdef SEAICE_CAP_SUBLIM |
254 |
C The latent heat flux which will sublimate all snow and ice |
C The latent heat flux which will sublimate all snow and ice |
255 |
C over one time step |
C over one time step |
256 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
257 |
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
_RL latentHeatFluxMaxMult(1:sNx,1:sNy,MULTDIM) |
|
#endif |
|
|
|
|
|
C actual ice thickness (with upper and lower limit) |
|
|
_RL heffActual (1:sNx,1:sNy) |
|
|
C actual snow thickness |
|
|
_RL hsnowActual (1:sNx,1:sNy) |
|
|
C actual ice thickness (with lower limit only) Reciprocal |
|
|
_RL recip_heffActual (1:sNx,1:sNy) |
|
|
C local value (=1/HO or 1/HO_south) |
|
|
_RL recip_HO |
|
|
C local value (=1/ice thickness) |
|
|
_RL recip_HH |
|
|
|
|
|
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
|
|
_RL AREApreTH (1:sNx,1:sNy) |
|
|
_RL HEFFpreTH (1:sNx,1:sNy) |
|
|
_RL HSNWpreTH (1:sNx,1:sNy) |
|
|
#ifdef SEAICE_ITD |
|
|
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
|
|
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
|
|
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
|
|
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
|
|
_RL heffFracFactor (1:sNx,1:sNy,1:nITD) |
|
|
#endif |
|
|
|
|
|
C wind speed |
|
|
_RL UG (1:sNx,1:sNy) |
|
|
#ifdef ALLOW_ATM_WIND |
|
|
_RL SPEED_SQ |
|
258 |
#endif |
#endif |
259 |
|
|
260 |
C Regularization values squared |
#ifdef EXF_ALLOW_SEAICE_RELAX |
261 |
_RL area_reg_sq, hice_reg_sq |
C ICE/SNOW stocks tendency associated with relaxation towards observation |
262 |
|
_RL d_AREAbyRLX (1:sNx,1:sNy) |
263 |
C pathological cases thresholds |
C The change of mean ice thickness due to relaxation |
264 |
_RL heffTooHeavy |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
|
|
|
|
_RL lhSublim |
|
|
|
|
|
C temporary variables available for the various computations |
|
|
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
|
|
_RL tmparr1 (1:sNx,1:sNy) |
|
|
|
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
|
|
_RL saltFluxAdjust (1:sNx,1:sNy) |
|
265 |
#endif |
#endif |
266 |
|
|
|
INTEGER ilockey |
|
|
INTEGER it |
|
267 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
268 |
INTEGER K |
_RL d_HEFFbySublim_ITD (1:sNx,1:sNy,1:nITD) |
269 |
#endif |
_RL d_HSNWbySublim_ITD (1:sNx,1:sNy,1:nITD) |
270 |
_RL pFac |
_RL d_HEFFbyOCNonICE_ITD (1:sNx,1:sNy,1:nITD) |
271 |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
_RL d_HSNWbyATMonSNW_ITD (1:sNx,1:sNy,1:nITD) |
272 |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
_RL d_HEFFbyATMonOCN_ITD (1:sNx,1:sNy,1:nITD) |
273 |
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
_RL d_HEFFbyATMonOCN_cover_ITD (1:sNx,1:sNy,1:nITD) |
274 |
#ifdef SEAICE_ITD |
_RL d_HEFFbyATMonOCN_open_ITD (1:sNx,1:sNy,1:nITD) |
275 |
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
_RL d_HSNWbyRAIN_ITD (1:sNx,1:sNy,1:nITD) |
276 |
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
_RL d_HSNWbyOCNonSNW_ITD (1:sNx,1:sNy,1:nITD) |
277 |
|
_RL d_HEFFbyFLOODING_ITD (1:sNx,1:sNy,1:nITD) |
278 |
#endif |
#endif |
|
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
|
|
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
|
|
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
|
|
#ifdef SEAICE_ITD |
|
|
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
|
|
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
|
|
#endif |
|
|
C Helper variables: reciprocal of some constants |
|
|
_RL recip_multDim |
|
|
_RL recip_deltaTtherm |
|
|
_RL recip_rhoIce |
|
279 |
|
|
|
C Factor by which we increase the upper ocean friction velocity (u*) when |
|
|
C ice is absent in a grid cell (dimensionless) |
|
|
_RL MixedLayerTurbulenceFactor |
|
|
|
|
|
#ifdef ALLOW_SITRACER |
|
|
INTEGER iTr |
|
|
CHARACTER*8 diagName |
|
|
#endif |
|
280 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
281 |
c Helper variables for diagnostics |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
282 |
|
_RL d_AREAbyATM (1:sNx,1:sNy) |
283 |
|
_RL d_AREAbyOCN (1:sNx,1:sNy) |
284 |
|
_RL d_AREAbyICE (1:sNx,1:sNy) |
285 |
|
C Helper variables for diagnostics |
286 |
_RL DIAGarrayA (1:sNx,1:sNy) |
_RL DIAGarrayA (1:sNx,1:sNy) |
287 |
_RL DIAGarrayB (1:sNx,1:sNy) |
_RL DIAGarrayB (1:sNx,1:sNy) |
288 |
_RL DIAGarrayC (1:sNx,1:sNy) |
_RL DIAGarrayC (1:sNx,1:sNy) |
289 |
_RL DIAGarrayD (1:sNx,1:sNy) |
_RL DIAGarrayD (1:sNx,1:sNy) |
290 |
#endif |
#endif /* ALLOW_DIAGNOSTICS */ |
291 |
|
|
292 |
|
_RL SItflux (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
293 |
|
_RL SIatmQnt (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
294 |
|
_RL SIatmFW (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
295 |
|
#ifdef ALLOW_BALANCE_FLUXES |
296 |
|
_RL FWFsiTile(nSx,nSy) |
297 |
|
_RL FWFsiGlob |
298 |
|
_RL HFsiTile(nSx,nSy) |
299 |
|
_RL HFsiGlob |
300 |
|
_RL FWF2HFsiTile(nSx,nSy) |
301 |
|
_RL FWF2HFsiGlob |
302 |
|
#endif |
303 |
|
|
304 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
305 |
|
|
314 |
ENDIF |
ENDIF |
315 |
|
|
316 |
C avoid unnecessary divisions in loops |
C avoid unnecessary divisions in loops |
317 |
#ifdef SEAICE_ITD |
c#ifdef SEAICE_ITD |
318 |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
CToM this is now set by MULTDIM = nITD in SEAICE_SIZE.h |
319 |
#endif |
C (see SEAICE_SIZE.h and seaice_readparms.F) |
320 |
|
c SEAICE_multDim = nITD |
321 |
|
c#endif |
322 |
recip_multDim = SEAICE_multDim |
recip_multDim = SEAICE_multDim |
323 |
recip_multDim = ONE / recip_multDim |
recip_multDim = ONE / recip_multDim |
324 |
C above/below: double/single precision calculation of recip_multDim |
C above/below: double/single precision calculation of recip_multDim |
369 |
& + act4*max1*max2*max3 |
& + act4*max1*max2*max3 |
370 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
371 |
|
|
|
|
|
372 |
C array initializations |
C array initializations |
373 |
C ===================== |
C ===================== |
374 |
|
|
391 |
d_AREAbyOCN(I,J) = 0.0 _d 0 |
d_AREAbyOCN(I,J) = 0.0 _d 0 |
392 |
#endif |
#endif |
393 |
|
|
394 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
395 |
d_AREAbyRLX(I,J) = 0.0 _d 0 |
d_AREAbyRLX(I,J) = 0.0 _d 0 |
396 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
397 |
#endif |
#endif |
398 |
|
|
|
#ifdef SEAICE_ITD |
|
|
d_AREAbyNEG(I,J) = 0.0 _d 0 |
|
|
#endif |
|
399 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
400 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
401 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
415 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
416 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
417 |
#endif |
#endif |
|
c |
|
418 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
|
|
|
419 |
tmparr1(I,J) = 0.0 _d 0 |
tmparr1(I,J) = 0.0 _d 0 |
|
|
|
420 |
#ifdef SEAICE_VARIABLE_SALINITY |
#ifdef SEAICE_VARIABLE_SALINITY |
421 |
saltFluxAdjust(I,J) = 0.0 _d 0 |
saltFluxAdjust(I,J) = 0.0 _d 0 |
422 |
#endif |
#endif |
426 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
427 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
428 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
429 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_CAP_SUBLIM |
|
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
|
|
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
|
|
#endif |
|
|
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
|
430 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
431 |
#endif |
#endif |
432 |
|
#ifdef SEAICE_ITD |
433 |
|
d_HEFFbySublim_ITD(I,J,IT) = 0.0 _d 0 |
434 |
|
d_HSNWbySublim_ITD(I,J,IT) = 0.0 _d 0 |
435 |
|
d_HEFFbyOCNonICE_ITD(I,J,IT) = 0.0 _d 0 |
436 |
|
d_HSNWbyATMonSNW_ITD(I,J,IT) = 0.0 _d 0 |
437 |
|
d_HEFFbyATMonOCN_ITD(I,J,IT) = 0.0 _d 0 |
438 |
|
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = 0.0 _d 0 |
439 |
|
d_HEFFbyATMonOCN_open_ITD(I,J,IT) = 0.0 _d 0 |
440 |
|
d_HSNWbyRAIN_ITD(I,J,IT) = 0.0 _d 0 |
441 |
|
d_HSNWbyOCNonSNW_ITD(I,J,IT) = 0.0 _d 0 |
442 |
|
d_HEFFbyFLOODING_ITD(I,J,IT) = 0.0 _d 0 |
443 |
|
r_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
444 |
|
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
445 |
|
#endif |
446 |
ENDDO |
ENDDO |
447 |
ENDDO |
ENDDO |
448 |
ENDDO |
ENDDO |
454 |
ENDDO |
ENDDO |
455 |
#endif |
#endif |
456 |
|
|
|
|
|
457 |
C ===================================================================== |
C ===================================================================== |
458 |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
459 |
C ===================================================================== |
C ===================================================================== |
476 |
ENDDO |
ENDDO |
477 |
ENDDO |
ENDDO |
478 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
479 |
DO K=1,nITD |
DO IT=1,nITD |
480 |
DO J=1,sNy |
DO J=1,sNy |
481 |
DO I=1,sNx |
DO I=1,sNx |
482 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
483 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
484 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
485 |
ENDDO |
ENDDO |
486 |
ENDDO |
ENDDO |
487 |
ENDDO |
ENDDO |
494 |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
495 |
#endif |
#endif |
496 |
|
|
497 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
498 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
499 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
500 |
C 0) relax sea ice concentration towards observation |
C 0) relax sea ice concentration towards observation |
514 |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
515 |
ENDIF |
ENDIF |
516 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
517 |
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
518 |
& + d_AREAbyRLX(i,j) |
& + d_AREAbyRLX(i,j) |
519 |
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
520 |
& + d_HEFFbyRLX(i,j) |
& + d_HEFFbyRLX(i,j) |
524 |
ENDDO |
ENDDO |
525 |
ENDDO |
ENDDO |
526 |
ENDIF |
ENDIF |
527 |
#endif /* SEAICE_ALLOW_AREA_RELAXATION */ |
#endif /* EXF_ALLOW_SEAICE_RELAX */ |
528 |
|
|
529 |
C 1) treat the case of negative values: |
C 1) treat the case of negative values: |
530 |
|
|
533 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
534 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
535 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
536 |
|
#ifdef SEAICE_ITD |
537 |
|
DO IT=1,nITD |
538 |
|
#endif |
539 |
DO J=1,sNy |
DO J=1,sNy |
540 |
DO I=1,sNx |
DO I=1,sNx |
541 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
542 |
DO K=1,nITD |
tmpscal2=0. _d 0 |
543 |
tmpscal1=0. _d 0 |
tmpscal3=0. _d 0 |
544 |
tmpscal2=0. _d 0 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
545 |
tmpscal3=0. _d 0 |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
546 |
tmpscal2=MAX(-HEFFITD(I,J,K,bi,bj),0. _d 0) |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
547 |
HEFFITD(I,J,K,bi,bj)=HEFFITD(I,J,K,bi,bj)+tmpscal2 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
548 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
549 |
tmpscal3=MAX(-HSNOWITD(I,J,K,bi,bj),0. _d 0) |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
550 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
|
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
|
|
tmpscal1=MAX(-AREAITD(I,J,K,bi,bj),0. _d 0) |
|
|
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj)+tmpscal1 |
|
|
d_AREAbyNEG(I,J)=d_AREAbyNEG(I,J)+tmpscal1 |
|
|
ENDDO |
|
551 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
552 |
C by calling SEAICE_ITD_SUM |
C by calling SEAICE_ITD_SUM |
553 |
#else |
#else |
554 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
|
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
|
|
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
|
555 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
556 |
|
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
557 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
558 |
|
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
559 |
#endif |
#endif |
560 |
ENDDO |
ENDDO |
561 |
ENDDO |
ENDDO |
562 |
|
#ifdef SEAICE_ITD |
563 |
|
ENDDO |
564 |
|
#endif |
565 |
|
|
566 |
C 1.25) treat the case of very thin ice: |
C 1.25) treat the case of very thin ice: |
567 |
|
|
568 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
569 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
570 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
571 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
572 |
DO K=1,nITD |
DO IT=1,nITD |
573 |
#endif |
#endif |
574 |
tmpscal2=0. _d 0 |
DO J=1,sNy |
575 |
tmpscal3=0. _d 0 |
DO I=1,sNx |
576 |
|
tmpscal2=0. _d 0 |
577 |
|
tmpscal3=0. _d 0 |
578 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
579 |
IF (HEFFITD(I,J,K,bi,bj).LE.siEps) THEN |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
580 |
tmpscal2=-HEFFITD(I,J,K,bi,bj) |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
581 |
tmpscal3=-HSNOWITD(I,J,K,bi,bj) |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
582 |
TICES(I,J,K,bi,bj)=celsius2K |
TICES(I,J,IT,bi,bj)=celsius2K |
583 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
584 |
ENDIF |
ENDIF |
585 |
HEFFITD(I,J,K,bi,bj) =HEFFITD(I,J,K,bi,bj) +tmpscal2 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
586 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
587 |
#else |
#else |
588 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
589 |
tmpscal2=-HEFF(I,J,bi,bj) |
tmpscal2=-HEFF(I,J,bi,bj) |
598 |
#endif |
#endif |
599 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
600 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
|
#ifdef SEAICE_ITD |
|
|
ENDDO |
|
|
#endif |
|
601 |
ENDDO |
ENDDO |
602 |
ENDDO |
ENDDO |
603 |
|
#ifdef SEAICE_ITD |
604 |
|
ENDDO |
605 |
|
#endif |
606 |
|
|
607 |
C 1.5) treat the case of area but no ice/snow: |
C 1.5) treat the case of area but no ice/snow: |
608 |
|
|
610 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
611 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
612 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
613 |
|
#ifdef SEAICE_ITD |
614 |
|
DO IT=1,nITD |
615 |
|
#endif |
616 |
DO J=1,sNy |
DO J=1,sNy |
617 |
DO I=1,sNx |
DO I=1,sNx |
618 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
619 |
DO K=1,nITD |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
620 |
IF ((HEFFITD(i,j,k,bi,bj).EQ.0. _d 0).AND. |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
621 |
& (HSNOWITD(i,j,k,bi,bj).EQ.0. _d 0)) |
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
|
& AREAITD(I,J,K,bi,bj)=0. _d 0 |
|
|
ENDDO |
|
622 |
#else |
#else |
623 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
624 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
625 |
#endif |
#endif |
626 |
ENDDO |
ENDDO |
627 |
ENDDO |
ENDDO |
628 |
|
#ifdef SEAICE_ITD |
629 |
|
ENDDO |
630 |
|
#endif |
631 |
|
|
632 |
C 2) treat the case of very small area: |
C 2) treat the case of very small area: |
633 |
|
|
635 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
636 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
637 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
638 |
|
#ifdef SEAICE_ITD |
639 |
|
DO IT=1,nITD |
640 |
|
#endif |
641 |
DO J=1,sNy |
DO J=1,sNy |
642 |
DO I=1,sNx |
DO I=1,sNx |
643 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
644 |
DO K=1,nITD |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
645 |
IF ((HEFFITD(i,j,k,bi,bj).GT.0).OR. |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
646 |
& (HSNOWITD(i,j,k,bi,bj).GT.0)) THEN |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
647 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
C hence use SEAICE_area_floor devided by nITD |
648 |
C hence use SEAICE_area_floor devided by nITD |
C (or install a warning in e.g. seaice_readparms.F) |
649 |
C (or install a warning in e.g. seaice_readparms.F) |
AREAITD(I,J,IT,bi,bj)= |
650 |
AREAITD(I,J,K,bi,bj)= |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
651 |
& MAX(AREAITD(I,J,K,bi,bj),SEAICE_area_floor/float(nITD)) |
ENDIF |
|
ENDIF |
|
|
ENDDO |
|
652 |
#else |
#else |
653 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
654 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
656 |
#endif |
#endif |
657 |
ENDDO |
ENDDO |
658 |
ENDDO |
ENDDO |
659 |
|
#ifdef SEAICE_ITD |
660 |
|
ENDDO |
661 |
|
#endif |
662 |
#endif /* DISABLE_AREA_FLOOR */ |
#endif /* DISABLE_AREA_FLOOR */ |
663 |
|
|
664 |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
680 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
681 |
ENDDO |
ENDDO |
682 |
ENDDO |
ENDDO |
683 |
#endif /* SEAICE_ITD */ |
#endif /* notSEAICE_ITD */ |
684 |
|
|
685 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
686 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
687 |
C first, update AREA and HEFF: |
DO IT=1,nITD |
688 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
DO J=1,sNy |
689 |
C |
DO I=1,sNx |
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
690 |
C TICES was changed above (item 1.25), now update TICE as ice volume |
C TICES was changed above (item 1.25), now update TICE as ice volume |
691 |
C weighted average of TICES |
C weighted average of TICES |
692 |
tmpscal1 = 0. _d 0 |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
693 |
tmpscal2 = 0. _d 0 |
IF (IT .eq. 1) THEN |
694 |
DO K=1,nITD |
tmpscal1itd(i,j) = 0. _d 0 |
695 |
tmpscal1=tmpscal1 + TICES(I,J,K,bi,bj)*HEFFITD(I,J,K,bi,bj) |
tmpscal2itd(i,j) = 0. _d 0 |
696 |
tmpscal2=tmpscal2 + HEFFITD(I,J,K,bi,bj) |
tmpscal3itd(i,j) = 0. _d 0 |
697 |
ENDDO |
ENDIF |
698 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
tmpscal1itd(i,j)=tmpscal1itd(i,j) + TICES(I,J,IT,bi,bj) |
699 |
C lines of item 2.5 that were omitted: |
& * HEFFITD(I,J,IT,bi,bj) |
700 |
|
tmpscal2itd(i,j)=tmpscal2itd(i,j) + HEFFITD(I,J,IT,bi,bj) |
701 |
|
tmpscal3itd(i,j)=tmpscal3itd(i,j) + AREAITD(I,J,IT,bi,bj) |
702 |
|
IF (IT .eq. nITD) THEN |
703 |
|
TICE(I,J,bi,bj)=tmpscal1itd(i,j)/tmpscal2itd(i,j) |
704 |
|
C lines of item 2.5 that were omitted: |
705 |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
706 |
C hence we execute them here before SEAICE_ITD_REDIST is called |
C hence we execute them here before SEAICE_ITD_REDIST is called |
707 |
C although this means that AREA has not been completely regularized |
C although this means that AREA has not been completely regularized |
708 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
709 |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
DIAGarrayA(I,J) = tmpscal3itd(i,j) |
710 |
#endif |
#endif |
711 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
712 |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
SItrAREA(I,J,bi,bj,1)=tmpscal3itd(i,j) |
713 |
#endif |
#endif |
714 |
|
ENDIF |
715 |
|
ENDDO |
716 |
ENDDO |
ENDDO |
717 |
ENDDO |
ENDDO |
718 |
|
|
721 |
C and update AREA, HEFF, and HSNOW |
C and update AREA, HEFF, and HSNOW |
722 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
723 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
724 |
|
#endif /* SEAICE_ITD */ |
725 |
|
|
726 |
|
#ifdef SEAICE_DEBUG |
727 |
|
#ifdef SEAICE_ITD |
728 |
|
WRITE(msgBufForm,'(A,I2,A)') '(A,',nITD,'F14.10)' |
729 |
|
#else |
730 |
|
WRITE(msgBufForm,'(A,A)') '(A, F14.10)' |
731 |
|
#endif |
732 |
|
WRITE(msgBuf,msgBufForm) |
733 |
|
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
734 |
|
#ifdef SEAICE_ITD |
735 |
|
& HEFFITD(1,1,:,bi,bj) |
736 |
|
#else |
737 |
|
& HEFF(1,1,bi,bj) |
738 |
#endif |
#endif |
739 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
740 |
|
& SQUEEZE_RIGHT , myThid) |
741 |
|
WRITE(msgBuf,msgBufForm) |
742 |
|
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
743 |
|
#ifdef SEAICE_ITD |
744 |
|
& AREAITD(1,1,:,bi,bj) |
745 |
|
#else |
746 |
|
& AREA(1,1,bi,bj) |
747 |
|
#endif |
748 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
749 |
|
& SQUEEZE_RIGHT , myThid) |
750 |
|
#endif /* SEAICE_DEBUG */ |
751 |
|
|
752 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
753 |
C ENDIF SEAICEadjMODE.EQ.0 |
C end SEAICEadjMODE.EQ.0 statement: |
754 |
ENDIF |
ENDIF |
755 |
#endif |
#endif |
756 |
|
|
772 |
ENDDO |
ENDDO |
773 |
ENDDO |
ENDDO |
774 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
775 |
DO K=1,nITD |
DO IT=1,nITD |
776 |
DO J=1,sNy |
DO J=1,sNy |
777 |
DO I=1,sNx |
DO I=1,sNx |
778 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
779 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
780 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
781 |
|
|
782 |
C memorize areal and volume fraction of each ITD category |
C memorize areal and volume fraction of each ITD category |
783 |
IF (AREA(I,J,bi,bj).GT.0) THEN |
IF (AREA(I,J,bi,bj) .GT. ZERO) THEN |
784 |
areaFracFactor(I,J,K)=AREAITD(I,J,K,bi,bj)/AREA(I,J,bi,bj) |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
785 |
ELSE |
ELSE |
786 |
areaFracFactor(I,J,K)=ZERO |
C if there is no ice, potential growth starts in 1st category |
787 |
ENDIF |
IF (IT .EQ. 1) THEN |
788 |
IF (HEFF(I,J,bi,bj).GT.0) THEN |
areaFracFactor(I,J,IT)=ONE |
789 |
heffFracFactor(I,J,K)=HEFFITD(I,J,K,bi,bj)/HEFF(I,J,bi,bj) |
ELSE |
790 |
ELSE |
areaFracFactor(I,J,IT)=ZERO |
791 |
heffFracFactor(I,J,K)=ZERO |
ENDIF |
792 |
ENDIF |
ENDIF |
793 |
ENDDO |
ENDDO |
794 |
ENDDO |
ENDDO |
795 |
ENDDO |
ENDDO |
796 |
|
#ifdef ALLOW_SITRACER |
797 |
C prepare SItrHEFF to be computed as cumulative sum |
C prepare SItrHEFF to be computed as cumulative sum |
798 |
DO K=2,5 |
DO iTr=2,5 |
799 |
DO J=1,sNy |
DO J=1,sNy |
800 |
DO I=1,sNx |
DO I=1,sNx |
801 |
SItrHEFF(I,J,bi,bj,K)=ZERO |
SItrHEFF(I,J,bi,bj,iTr)=ZERO |
802 |
ENDDO |
ENDDO |
803 |
ENDDO |
ENDDO |
804 |
ENDDO |
ENDDO |
809 |
ENDDO |
ENDDO |
810 |
ENDDO |
ENDDO |
811 |
#endif |
#endif |
812 |
|
#endif /* SEAICE_ITD */ |
813 |
|
|
814 |
C 4) treat sea ice salinity pathological cases |
C 4) treat sea ice salinity pathological cases |
815 |
#ifdef SEAICE_VARIABLE_SALINITY |
#ifdef SEAICE_VARIABLE_SALINITY |
865 |
ENDDO |
ENDDO |
866 |
ENDDO |
ENDDO |
867 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
868 |
DO K=1,nITD |
DO IT=1,nITD |
869 |
DO J=1,sNy |
DO J=1,sNy |
870 |
DO I=1,sNx |
DO I=1,sNx |
871 |
HEFFITDpreTH(I,J,K) = 0. _d 0 |
HEFFITDpreTH(I,J,IT) = 0. _d 0 |
872 |
HSNWITDpreTH(I,J,K) = 0. _d 0 |
HSNWITDpreTH(I,J,IT) = 0. _d 0 |
873 |
AREAITDpreTH(I,J,K) = 0. _d 0 |
AREAITDpreTH(I,J,IT) = 0. _d 0 |
874 |
ENDDO |
ENDDO |
875 |
ENDDO |
ENDDO |
876 |
ENDDO |
ENDDO |
895 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
896 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
897 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
898 |
DO K=1,nITD |
DO IT=1,nITD |
899 |
#endif |
#endif |
900 |
DO J=1,sNy |
DO J=1,sNy |
901 |
DO I=1,sNx |
DO I=1,sNx |
902 |
|
|
903 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
904 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
905 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
906 |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
907 |
& AREAITDpreTH(I,J,K)) |
& AREAITDpreTH(I,J,IT)) |
908 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K)/tmpscal1 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT)/tmpscal1 |
909 |
tmpscal2 = HEFFITDpreTH(I,J,K)/tmpscal1 |
tmpscal2 = HEFFITDpreTH(I,J,IT)/tmpscal1 |
910 |
heffActualMult(I,J,K) = MAX(tmpscal2,SEAICE_hice_reg) |
heffActualMult(I,J,IT) = MAX(tmpscal2,SEAICE_hice_reg) |
911 |
#else /* SEAICE_GROWTH_LEGACY */ |
#else /* SEAICE_GROWTH_LEGACY */ |
912 |
cif regularize AREA with SEAICE_area_reg |
cif regularize AREA with SEAICE_area_reg |
913 |
tmpscal1 = SQRT(AREAITDpreTH(I,J,K) * AREAITDpreTH(I,J,K) |
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
914 |
& + area_reg_sq) |
& + area_reg_sq) |
915 |
cif heffActual calculated with the regularized AREA |
cif heffActual calculated with the regularized AREA |
916 |
tmpscal2 = HEFFITDpreTH(I,J,K) / tmpscal1 |
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
917 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
918 |
heffActualMult(I,J,K) = SQRT(tmpscal2 * tmpscal2 |
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
919 |
& + hice_reg_sq) |
& + hice_reg_sq) |
920 |
cif hsnowActual calculated with the regularized AREA |
cif hsnowActual calculated with the regularized AREA |
921 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K) / tmpscal1 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
922 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
923 |
cif regularize the inverse of heffActual by hice_reg |
cif regularize the inverse of heffActual by hice_reg |
924 |
recip_heffActualMult(I,J,K) = AREAITDpreTH(I,J,K) / |
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
925 |
& sqrt(HEFFITDpreTH(I,J,K) * HEFFITDpreTH(I,J,K) |
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
926 |
& + hice_reg_sq) |
& + hice_reg_sq) |
927 |
cif Do not regularize when HEFFpreTH = 0 |
cif Do not regularize when HEFFpreTH = 0 |
928 |
ELSE |
ELSE |
929 |
heffActualMult(I,J,K) = ZERO |
heffActualMult(I,J,IT) = ZERO |
930 |
hsnowActualMult(I,J,K) = ZERO |
hsnowActualMult(I,J,IT) = ZERO |
931 |
recip_heffActualMult(I,J,K) = ZERO |
recip_heffActualMult(I,J,IT) = ZERO |
932 |
ENDIF |
ENDIF |
933 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
934 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
938 |
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
939 |
heffActual(I,J) = MAX(tmpscal2,SEAICE_hice_reg) |
heffActual(I,J) = MAX(tmpscal2,SEAICE_hice_reg) |
940 |
#else /* SEAICE_GROWTH_LEGACY */ |
#else /* SEAICE_GROWTH_LEGACY */ |
941 |
cif regularize AREA with SEAICE_area_reg |
Cif regularize AREA with SEAICE_area_reg |
942 |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
943 |
cif heffActual calculated with the regularized AREA |
Cif heffActual calculated with the regularized AREA |
944 |
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
945 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
Cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
946 |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
947 |
cif hsnowActual calculated with the regularized AREA |
Cif hsnowActual calculated with the regularized AREA |
948 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
949 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
950 |
cif regularize the inverse of heffActual by hice_reg |
Cif regularize the inverse of heffActual by hice_reg |
951 |
recip_heffActual(I,J) = AREApreTH(I,J) / |
recip_heffActual(I,J) = AREApreTH(I,J) / |
952 |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
953 |
cif Do not regularize when HEFFpreTH = 0 |
Cif Do not regularize when HEFFpreTH = 0 |
954 |
ELSE |
ELSE |
955 |
heffActual(I,J) = ZERO |
heffActual(I,J) = ZERO |
956 |
hsnowActual(I,J) = ZERO |
hsnowActual(I,J) = ZERO |
974 |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
975 |
C AND SNOW THICKNESS |
C AND SNOW THICKNESS |
976 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
977 |
DO K=1,nITD |
DO IT=1,nITD |
978 |
#endif |
#endif |
979 |
DO J=1,sNy |
DO J=1,sNy |
980 |
DO I=1,sNx |
DO I=1,sNx |
981 |
c The latent heat flux over the sea ice which |
C The latent heat flux over the sea ice which |
982 |
c will sublimate all of the snow and ice over one time |
C will sublimate all of the snow and ice over one time |
983 |
c step (W/m^2) |
C step (W/m^2) |
984 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
985 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
986 |
latentHeatFluxMaxMult(I,J,K) = lhSublim*recip_deltaTtherm * |
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
987 |
& (HEFFITDpreTH(I,J,K)*SEAICE_rhoIce + |
& (HEFFITDpreTH(I,J,IT)*SEAICE_rhoIce + |
988 |
& HSNWITDpreTH(I,J,K)*SEAICE_rhoSnow)/AREAITDpreTH(I,J,K) |
& HSNWITDpreTH(I,J,IT)*SEAICE_rhoSnow) |
989 |
|
& /AREAITDpreTH(I,J,IT) |
990 |
ELSE |
ELSE |
991 |
latentHeatFluxMaxMult(I,J,K) = ZERO |
latentHeatFluxMaxMult(I,J,IT) = ZERO |
992 |
ENDIF |
ENDIF |
993 |
#else |
#else |
994 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
1038 |
C determine available heat due to the atmosphere -- for ice covered water |
C determine available heat due to the atmosphere -- for ice covered water |
1039 |
C ======================================================================= |
C ======================================================================= |
1040 |
|
|
1041 |
#ifdef ALLOW_ATM_WIND |
IF (useRelativeWind.AND.useAtmWind) THEN |
|
IF (useRelativeWind) THEN |
|
1042 |
C Compute relative wind speed over sea ice. |
C Compute relative wind speed over sea ice. |
1043 |
DO J=1,sNy |
DO J=1,sNy |
1044 |
DO I=1,sNx |
DO I=1,sNx |
1059 |
ENDDO |
ENDDO |
1060 |
ENDDO |
ENDDO |
1061 |
ENDIF |
ENDIF |
|
#endif /* ALLOW_ATM_WIND */ |
|
1062 |
|
|
1063 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1064 |
CADJ STORE tice(:,:,bi,bj) |
CADJ STORE tice(:,:,bi,bj) |
1074 |
|
|
1075 |
C-- Start loop over multi-categories |
C-- Start loop over multi-categories |
1076 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1077 |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
DO IT=1,nITD |
|
#endif |
|
|
DO IT=1,SEAICE_multDim |
|
|
c homogeneous distribution between 0 and 2 x heffActual |
|
|
#ifndef SEAICE_ITD |
|
|
pFac = (2.0 _d 0*real(IT)-1.0 _d 0)*recip_multDim |
|
|
#endif |
|
1078 |
DO J=1,sNy |
DO J=1,sNy |
1079 |
DO I=1,sNx |
DO I=1,sNx |
1080 |
#ifndef SEAICE_ITD |
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
|
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
|
1081 |
C (instead of heffActual and latentHeatFluxMax) |
C (instead of heffActual and latentHeatFluxMax) |
1082 |
|
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1083 |
|
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1084 |
|
TICE(I,J,bi,bj) = ZERO |
1085 |
|
TICES(I,J,IT,bi,bj) = ZERO |
1086 |
|
ENDDO |
1087 |
|
ENDDO |
1088 |
|
ENDDO |
1089 |
|
#else |
1090 |
|
DO IT=1,SEAICE_multDim |
1091 |
|
C homogeneous distribution between 0 and 2 x heffActual |
1092 |
|
pFac = (2.0 _d 0*IT - 1.0 _d 0)*recip_multDim |
1093 |
|
pFacSnow = 1. _d 0 |
1094 |
|
IF ( SEAICE_useMultDimSnow ) pFacSnow=pFac |
1095 |
|
DO J=1,sNy |
1096 |
|
DO I=1,sNx |
1097 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
1098 |
|
hsnowActualMult(I,J,IT)=hsnowActual(I,J)*pFacSnow |
1099 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1100 |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
1101 |
#endif |
#endif |
|
#endif |
|
1102 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1103 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1104 |
TICE(I,J,bi,bj) = ZERO |
TICE(I,J,bi,bj) = ZERO |
1106 |
ENDDO |
ENDDO |
1107 |
ENDDO |
ENDDO |
1108 |
ENDDO |
ENDDO |
1109 |
|
#endif |
1110 |
|
|
1111 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1112 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1113 |
|
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1114 |
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
1115 |
# ifdef SEAICE_CAP_SUBLIM |
# ifdef SEAICE_CAP_SUBLIM |
1116 |
CADJ STORE latentHeatFluxMaxMult |
CADJ STORE latentHeatFluxMaxMult |
1126 |
|
|
1127 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
1128 |
CALL SEAICE_SOLVE4TEMP( |
CALL SEAICE_SOLVE4TEMP( |
|
#ifdef SEAICE_ITD |
|
1129 |
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
|
#else |
|
|
I UG, heffActualMult(1,1,IT), hsnowActual, |
|
|
#endif |
|
1130 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1131 |
I latentHeatFluxMaxMult(1,1,IT), |
I latentHeatFluxMaxMult(1,1,IT), |
1132 |
#endif |
#endif |
1133 |
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
1134 |
O a_QbyATMmult_cover(1,1,IT), a_QSWbyATMmult_cover(1,1,IT), |
O a_QbyATMmult_cover(1,1,IT), |
1135 |
|
O a_QSWbyATMmult_cover(1,1,IT), |
1136 |
O a_FWbySublimMult(1,1,IT), |
O a_FWbySublimMult(1,1,IT), |
1137 |
I bi, bj, myTime, myIter, myThid ) |
I bi, bj, myTime, myIter, myThid ) |
1138 |
ENDDO |
ENDDO |
1139 |
|
|
1140 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1141 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1142 |
|
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1143 |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
1144 |
# ifdef SEAICE_CAP_SUBLIM |
# ifdef SEAICE_CAP_SUBLIM |
1145 |
CADJ STORE latentHeatFluxMaxMult |
CADJ STORE latentHeatFluxMaxMult |
1159 |
C update TICE & TICES |
C update TICE & TICES |
1160 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1161 |
C calculate area weighted mean |
C calculate area weighted mean |
1162 |
C (although the ice's temperature relates to its energy content |
C (although the ice temperature relates to its energy content |
1163 |
C and hence should be averaged weighted by ice volume [heffFracFactor], |
C and hence should be averaged weighted by ice volume, |
1164 |
C the temperature here is a result of the fluxes through the ice surface |
C the temperature here is a result of the fluxes through the ice surface |
1165 |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1166 |
C and hence is averaged area weighted [areaFracFactor]) |
C and hence is averaged area weighted [areaFracFactor]) |
1167 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1168 |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,K) |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
1169 |
#else |
#else |
1170 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1171 |
& + ticeOutMult(I,J,IT)*recip_multDim |
& + ticeOutMult(I,J,IT)*recip_multDim |
1176 |
C calculate area weighted mean |
C calculate area weighted mean |
1177 |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
1178 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1179 |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1180 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1181 |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1182 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1183 |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,K) |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,IT) |
1184 |
#else |
#else |
1185 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1186 |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1197 |
# ifdef ALLOW_DIAGNOSTICS |
# ifdef ALLOW_DIAGNOSTICS |
1198 |
DO J=1,sNy |
DO J=1,sNy |
1199 |
DO I=1,sNx |
DO I=1,sNx |
1200 |
c The actual latent heat flux realized by SOLVE4TEMP |
C The actual latent heat flux realized by SOLVE4TEMP |
1201 |
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
1202 |
ENDDO |
ENDDO |
1203 |
ENDDO |
ENDDO |
1204 |
cif The actual vs. maximum latent heat flux |
Cif The actual vs. maximum latent heat flux |
1205 |
IF ( useDiagnostics ) THEN |
IF ( useDiagnostics ) THEN |
1206 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
1207 |
& 'SIactLHF',0,1,3,bi,bj,myThid) |
& 'SIactLHF',0,1,3,bi,bj,myThid) |
1222 |
|
|
1223 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
C switch heat fluxes from W/m2 to 'effective' ice meters |
1224 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1225 |
DO K=1,nITD |
DO IT=1,nITD |
1226 |
DO J=1,sNy |
DO J=1,sNy |
1227 |
DO I=1,sNx |
DO I=1,sNx |
1228 |
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1229 |
& * convertQ2HI * AREAITDpreTH(I,J,K) |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1230 |
a_QSWbyATMmult_cover(I,J,K) = a_QSWbyATMmult_cover(I,J,K) |
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
1231 |
& * convertQ2HI * AREAITDpreTH(I,J,K) |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1232 |
C and initialize r_QbyATM_cover |
C and initialize r_QbyATMmult_cover |
1233 |
r_QbyATMmult_cover(I,J,K)=a_QbyATMmult_cover(I,J,K) |
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
1234 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1235 |
C Negative sublimation is resublimation and will be added as snow. |
C Negative sublimation is resublimation and will be added as snow. |
1236 |
#ifdef SEAICE_DISABLE_SUBLIM |
#ifdef SEAICE_DISABLE_SUBLIM |
1237 |
a_FWbySublimMult(I,J,K) = ZERO |
a_FWbySublimMult(I,J,IT) = ZERO |
1238 |
#endif |
#endif |
1239 |
a_FWbySublimMult(I,J,K) = SEAICE_deltaTtherm*recip_rhoIce |
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
1240 |
& * a_FWbySublimMult(I,J,K)*AREAITDpreTH(I,J,K) |
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
1241 |
r_FWbySublimMult(I,J,K)=a_FWbySublimMult(I,J,K) |
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
1242 |
ENDDO |
ENDDO |
1243 |
ENDDO |
ENDDO |
1244 |
ENDDO |
ENDDO |
1245 |
DO J=1,sNy |
DO J=1,sNy |
1246 |
DO I=1,sNx |
DO I=1,sNx |
1247 |
|
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1248 |
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1249 |
|
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1250 |
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1251 |
C and initialize r_QbyATM_open |
C and initialize r_QbyATM_open |
1252 |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1253 |
ENDDO |
ENDDO |
1269 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1270 |
C Negative sublimation is resublimation and will be added as snow. |
C Negative sublimation is resublimation and will be added as snow. |
1271 |
#ifdef SEAICE_DISABLE_SUBLIM |
#ifdef SEAICE_DISABLE_SUBLIM |
1272 |
cgf just for those who may need to omit this term to reproduce old results |
Cgf just for those who may need to omit this term to reproduce old results |
1273 |
a_FWbySublim(I,J) = ZERO |
a_FWbySublim(I,J) = ZERO |
1274 |
#endif |
#endif /* SEAICE_DISABLE_SUBLIM */ |
1275 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
1276 |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
1277 |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
1295 |
Cgf no additional dependency through ice cover |
Cgf no additional dependency through ice cover |
1296 |
IF ( SEAICEadjMODE.GE.3 ) THEN |
IF ( SEAICEadjMODE.GE.3 ) THEN |
1297 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1298 |
DO K=1,nITD |
DO IT=1,nITD |
1299 |
DO J=1,sNy |
DO J=1,sNy |
1300 |
DO I=1,sNx |
DO I=1,sNx |
1301 |
a_QbyATMmult_cover(I,J,K) = 0. _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1302 |
r_QbyATMmult_cover(I,J,K) = 0. _d 0 |
r_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1303 |
a_QSWbyATMmult_cover(I,J,K) = 0. _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
1304 |
ENDDO |
ENDDO |
1305 |
ENDDO |
ENDDO |
1306 |
ENDDO |
ENDDO |
1307 |
#else |
#else |
1308 |
DO J=1,sNy |
DO J=1,sNy |
1309 |
DO I=1,sNx |
DO I=1,sNx |
1329 |
|
|
1330 |
DO J=1,sNy |
DO J=1,sNy |
1331 |
DO I=1,sNx |
DO I=1,sNx |
1332 |
c FREEZING TEMP. OF SEA WATER (deg C) |
C FREEZING TEMP. OF SEA WATER (deg C) |
1333 |
tempFrz = SEAICE_tempFrz0 + |
tempFrz = SEAICE_tempFrz0 + |
1334 |
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
1335 |
c efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
C efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
1336 |
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
1337 |
tmpscal1 = SEAICE_mcPheePiston |
tmpscal1 = SEAICE_mcPheePiston |
1338 |
ELSE |
ELSE |
1339 |
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
1340 |
ENDIF |
ENDIF |
1341 |
c efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
C efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
1342 |
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1343 |
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
1344 |
MixedLayerTurbulenceFactor = ONE - |
MixedLayerTurbulenceFactor = ONE - |
1349 |
ELSE |
ELSE |
1350 |
MixedLayerTurbulenceFactor = ONE |
MixedLayerTurbulenceFactor = ONE |
1351 |
ENDIF |
ENDIF |
1352 |
c maximum turbulent flux, in ice meters |
C maximum turbulent flux, in ice meters |
1353 |
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
1354 |
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
1355 |
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
1356 |
c available turbulent flux |
C available turbulent flux |
1357 |
a_QbyOCN(i,j) = |
a_QbyOCN(i,j) = |
1358 |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
1359 |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
|
ctm |
|
|
if (i.eq.20 .and. j.eq.20) then |
|
|
print *, HeatCapacity_Cp |
|
|
print *, rhoConst |
|
|
print *, recip_QI |
|
|
print *, theta(20,20,kSurface,bi,bj) |
|
|
print *, tempFrz |
|
|
print *, SEAICE_deltaTtherm |
|
|
print *, maskC(20,20,kSurface,bi,bj) |
|
|
print *, tmpscal2 |
|
|
print *, a_QbyOCN(20,20) |
|
|
endif |
|
|
ctm |
|
1360 |
ENDDO |
ENDDO |
1361 |
ENDDO |
ENDDO |
1362 |
|
|
1364 |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
1365 |
#endif |
#endif |
1366 |
|
|
|
|
|
1367 |
C =================================================================== |
C =================================================================== |
1368 |
C =========PART 3: determine effective thicknesses increments======== |
C =========PART 3: determine effective thicknesses increments======== |
1369 |
C =================================================================== |
C =================================================================== |
1376 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1377 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1378 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1379 |
DO K=1,nITD |
DO IT=1,nITD |
1380 |
#endif |
#endif |
1381 |
DO J=1,sNy |
DO J=1,sNy |
1382 |
DO I=1,sNx |
DO I=1,sNx |
1383 |
C First sublimate/deposite snow |
C First sublimate/deposite snow |
1384 |
tmpscal2 = |
tmpscal2 = |
1385 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1386 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HSNOWITD(I,J,K,bi,bj) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1387 |
& *SNOW2ICE),ZERO) |
& *SNOW2ICE),ZERO) |
1388 |
|
d_HSNWbySublim_ITD(I,J,IT) = - tmpscal2 * ICE2SNOW |
1389 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1390 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
|
& *ICE2SNOW |
|
|
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal2 |
|
1391 |
& *ICE2SNOW |
& *ICE2SNOW |
1392 |
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
|
C keep total up to date, too |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
|
1393 |
#else |
#else |
1394 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1395 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1407 |
C If anything is left, sublimate ice |
C If anything is left, sublimate ice |
1408 |
tmpscal2 = |
tmpscal2 = |
1409 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1410 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HEFFITD(I,J,K,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1411 |
|
d_HEFFbySublim_ITD(I,J,IT) = - tmpscal2 |
1412 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1413 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HEFFbySublim(I,J) = d_HEFFbySublim(I,J) - tmpscal2 |
1414 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) - tmpscal2 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
|
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
|
|
C keep total up to date, too |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
|
1415 |
#else |
#else |
1416 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1417 |
d_HEFFbySublim(I,J) = - tmpscal2 |
d_HEFFbySublim(I,J) = - tmpscal2 |
1426 |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1427 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1428 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1429 |
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1430 |
& - r_FWbySublimMult(I,J,K) |
& - r_FWbySublimMult(I,J,IT) |
1431 |
r_QbyATMmult_cover(I,J,K) = r_QbyATMmult_cover(I,J,K) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1432 |
& - r_FWbySublimMult(I,J,K) |
& - r_FWbySublimMult(I,J,IT) |
1433 |
ENDDO |
#else |
|
ENDDO |
|
|
C end K loop |
|
|
ENDDO |
|
|
C then update totals |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
#endif |
|
1434 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1435 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1436 |
|
#endif |
1437 |
ENDDO |
ENDDO |
1438 |
ENDDO |
ENDDO |
1439 |
|
#ifdef SEAICE_ITD |
1440 |
|
C end IT loop |
1441 |
|
ENDDO |
1442 |
|
#endif |
1443 |
|
#ifdef SEAICE_DEBUG |
1444 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1445 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,msgBufForm) |
1446 |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
& ' SEAICE_GROWTH: Hsnow increments 1, d_HSNWySublim = ', |
1447 |
& HEFFITD(20,20,:,bi,bj) |
#ifdef SEAICE_ITD |
1448 |
|
& d_HSNWbySublim_ITD(1,1,:) |
1449 |
|
#else |
1450 |
|
& d_HSNWbySublim(1,1) |
1451 |
|
#endif |
1452 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1453 |
|
& SQUEEZE_RIGHT , myThid) |
1454 |
|
WRITE(msgBuf,msgBufForm) |
1455 |
|
& ' SEAICE_GROWTH: Heff increments 1, d_HEFFbySublim = ', |
1456 |
|
#ifdef SEAICE_ITD |
1457 |
|
& d_HEFFbySublim_ITD(1,1,:) |
1458 |
|
#else |
1459 |
|
& d_HEFFbySublim(1,1) |
1460 |
|
#endif |
1461 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1462 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1463 |
c ToM>>> |
c ToM>>> |
1464 |
|
#endif /* SEAICE_DEBUG */ |
1465 |
|
|
1466 |
C compute ice thickness tendency due to ice-ocean interaction |
C compute ice thickness tendency due to ice-ocean interaction |
1467 |
C =========================================================== |
C =========================================================== |
1472 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1473 |
|
|
1474 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1475 |
DO K=1,nITD |
DO IT=1,nITD |
1476 |
DO J=1,sNy |
DO J=1,sNy |
1477 |
DO I=1,sNx |
DO I=1,sNx |
1478 |
C ice growth/melt due to ocean heat is equally distributed under the ice |
C ice growth/melt due to ocean heat r_QbyOCN (W/m^2) is |
1479 |
C and hence weighted by fractional area of each thickness category |
C equally distributed under the ice and hence weighted by |
1480 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,K), |
C fractional area of each thickness category |
1481 |
& -HEFFITD(I,J,K,bi,bj)) |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1482 |
d_HEFFbyOCNonICE(I,J)= d_HEFFbyOCNonICE(I,J) + tmpscal1 |
& -HEFFITD(I,J,IT,bi,bj)) |
1483 |
r_QbyOCN(I,J) = r_QbyOCN(I,J) - tmpscal1 |
d_HEFFbyOCNonICE_ITD(I,J,IT)=tmpscal1 |
1484 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1485 |
|
ENDDO |
1486 |
|
ENDDO |
1487 |
|
ENDDO |
1488 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1489 |
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
DO J=1,sNy |
1490 |
& + HEFFITD(I,J,K,bi,bj) |
DO I=1,sNx |
1491 |
|
SItrHEFF(I,J,bi,bj,2) = HEFFpreTH(I,J) |
1492 |
|
& + d_HEFFbySublim(I,J) |
1493 |
|
& + d_HEFFbyOCNonICE(I,J) |
1494 |
|
ENDDO |
1495 |
|
ENDDO |
1496 |
#endif |
#endif |
1497 |
ENDDO |
DO J=1,sNy |
1498 |
|
DO I=1,sNx |
1499 |
|
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1500 |
ENDDO |
ENDDO |
1501 |
ENDDO |
ENDDO |
|
c ToM<<< debug seaice_growth |
|
|
WRITE(msgBuf,'(A,7F9.6)') |
|
|
& ' SEAICE_GROWTH: d_HEFFbyOCNonICE w/ITD: ', |
|
|
& d_HEFFbyOCNonICE(20,20) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
c ToM>>> |
|
1502 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
1503 |
DO J=1,sNy |
DO J=1,sNy |
1504 |
DO I=1,sNx |
DO I=1,sNx |
1510 |
#endif |
#endif |
1511 |
ENDDO |
ENDDO |
1512 |
ENDDO |
ENDDO |
|
c ToM<<< debug seaice_growth |
|
|
WRITE(msgBuf,'(A,7F9.6)') |
|
|
& ' SEAICE_GROWTH: d_HEFFbyOCNonICE w/o ITD: ', |
|
|
& d_HEFFbyOCNonICE(20,20) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
c ToM>>> |
|
1513 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1514 |
|
#ifdef SEAICE_DEBUG |
1515 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1516 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,msgBufForm) |
1517 |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 2, d_HEFFbyOCNonICE = ', |
1518 |
& HEFFITD(20,20,:,bi,bj) |
#ifdef SEAICE_ITD |
1519 |
|
& d_HEFFbyOCNonICE_ITD(1,1,:) |
1520 |
|
#else |
1521 |
|
& d_HEFFbyOCNonICE(1,1) |
1522 |
|
#endif |
1523 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1524 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1525 |
c ToM>>> |
c ToM>>> |
1526 |
|
#endif /* SEAICE_DEBUG */ |
1527 |
|
|
1528 |
C compute snow melt tendency due to snow-atmosphere interaction |
C compute snow melt tendency due to snow-atmosphere interaction |
1529 |
C ================================================================== |
C ================================================================== |
1534 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1535 |
|
|
1536 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1537 |
DO K=1,nITD |
DO IT=1,nITD |
1538 |
DO J=1,sNy |
DO J=1,sNy |
1539 |
DO I=1,sNx |
DO I=1,sNx |
1540 |
C Convert to standard units (meters of ice) rather than to meters |
C Convert to standard units (meters of ice) rather than to meters |
1541 |
C of snow. This appears to be more robust. |
C of snow. This appears to be more robust. |
1542 |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,K),-HSNOWITD(I,J,K,bi,bj) |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,IT), |
1543 |
& *SNOW2ICE) |
& -HSNOWITD(I,J,IT,bi,bj)*SNOW2ICE) |
1544 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1545 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1546 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1547 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1548 |
#endif |
#endif |
1549 |
d_HSNWbyATMonSNW(I,J)=d_HSNWbyATMonSNW(I,J)+tmpscal2*ICE2SNOW |
d_HSNWbyATMonSNW_ITD(I,J,IT) = tmpscal2*ICE2SNOW |
1550 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal2*ICE2SNOW |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1551 |
r_QbyATMmult_cover(I,J,K)=r_QbyATMmult_cover(I,J,K) - tmpscal2 |
& + tmpscal2*ICE2SNOW |
1552 |
C keep the total up to date, too |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1553 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
& - tmpscal2 |
1554 |
ENDDO |
ENDDO |
1555 |
ENDDO |
ENDDO |
1556 |
ENDDO |
ENDDO |
1557 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
1558 |
DO J=1,sNy |
DO J=1,sNy |
1559 |
DO I=1,sNx |
DO I=1,sNx |
1571 |
ENDDO |
ENDDO |
1572 |
ENDDO |
ENDDO |
1573 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1574 |
|
#ifdef SEAICE_DEBUG |
1575 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1576 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,msgBufForm) |
1577 |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
& ' SEAICE_GROWTH: Hsnow increments 3, d_HSNWbyATMonSNW = ', |
1578 |
& HEFFITD(20,20,:,bi,bj) |
#ifdef SEAICE_ITD |
1579 |
|
& d_HSNWbyATMonSNW_ITD(1,1,:) |
1580 |
|
#else |
1581 |
|
& d_HSNWbyATMonSNW(1,1) |
1582 |
|
#endif |
1583 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1584 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1585 |
c ToM>>> |
c ToM>>> |
1586 |
|
#endif /* SEAICE_DEBUG */ |
1587 |
|
|
1588 |
C compute ice thickness tendency due to the atmosphere |
C compute ice thickness tendency due to the atmosphere |
1589 |
C ==================================================== |
C ==================================================== |
1599 |
Cgf warming conditions, the lab_sea results were not changed. |
Cgf warming conditions, the lab_sea results were not changed. |
1600 |
|
|
1601 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1602 |
DO K=1,nITD |
DO IT=1,nITD |
1603 |
DO J=1,sNy |
DO J=1,sNy |
1604 |
DO I=1,sNx |
DO I=1,sNx |
1605 |
|
tmpscal1 = HEFFITDpreTH(I,J,IT) |
1606 |
|
& + d_HEFFbySublim_ITD(I,J,IT) |
1607 |
|
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1608 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
1609 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K)) |
tmpscal2 = MAX(-tmpscal1, |
1610 |
|
& r_QbyATMmult_cover(I,J,IT)) |
1611 |
#else |
#else |
1612 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K) |
tmpscal2 = MAX(-tmpscal1, |
1613 |
|
& r_QbyATMmult_cover(I,J,IT) |
1614 |
c Limit ice growth by potential melt by ocean |
c Limit ice growth by potential melt by ocean |
1615 |
& + AREAITDpreTH(I,J,K) * r_QbyOCN(I,J)) |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1616 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1617 |
|
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = tmpscal2 |
1618 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1619 |
& + tmpscal2 |
& + tmpscal2 |
1620 |
|
d_HEFFbyATMonOCN_ITD(I,J,IT) = d_HEFFbyATMonOCN_ITD(I,J,IT) |
1621 |
|
& + tmpscal2 |
1622 |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1623 |
& + tmpscal2 |
& + tmpscal2 |
1624 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1625 |
& - tmpscal2 |
& - tmpscal2 |
1626 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal2 |
ENDDO |
1627 |
|
ENDDO |
1628 |
|
ENDDO |
1629 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1630 |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
DO J=1,sNy |
1631 |
& + HEFFITD(I,J,K,bi,bj) |
DO I=1,sNx |
1632 |
|
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,2) |
1633 |
|
& + d_HEFFbyATMonOCN_cover(I,J) |
1634 |
|
ENDDO |
1635 |
|
ENDDO |
1636 |
#endif |
#endif |
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
1637 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
1638 |
DO J=1,sNy |
DO J=1,sNy |
1639 |
DO I=1,sNx |
DO I=1,sNx |
1642 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
1643 |
#else |
#else |
1644 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
1645 |
c Limit ice growth by potential melt by ocean |
C Limit ice growth by potential melt by ocean |
1646 |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
1647 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1648 |
|
|
1654 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1655 |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
1656 |
#endif |
#endif |
1657 |
ENDDO |
ENDDO |
1658 |
ENDDO |
ENDDO |
1659 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1660 |
|
#ifdef SEAICE_DEBUG |
1661 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1662 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,msgBufForm) |
1663 |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 4, d_HEFFbyATMonOCN_cover = ', |
1664 |
& HEFFITD(20,20,:,bi,bj) |
#ifdef SEAICE_ITD |
1665 |
|
& d_HEFFbyATMonOCN_cover_ITD(1,1,:) |
1666 |
|
#else |
1667 |
|
& d_HEFFbyATMonOCN_cover(1,1) |
1668 |
|
#endif |
1669 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1670 |
|
& SQUEEZE_RIGHT , myThid) |
1671 |
|
WRITE(msgBuf,msgBufForm) |
1672 |
|
& ' SEAICE_GROWTH: Heff increments 4, d_HEFFbyATMonOCN = ', |
1673 |
|
#ifdef SEAICE_ITD |
1674 |
|
& d_HEFFbyATMonOCN_ITD(1,1,:) |
1675 |
|
#else |
1676 |
|
& d_HEFFbyATMonOCN(1,1) |
1677 |
|
#endif |
1678 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1679 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1680 |
c ToM>>> |
c ToM>>> |
1681 |
|
#endif /* SEAICE_DEBUG */ |
1682 |
|
|
1683 |
C attribute precip to fresh water or snow stock, |
C add snow precipitation to HSNOW. |
|
C depending on atmospheric conditions. |
|
1684 |
C ================================================= |
C ================================================= |
1685 |
#ifdef ALLOW_ATM_TEMP |
#ifdef ALLOW_ATM_TEMP |
1686 |
#ifdef ALLOW_AUTODIFF_TAMC |
# ifdef ALLOW_AUTODIFF_TAMC |
1687 |
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1688 |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1689 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1690 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
# endif /* ALLOW_AUTODIFF_TAMC */ |
1691 |
DO J=1,sNy |
IF ( snowPrecipFile .NE. ' ' ) THEN |
1692 |
DO I=1,sNx |
C add snowPrecip to HSNOW |
1693 |
|
DO J=1,sNy |
1694 |
|
DO I=1,sNx |
1695 |
|
d_HSNWbyRAIN(I,J) = convertPRECIP2HI * ICE2SNOW * |
1696 |
|
& snowPrecip(i,j,bi,bj) * AREApreTH(I,J) |
1697 |
|
d_HFRWbyRAIN(I,J) = -convertPRECIP2HI * |
1698 |
|
& ( PRECIP(I,J,bi,bj) - snowPrecip(I,J,bi,bj) ) * |
1699 |
|
& AREApreTH(I,J) |
1700 |
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1701 |
|
ENDDO |
1702 |
|
ENDDO |
1703 |
|
ELSE |
1704 |
|
C attribute precip to fresh water or snow stock, |
1705 |
|
C depending on atmospheric conditions. |
1706 |
|
DO J=1,sNy |
1707 |
|
DO I=1,sNx |
1708 |
C possible alternatives to the a_QbyATM_cover criterium |
C possible alternatives to the a_QbyATM_cover criterium |
1709 |
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
1710 |
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
1711 |
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
1712 |
C add precip as snow |
C add precip as snow |
1713 |
d_HFRWbyRAIN(I,J)=0. _d 0 |
d_HFRWbyRAIN(I,J)=0. _d 0 |
1714 |
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
1715 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1716 |
ELSE |
ELSE |
1717 |
C add precip to the fresh water bucket |
C add precip to the fresh water bucket |
1718 |
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
1719 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1720 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
1721 |
ENDIF |
ENDIF |
1722 |
ENDDO |
ENDDO |
1723 |
ENDDO |
ENDDO |
1724 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1725 |
DO K=1,nITD |
DO IT=1,nITD |
1726 |
DO J=1,sNy |
DO J=1,sNy |
1727 |
DO I=1,sNx |
DO I=1,sNx |
1728 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) |
d_HSNWbyRAIN_ITD(I,J,IT) |
1729 |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,K) |
& = d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1730 |
ENDDO |
ENDDO |
1731 |
ENDDO |
ENDDO |
1732 |
ENDDO |
ENDDO |
1733 |
#else |
#else |
1734 |
DO J=1,sNy |
DO J=1,sNy |
1735 |
DO I=1,sNx |
DO I=1,sNx |
1740 |
Cgf note: this does not affect air-sea heat flux, |
Cgf note: this does not affect air-sea heat flux, |
1741 |
Cgf since the implied air heat gain to turn |
Cgf since the implied air heat gain to turn |
1742 |
Cgf rain to snow is not a surface process. |
Cgf rain to snow is not a surface process. |
1743 |
|
C end of IF statement snowPrecipFile: |
1744 |
|
ENDIF |
1745 |
#endif /* ALLOW_ATM_TEMP */ |
#endif /* ALLOW_ATM_TEMP */ |
1746 |
|
#ifdef SEAICE_DEBUG |
1747 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1748 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,msgBufForm) |
1749 |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
& ' SEAICE_GROWTH: Hsnow increments 5, d_HSNWbyRAIN = ', |
1750 |
& HEFFITD(20,20,:,bi,bj) |
#ifdef SEAICE_ITD |
1751 |
|
& d_HSNWbyRAIN_ITD(1,1,:) |
1752 |
|
#else |
1753 |
|
& d_HSNWbyRAIN(1,1) |
1754 |
|
#endif |
1755 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1756 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1757 |
c ToM>>> |
c ToM>>> |
1758 |
|
#endif /* SEAICE_DEBUG */ |
1759 |
|
|
1760 |
C compute snow melt due to heat available from ocean. |
C compute snow melt due to heat available from ocean. |
1761 |
C ================================================================= |
C ================================================================= |
1769 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1770 |
|
|
1771 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1772 |
DO K=1,nITD |
DO IT=1,nITD |
1773 |
DO J=1,sNy |
DO J=1,sNy |
1774 |
DO I=1,sNx |
DO I=1,sNx |
1775 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,K), |
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1776 |
& -HSNOWITD(I,J,K,bi,bj)) |
& + d_HSNWbySublim_ITD(I,J,IT) |
1777 |
|
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1778 |
|
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1779 |
|
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1780 |
|
& -tmpscal4) |
1781 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1782 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1783 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1784 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1785 |
#endif |
#endif |
1786 |
|
d_HSNWbyOCNonSNW_ITD(I,J,IT) = tmpscal2 |
1787 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1788 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
|
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) + tmpscal2 |
|
1789 |
ENDDO |
ENDDO |
1790 |
ENDDO |
ENDDO |
1791 |
ENDDO |
ENDDO |
1807 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1808 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1809 |
Cph) |
Cph) |
1810 |
|
#ifdef SEAICE_DEBUG |
1811 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1812 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,msgBufForm) |
1813 |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
& ' SEAICE_GROWTH: Hsnow increments 6, d_HSNWbyOCNonSNW = ', |
1814 |
& HEFFITD(20,20,:,bi,bj) |
#ifdef SEAICE_ITD |
1815 |
|
& d_HSNWbyOCNonSNW_ITD(1,1,:) |
1816 |
|
#else |
1817 |
|
& d_HSNWbyOCNonSNW(1,1) |
1818 |
|
#endif |
1819 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1820 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1821 |
c ToM>>> |
c ToM>>> |
1822 |
|
#endif /* SEAICE_DEBUG */ |
1823 |
|
|
1824 |
C gain of new ice over open water |
C gain of new ice over open water |
1825 |
C =============================== |
C =============================== |
1833 |
|
|
1834 |
DO J=1,sNy |
DO J=1,sNy |
1835 |
DO I=1,sNx |
DO I=1,sNx |
1836 |
c Initial ice growth is triggered by open water |
#ifdef SEAICE_ITD |
1837 |
c heat flux overcoming potential melt by ocean |
C HEFF will be updated at the end of PART 3, |
1838 |
|
C hence sum of tendencies so far is needed |
1839 |
|
tmpscal4 = HEFFpreTH(I,J) |
1840 |
|
& + d_HEFFbySublim(I,J) |
1841 |
|
& + d_HEFFbyOCNonICE(I,J) |
1842 |
|
& + d_HEFFbyATMonOCN(I,J) |
1843 |
|
#else |
1844 |
|
C HEFF is updated step by step throughout seaice_growth |
1845 |
|
tmpscal4 = HEFF(I,J,bi,bj) |
1846 |
|
#endif |
1847 |
|
C Initial ice growth is triggered by open water |
1848 |
|
C heat flux overcoming potential melt by ocean |
1849 |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
1850 |
& (1.0 _d 0 - AREApreTH(I,J)) |
& (1.0 _d 0 - AREApreTH(I,J)) |
1851 |
c Penetrative shortwave flux beyond first layer |
C Penetrative shortwave flux beyond first layer |
1852 |
c that is therefore not available to ice growth/melt |
C that is therefore not available to ice growth/melt |
1853 |
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
1854 |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
1855 |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1856 |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
1857 |
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
& -tmpscal4*facOpenMelt)*HEFFM(I,J,bi,bj) |
1858 |
|
#ifdef SEAICE_ITD |
1859 |
|
C ice growth in open water adds to first category |
1860 |
|
d_HEFFbyATMonOCN_open_ITD(I,J,1)=tmpscal3 |
1861 |
|
d_HEFFbyATMonOCN_ITD(I,J,1) =d_HEFFbyATMonOCN_ITD(I,J,1) |
1862 |
|
& +tmpscal3 |
1863 |
|
#endif |
1864 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1865 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1866 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
|
#ifdef SEAICE_ITD |
|
|
C open water area fraction |
|
|
tmpscal0 = ONE-AREApreTH(I,J) |
|
|
C determine thickness of new ice |
|
|
C considering the entire open water area to refreeze |
|
|
tmpscal1 = tmpscal3/tmpscal0 |
|
|
C then add new ice volume to appropriate thickness category |
|
|
DO K=1,nITD |
|
|
IF (tmpscal1.LT.Hlimit(K)) THEN |
|
|
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal3 |
|
|
tmpscal3=ZERO |
|
|
C not sure if AREAITD should be changed here since AREA is incremented |
|
|
C in PART 4 below in non-itd code |
|
|
C in this scenario all open water is covered by new ice instantaneously, |
|
|
C i.e. no delayed lead closing is concidered such as is associated with |
|
|
C Hibler's h_0 parameter |
|
|
AREAITD(I,J,K,bi,bj) = AREAITD(I,J,K,bi,bj) |
|
|
& + tmpscal0 |
|
|
tmpscal0=ZERO |
|
|
ENDIF |
|
|
ENDDO |
|
|
#else |
|
1867 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
|
#endif |
|
1868 |
ENDDO |
ENDDO |
1869 |
ENDDO |
ENDDO |
1870 |
|
|
1871 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
|
#ifdef SEAICE_ITD |
|
|
DO K=1,nITD |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
c needs to be here to allow use also with LEGACY branch |
|
|
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
|
|
& + HEFFITD(I,J,K,bi,bj) |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
#else |
|
1872 |
DO J=1,sNy |
DO J=1,sNy |
1873 |
DO I=1,sNx |
DO I=1,sNx |
1874 |
c needs to be here to allow use also with LEGACY branch |
C needs to be here to allow use also with LEGACY branch |
1875 |
|
#ifdef SEAICE_ITD |
1876 |
|
SItrHEFF(I,J,bi,bj,4)=SItrHEFF(I,J,bi,bj,3) |
1877 |
|
& +d_HEFFbyATMonOCN_open(I,J) |
1878 |
|
#else |
1879 |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1880 |
|
#endif |
1881 |
ENDDO |
ENDDO |
1882 |
ENDDO |
ENDDO |
|
#endif |
|
1883 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1884 |
|
#ifdef SEAICE_DEBUG |
1885 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1886 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,msgBufForm) |
1887 |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 7, d_HEFFbyATMonOCN_open = ', |
1888 |
& HEFFITD(20,20,:,bi,bj) |
#ifdef SEAICE_ITD |
1889 |
|
& d_HEFFbyATMonOCN_open_ITD(1,1,:) |
1890 |
|
#else |
1891 |
|
& d_HEFFbyATMonOCN_open(1,1) |
1892 |
|
#endif |
1893 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1894 |
|
& SQUEEZE_RIGHT , myThid) |
1895 |
|
WRITE(msgBuf,msgBufForm) |
1896 |
|
& ' SEAICE_GROWTH: Heff increments 7, d_HEFFbyATMonOCN = ', |
1897 |
|
#ifdef SEAICE_ITD |
1898 |
|
& d_HEFFbyATMonOCN_ITD(1,1,:) |
1899 |
|
#else |
1900 |
|
& d_HEFFbyATMonOCN(1,1) |
1901 |
|
#endif |
1902 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1903 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1904 |
c ToM>>> |
c ToM>>> |
1905 |
|
#endif /* SEAICE_DEBUG */ |
1906 |
|
|
1907 |
C convert snow to ice if submerged. |
C convert snow to ice if submerged. |
1908 |
C ================================= |
C ================================= |
1915 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1916 |
IF ( SEAICEuseFlooding ) THEN |
IF ( SEAICEuseFlooding ) THEN |
1917 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1918 |
DO K=1,nITD |
DO IT=1,nITD |
1919 |
DO J=1,sNy |
DO J=1,sNy |
1920 |
DO I=1,sNx |
DO I=1,sNx |
1921 |
tmpscal0 = (HSNOWITD(I,J,K,bi,bj)*SEAICE_rhoSnow |
tmpscal3 = HEFFITDpreTH(I,J,IT) |
1922 |
& +HEFFITD(I,J,K,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
& + d_HEFFbySublim_ITD(I,J,IT) |
1923 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,K,bi,bj)) |
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1924 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1925 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1926 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal1 |
& + d_HSNWbySublim_ITD(I,J,IT) |
1927 |
& * ICE2SNOW |
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1928 |
ENDDO |
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1929 |
ENDDO |
tmpscal0 = (tmpscal4*SEAICE_rhoSnow |
1930 |
ENDDO |
& + tmpscal3*SEAICE_rhoIce) |
1931 |
|
& * recip_rhoConst |
1932 |
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - tmpscal3) |
1933 |
|
d_HEFFbyFLOODING_ITD(I,J,IT) = tmpscal1 |
1934 |
|
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1935 |
|
ENDDO |
1936 |
|
ENDDO |
1937 |
|
ENDDO |
1938 |
#else |
#else |
1939 |
DO J=1,sNy |
DO J=1,sNy |
1940 |
DO I=1,sNx |
DO I=1,sNx |
1945 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1946 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1947 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1948 |
ENDDO |
ENDDO |
1949 |
ENDDO |
ENDDO |
1950 |
#endif |
#endif |
1951 |
ENDIF |
ENDIF |
1952 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1953 |
|
#ifdef SEAICE_DEBUG |
1954 |
|
c ToM<<< debug seaice_growth |
1955 |
|
WRITE(msgBuf,msgBufForm) |
1956 |
|
& ' SEAICE_GROWTH: Heff increments 8, d_HEFFbyFLOODING = ', |
1957 |
|
#ifdef SEAICE_ITD |
1958 |
|
& d_HEFFbyFLOODING_ITD(1,1,:) |
1959 |
|
#else |
1960 |
|
& d_HEFFbyFLOODING(1,1) |
1961 |
|
#endif |
1962 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1963 |
|
& SQUEEZE_RIGHT , myThid) |
1964 |
|
c ToM>>> |
1965 |
|
#endif /* SEAICE_DEBUG */ |
1966 |
|
#ifdef SEAICE_ITD |
1967 |
|
C apply ice and snow thickness changes |
1968 |
|
C ================================================================= |
1969 |
|
DO IT=1,nITD |
1970 |
|
DO J=1,sNy |
1971 |
|
DO I=1,sNx |
1972 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) |
1973 |
|
& + d_HEFFbySublim_ITD(I,J,IT) |
1974 |
|
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1975 |
|
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1976 |
|
& + d_HEFFbyFLOODING_ITD(I,J,IT) |
1977 |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1978 |
|
& + d_HSNWbySublim_ITD(I,J,IT) |
1979 |
|
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1980 |
|
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1981 |
|
& + d_HSNWbyOCNonSNW_ITD(I,J,IT) |
1982 |
|
& - d_HEFFbyFLOODING_ITD(I,J,IT) |
1983 |
|
& * ICE2SNOW |
1984 |
|
ENDDO |
1985 |
|
ENDDO |
1986 |
|
ENDDO |
1987 |
|
#endif |
1988 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1989 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,msgBufForm) |
1990 |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 9, HEFF = ', |
1991 |
& HEFFITD(20,20,:,bi,bj) |
#ifdef SEAICE_ITD |
1992 |
|
& HEFFITD(1,1,:,bi,bj) |
1993 |
|
#else |
1994 |
|
& HEFF(1,1,bi,bj) |
1995 |
|
#endif |
1996 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1997 |
|
& SQUEEZE_RIGHT , myThid) |
1998 |
|
WRITE(msgBuf,msgBufForm) |
1999 |
|
& ' SEAICE_GROWTH: Area increments 9, AREA = ', |
2000 |
|
#ifdef SEAICE_ITD |
2001 |
|
& AREAITD(1,1,:,bi,bj) |
2002 |
|
#else |
2003 |
|
& AREA(1,1,bi,bj) |
2004 |
|
#endif |
2005 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2006 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
2007 |
c ToM>>> |
c ToM>>> |
2031 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2032 |
|
|
2033 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
2034 |
C replaces Hibler '79 scheme and lead closing parameter |
C-- account for lateral ice growth and melt only in thinnest category |
2035 |
C because ITD accounts explicitly for lead openings and |
C-- use HEFF, ARE, HSNOW, etc. temporarily for 1st category |
2036 |
C different melt rates due to varying ice thickness |
C (this way we can use same code for ITD and non-ITD case) |
2037 |
C |
DO J=1,sNy |
2038 |
C only consider ice area loss due to total ice thickness loss |
DO I=1,sNx |
2039 |
C ice area gain due to freezing of open water as handled above |
HEFF(I,J,bi,bj)=HEFFITD(I,J,1,bi,bj) |
2040 |
C under "gain of new ice over open water" |
AREA(I,J,bi,bj)=AREAITD(I,J,1,bi,bj) |
2041 |
C |
HSNOW(I,J,bi,bj)=HSNOWITD(I,J,1,bi,bj) |
2042 |
C does not account for lateral melt of ice floes |
HEFFpreTH(I,J)=HEFFITDpreTH(I,J,1) |
2043 |
C |
AREApreTH(I,J)=AREAITDpreTH(I,J,1) |
2044 |
C AREAITD is incremented in section "gain of new ice over open water" above |
recip_heffActual(I,J)=recip_heffActualMult(I,J,1) |
2045 |
C |
ENDDO |
2046 |
DO K=1,nITD |
ENDDO |
2047 |
DO J=1,sNy |
C all other categories only experience basal growth or melt, |
2048 |
DO I=1,sNx |
C i.e. change sin AREA only occur when all ice in a category is melted |
2049 |
IF (HEFFITD(I,J,K,bi,bj).LE.ZERO) THEN |
IF (nITD .gt. 1) THEN |
2050 |
AREAITD(I,J,K,bi,bj)=ZERO |
DO IT=2,nITD |
2051 |
ENDIF |
DO J=1,sNy |
2052 |
#ifdef ALLOW_SITRACER |
DO I=1,sNx |
2053 |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
2054 |
& + AREAITD(I,J,K,bi,bj) |
AREAITD(I,J,IT,bi,bj)=ZERO |
2055 |
#endif /* ALLOW_SITRACER */ |
ENDIF |
2056 |
ENDDO |
ENDDO |
2057 |
ENDDO |
ENDDO |
2058 |
ENDDO |
ENDDO |
2059 |
#else /* SEAICE_ITD */ |
ENDIF |
2060 |
|
#endif |
2061 |
DO J=1,sNy |
DO J=1,sNy |
2062 |
DO I=1,sNx |
DO I=1,sNx |
2063 |
|
|
2127 |
#endif /* ALLOW_DIAGNOSTICS */ |
#endif /* ALLOW_DIAGNOSTICS */ |
2128 |
ENDDO |
ENDDO |
2129 |
ENDDO |
ENDDO |
2130 |
#endif /* SEAICE_ITD */ |
#ifdef SEAICE_ITD |
2131 |
|
C transfer 1st category values back into ITD variables |
2132 |
|
DO J=1,sNy |
2133 |
|
DO I=1,sNx |
2134 |
|
HEFFITD(I,J,1,bi,bj)=HEFF(I,J,bi,bj) |
2135 |
|
AREAITD(I,J,1,bi,bj)=AREA(I,J,bi,bj) |
2136 |
|
HSNOWITD(I,J,1,bi,bj)=HSNOW(I,J,bi,bj) |
2137 |
|
ENDDO |
2138 |
|
ENDDO |
2139 |
|
#endif |
2140 |
|
|
2141 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
2142 |
Cgf 'bulk' linearization of area=f(HEFF) |
Cgf 'bulk' linearization of area=f(HEFF) |
2143 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
IF ( SEAICEadjMODE.GE.1 ) THEN |
2144 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
2145 |
DO K=1,nITD |
DO IT=1,nITD |
2146 |
DO J=1,sNy |
DO J=1,sNy |
2147 |
DO I=1,sNx |
DO I=1,sNx |
2148 |
AREAITD(I,J,K,bi,bj) = AREAITDpreTH(I,J,K) + 0.1 _d 0 * |
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
2149 |
& ( HEFFITD(I,J,K,bi,bj) - HEFFITDpreTH(I,J,K) ) |
& ( HEFFITD(I,J,IT,bi,bj) - HEFFITDpreTH(I,J,IT) ) |
2150 |
ENDDO |
ENDDO |
2151 |
ENDDO |
ENDDO |
2152 |
ENDDO |
ENDDO |
2189 |
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
2190 |
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
2191 |
& + d_HEFFbySublim(I,J) |
& + d_HEFFbySublim(I,J) |
2192 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2193 |
+ d_HEFFbyRLX(I,J) |
& + d_HEFFbyRLX(I,J) |
2194 |
#endif |
#endif |
2195 |
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
2196 |
& * recip_deltaTtherm * SEAICE_rhoIce |
& * recip_deltaTtherm * SEAICE_rhoIce |
2284 |
ENDDO |
ENDDO |
2285 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
#endif /* SEAICE_VARIABLE_SALINITY */ |
2286 |
|
|
|
|
|
2287 |
C ======================================================================= |
C ======================================================================= |
2288 |
C ==LEGACY PART 6 (LEGACY) treat pathological cases, then do flooding === |
C ==LEGACY PART 6 (LEGACY) treat pathological cases, then do flooding === |
2289 |
C ======================================================================= |
C ======================================================================= |
2366 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
2367 |
DO J=1,sNy |
DO J=1,sNy |
2368 |
DO I=1,sNx |
DO I=1,sNx |
2369 |
c needs to be here to allow use also with LEGACY branch |
C needs to be here to allow use also with LEGACY branch |
2370 |
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
2371 |
ENDDO |
ENDDO |
2372 |
ENDDO |
ENDDO |
2380 |
C accounting for the part used in melt/freeze processes |
C accounting for the part used in melt/freeze processes |
2381 |
C ===================================================== |
C ===================================================== |
2382 |
|
|
2383 |
|
#ifdef SEAICE_ITD |
2384 |
|
C compute total of "mult" fluxes for ocean forcing |
2385 |
|
DO J=1,sNy |
2386 |
|
DO I=1,sNx |
2387 |
|
a_QbyATM_cover(I,J) = 0.0 _d 0 |
2388 |
|
r_QbyATM_cover(I,J) = 0.0 _d 0 |
2389 |
|
a_QSWbyATM_cover(I,J) = 0.0 _d 0 |
2390 |
|
r_FWbySublim(I,J) = 0.0 _d 0 |
2391 |
|
ENDDO |
2392 |
|
ENDDO |
2393 |
|
DO IT=1,nITD |
2394 |
|
DO J=1,sNy |
2395 |
|
DO I=1,sNx |
2396 |
|
cToM if fluxes in W/m^2 then |
2397 |
|
c a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2398 |
|
c & + a_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2399 |
|
c r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2400 |
|
c & + r_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2401 |
|
c a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2402 |
|
c & + a_QSWbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2403 |
|
c r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2404 |
|
c & + r_FWbySublimMult(I,J,IT) * areaFracFactor(I,J,IT) |
2405 |
|
cToM if fluxes in effective ice meters, i.e. ice volume per area, then |
2406 |
|
a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2407 |
|
& + a_QbyATMmult_cover(I,J,IT) |
2408 |
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2409 |
|
& + r_QbyATMmult_cover(I,J,IT) |
2410 |
|
a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2411 |
|
& + a_QSWbyATMmult_cover(I,J,IT) |
2412 |
|
r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2413 |
|
& + r_FWbySublimMult(I,J,IT) |
2414 |
|
ENDDO |
2415 |
|
ENDDO |
2416 |
|
ENDDO |
2417 |
|
#endif |
2418 |
|
|
2419 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
2420 |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
2421 |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
2429 |
C for backward compatibility it is left out of the LEGACY branch |
C for backward compatibility it is left out of the LEGACY branch |
2430 |
& + a_QSWbyATM_cover(I,J) |
& + a_QSWbyATM_cover(I,J) |
2431 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
2432 |
& - ( d_HEFFbyOCNonICE(I,J) + |
& - ( d_HEFFbyOCNonICE(I,J) |
2433 |
& d_HSNWbyOCNonSNW(I,J)*SNOW2ICE + |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2434 |
& d_HEFFbyNEG(I,J) + |
& + d_HEFFbyNEG(I,J) |
2435 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2436 |
& d_HEFFbyRLX(I,J) + |
& + d_HEFFbyRLX(I,J) |
2437 |
#endif |
#endif |
2438 |
& d_HSNWbyNEG(I,J)*SNOW2ICE ) |
& + d_HSNWbyNEG(I,J)*SNOW2ICE |
2439 |
& * maskC(I,J,kSurface,bi,bj) |
& - convertPRECIP2HI * |
2440 |
|
& snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) |
2441 |
|
& ) * maskC(I,J,kSurface,bi,bj) |
2442 |
|
ENDDO |
2443 |
|
ENDDO |
2444 |
|
DO J=1,sNy |
2445 |
|
DO I=1,sNx |
2446 |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
2447 |
ENDDO |
ENDDO |
2448 |
ENDDO |
ENDDO |
2470 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
2471 |
CADJ & key = iicekey, byte = isbyte |
CADJ & key = iicekey, byte = isbyte |
2472 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2473 |
IF ( SEAICEheatConsFix ) THEN |
cgf Unlike for evap and precip, the temperature of gained/lost |
2474 |
c Unlike for evap and precip, the temperature of gained/lost |
C ocean liquid water due to melt/freeze of solid water cannot be chosen |
2475 |
c ocean liquid water due to melt/freeze of solid water cannot be chosen |
C arbitrarily to be e.g. the ocean SST. Indeed the present seaice model |
2476 |
c to be e.g. the ocean SST. It must be done at 0degC. The fix below anticipates |
C implies a constant ice temperature of 0degC. If melt/freeze water is exchanged |
2477 |
c on external_forcing_surf.F and applies the correction to QNET. |
C at a different temperature, it leads to a loss of conservation in the |
2478 |
IF ((convertFW2Salt.EQ.-1.).OR.(temp_EvPrRn.EQ.UNSET_RL)) THEN |
C ocean+ice system. While this is mostly a serious issue in the |
2479 |
c I leave alone the exotic case when onvertFW2Salt.NE.-1 and temp_EvPrRn.NE.UNSET_RL and |
C real fresh water + non linear free surface framework, a mismatch |
2480 |
c the small error of the synchronous time stepping case (see external_forcing_surf.F). |
C between ice and ocean boundary condition can result in all cases. |
2481 |
|
C Below we therefore anticipate on external_forcing_surf.F |
2482 |
|
C to diagnoze and/or apply the correction to QNET. |
2483 |
DO J=1,sNy |
DO J=1,sNy |
2484 |
DO I=1,sNx |
DO I=1,sNx |
2485 |
#ifdef ALLOW_DIAGNOSTICS |
C ocean water going to ice/snow, in precip units |
2486 |
c store unaltered QNET for diagnostic purposes |
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)*( |
|
DIAGarrayA(I,J)=QNET(I,J,bi,bj) |
|
|
#endif |
|
|
c compute the ocean water going to ice/snow, in precip units |
|
|
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
|
2487 |
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2488 |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2489 |
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
2490 |
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
2491 |
& * convertHI2PRECIP |
& * convertHI2PRECIP |
2492 |
c factor in the heat content that external_forcing_surf.F |
& - snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) ) |
2493 |
c will associate with EMPMR, and remove it from QNET, so that |
C factor in the heat content as done in external_forcing_surf.F |
2494 |
c melt/freez water is in effect consistently gained/lost at 0degC |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND.useRealFreshWaterFlux |
2495 |
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2496 |
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
tmpscal1 = - tmpscal3* |
2497 |
& HeatCapacity_Cp * temp_EvPrRn |
& HeatCapacity_Cp * temp_EvPrRn |
2498 |
ELSE |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND.useRealFreshWaterFlux |
2499 |
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2500 |
|
tmpscal1 = - tmpscal3* |
2501 |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2502 |
ENDIF |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2503 |
|
tmpscal1 = - tmpscal3*HeatCapacity_Cp* |
2504 |
|
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2505 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2506 |
|
tmpscal1 = ZERO |
2507 |
|
ENDIF |
2508 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
2509 |
c back out the eventual TFLUX adjustement and fill diag |
C in all cases, diagnoze the boundary condition mismatch to SIaaflux |
2510 |
DIAGarrayA(I,J)=QNET(I,J,bi,bj)-DIAGarrayA(I,J) |
DIAGarrayA(I,J)=tmpscal1 |
2511 |
#endif |
#endif |
2512 |
|
C remove the mismatch when real fresh water is exchanged (at 0degC here) |
2513 |
|
IF ( useRealFreshWaterFlux.AND.(nonlinFreeSurf.GT.0).AND. |
2514 |
|
& SEAICEheatConsFix ) QNET(I,J,bi,bj)=QNET(I,J,bi,bj)+tmpscal1 |
2515 |
ENDDO |
ENDDO |
2516 |
ENDDO |
ENDDO |
|
ENDIF |
|
2517 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
2518 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2519 |
& 'SIaaflux',0,1,3,bi,bj,myThid) |
& 'SIaaflux',0,1,3,bi,bj,myThid) |
2520 |
#endif |
#endif |
|
ENDIF |
|
2521 |
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
2522 |
|
|
2523 |
|
C compute the net heat flux, incl. adv. by water, entering ocean+ice |
2524 |
|
C =================================================================== |
2525 |
|
DO J=1,sNy |
2526 |
|
DO I=1,sNx |
2527 |
|
cgf 1) SIatmQnt (analogous to qnet; excl. adv. by water exch.) |
2528 |
|
CML If I consider the atmosphere above the ice, the surface flux |
2529 |
|
CML which is relevant for the air temperature dT/dt Eq |
2530 |
|
CML accounts for sensible and radiation (with different treatment |
2531 |
|
CML according to wave-length) fluxes but not for "latent heat flux", |
2532 |
|
CML since it does not contribute to heating the air. |
2533 |
|
CML So this diagnostic is only good for heat budget calculations within |
2534 |
|
CML the ice-ocean system. |
2535 |
|
SIatmQnt(I,J,bi,bj) = |
2536 |
|
& maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
2537 |
|
#ifndef SEAICE_GROWTH_LEGACY |
2538 |
|
& a_QSWbyATM_cover(I,J) + |
2539 |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
2540 |
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
2541 |
|
cgf 2) SItflux (analogous to tflux; includes advection by water |
2542 |
|
C exchanged between atmosphere and ocean+ice) |
2543 |
|
C solid water going to atm, in precip units |
2544 |
|
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
2545 |
|
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
2546 |
|
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
2547 |
|
C liquid water going to atm, in precip units |
2548 |
|
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
2549 |
|
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2550 |
|
& * ( ONE - AREApreTH(I,J) ) |
2551 |
|
#ifdef ALLOW_RUNOFF |
2552 |
|
& - RUNOFF(I,J,bi,bj) |
2553 |
|
#endif /* ALLOW_RUNOFF */ |
2554 |
|
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
2555 |
|
& *convertHI2PRECIP ) |
2556 |
|
C In real fresh water flux + nonlinFS, we factor in the advected specific |
2557 |
|
C energy (referenced to 0 for 0deC liquid water). In virtual salt flux or |
2558 |
|
C linFS, rain/evap get a special treatment (see external_forcing_surf.F). |
2559 |
|
tmpscal1= - tmpscal1* |
2560 |
|
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
2561 |
|
IF ( (temp_EvPrRn.NE.UNSET_RL).AND.useRealFreshWaterFlux |
2562 |
|
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2563 |
|
tmpscal2= - tmpscal2* |
2564 |
|
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2565 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND.useRealFreshWaterFlux |
2566 |
|
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2567 |
|
tmpscal2= - tmpscal2* |
2568 |
|
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2569 |
|
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2570 |
|
tmpscal2= - tmpscal2*HeatCapacity_Cp* |
2571 |
|
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2572 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2573 |
|
tmpscal2= ZERO |
2574 |
|
ENDIF |
2575 |
|
SItflux(I,J,bi,bj)= |
2576 |
|
& SIatmQnt(I,J,bi,bj)-tmpscal1-tmpscal2 |
2577 |
|
ENDDO |
2578 |
|
ENDDO |
2579 |
|
|
2580 |
C compute net fresh water flux leaving/entering |
C compute net fresh water flux leaving/entering |
2581 |
C the ocean, accounting for fresh/salt water stocks. |
C the ocean, accounting for fresh/salt water stocks. |
2582 |
C ================================================== |
C ================================================== |
2590 |
& +d_HEFFbyOCNonICE(I,J) |
& +d_HEFFbyOCNonICE(I,J) |
2591 |
& +d_HEFFbyATMonOCN(I,J) |
& +d_HEFFbyATMonOCN(I,J) |
2592 |
& +d_HEFFbyNEG(I,J) |
& +d_HEFFbyNEG(I,J) |
2593 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2594 |
& +d_HEFFbyRLX(I,J) |
& +d_HEFFbyRLX(I,J) |
2595 |
#endif |
#endif |
2596 |
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
2604 |
#endif /* ALLOW_RUNOFF */ |
#endif /* ALLOW_RUNOFF */ |
2605 |
& + tmpscal1*convertHI2PRECIP |
& + tmpscal1*convertHI2PRECIP |
2606 |
& )*rhoConstFresh |
& )*rhoConstFresh |
2607 |
|
c and the flux leaving/entering the ocean+ice |
2608 |
|
SIatmFW(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2609 |
|
& EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2610 |
|
& - PRECIP(I,J,bi,bj) |
2611 |
|
#ifdef ALLOW_RUNOFF |
2612 |
|
& - RUNOFF(I,J,bi,bj) |
2613 |
|
#endif /* ALLOW_RUNOFF */ |
2614 |
|
& )*rhoConstFresh |
2615 |
|
& + a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2616 |
|
|
2617 |
ENDDO |
ENDDO |
2618 |
ENDDO |
ENDDO |
2619 |
|
|
2686 |
ENDDO |
ENDDO |
2687 |
ENDIF |
ENDIF |
2688 |
|
|
2689 |
|
#ifdef ALLOW_BALANCE_FLUXES |
2690 |
|
C Compute tile integrals of heat/fresh water fluxes to/from atm. |
2691 |
|
C ============================================================== |
2692 |
|
FWFsiTile(bi,bj) = 0. _d 0 |
2693 |
|
IF ( balanceEmPmR ) THEN |
2694 |
|
DO j=1,sNy |
2695 |
|
DO i=1,sNx |
2696 |
|
FWFsiTile(bi,bj) = |
2697 |
|
& FWFsiTile(bi,bj) + SIatmFW(i,j,bi,bj) |
2698 |
|
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2699 |
|
ENDDO |
2700 |
|
ENDDO |
2701 |
|
ENDIF |
2702 |
|
c to translate global mean FWF adjustements (see below) we may need : |
2703 |
|
FWF2HFsiTile(bi,bj) = 0. _d 0 |
2704 |
|
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2705 |
|
DO j=1,sNy |
2706 |
|
DO i=1,sNx |
2707 |
|
FWF2HFsiTile(bi,bj) = FWF2HFsiTile(bi,bj) + |
2708 |
|
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2709 |
|
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2710 |
|
ENDDO |
2711 |
|
ENDDO |
2712 |
|
ENDIF |
2713 |
|
HFsiTile(bi,bj) = 0. _d 0 |
2714 |
|
IF ( balanceQnet ) THEN |
2715 |
|
DO j=1,sNy |
2716 |
|
DO i=1,sNx |
2717 |
|
HFsiTile(bi,bj) = |
2718 |
|
& HFsiTile(bi,bj) + SItflux(i,j,bi,bj) |
2719 |
|
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2720 |
|
ENDDO |
2721 |
|
ENDDO |
2722 |
|
ENDIF |
2723 |
|
#endif |
2724 |
|
|
2725 |
C =================================================================== |
C =================================================================== |
2726 |
C ======================PART 8: diagnostics========================== |
C ======================PART 8: diagnostics========================== |
2727 |
C =================================================================== |
C =================================================================== |
2772 |
#ifdef ALLOW_ATM_TEMP |
#ifdef ALLOW_ATM_TEMP |
2773 |
DO J=1,sNy |
DO J=1,sNy |
2774 |
DO I=1,sNx |
DO I=1,sNx |
|
CML If I consider the atmosphere above the ice, the surface flux |
|
|
CML which is relevant for the air temperature dT/dt Eq |
|
|
CML accounts for sensible and radiation (with different treatment |
|
|
CML according to wave-length) fluxes but not for "latent heat flux", |
|
|
CML since it does not contribute to heating the air. |
|
|
CML So this diagnostic is only good for heat budget calculations within |
|
|
CML the ice-ocean system. |
|
|
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
|
|
& a_QSWbyATM_cover(I,J) + |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
|
|
C |
|
2775 |
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
2776 |
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
|
C |
|
|
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj)*( |
|
|
& PRECIP(I,J,bi,bj) |
|
|
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
|
|
#ifdef ALLOW_RUNOFF |
|
|
& + RUNOFF(I,J,bi,bj) |
|
|
#endif /* ALLOW_RUNOFF */ |
|
|
& )*rhoConstFresh |
|
|
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
|
2777 |
ENDDO |
ENDDO |
2778 |
ENDDO |
ENDDO |
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
|
|
& 'SIatmQnt',0,1,3,bi,bj,myThid) |
|
2779 |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
2780 |
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
|
CALL DIAGNOSTICS_FILL(DIAGarrayC, |
|
|
& 'SIatmFW ',0,1,3,bi,bj,myThid) |
|
2781 |
C |
C |
2782 |
DO J=1,sNy |
DO J=1,sNy |
2783 |
DO I=1,sNx |
DO I=1,sNx |
2785 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2786 |
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
2787 |
& * SEAICE_rhoIce * recip_deltaTtherm |
& * SEAICE_rhoIce * recip_deltaTtherm |
2788 |
c the residual Freshwater flux of sublimated ice |
C the residual Freshwater flux of sublimated ice |
2789 |
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
2790 |
& * r_FWbySublim(I,J) |
& * r_FWbySublim(I,J) |
2791 |
& * SEAICE_rhoIce * recip_deltaTtherm |
& * SEAICE_rhoIce * recip_deltaTtherm |
2802 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
2803 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
2804 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
|
|
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
c compute ice/snow water going to atm, in precip units |
|
|
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
|
|
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
|
|
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
|
|
c compute ocean water going to atm, in precip units |
|
|
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
|
|
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
|
|
& * ( ONE - AREApreTH(I,J) ) |
|
|
#ifdef ALLOW_RUNOFF |
|
|
& - RUNOFF(I,J,bi,bj) |
|
|
#endif /* ALLOW_RUNOFF */ |
|
|
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
|
|
& *convertHI2PRECIP ) |
|
|
c factor in the advected specific energy (referenced to 0 for 0deC liquid water) |
|
|
tmpscal1= - tmpscal1* |
|
|
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
|
|
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
|
|
tmpscal2= - tmpscal2* |
|
|
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
|
|
ELSE |
|
|
tmpscal2= - tmpscal2* |
|
|
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
|
|
ENDIF |
|
|
c add to SIatmQnt, leading to SItflux, which is analogous to TFLUX |
|
|
DIAGarrayA(I,J)=maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
|
|
& a_QSWbyATM_cover(I,J) + |
|
|
#endif |
|
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
|
|
& -tmpscal1-tmpscal2 |
|
|
ENDDO |
|
|
ENDDO |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
|
|
& 'SItflux ',0,1,3,bi,bj,myThid) |
|
2805 |
#endif /* ALLOW_ATM_TEMP */ |
#endif /* ALLOW_ATM_TEMP */ |
2806 |
|
|
2807 |
ENDIF |
ENDIF |
2811 |
ENDDO |
ENDDO |
2812 |
ENDDO |
ENDDO |
2813 |
|
|
2814 |
|
|
2815 |
|
C =================================================================== |
2816 |
|
C =========PART 9: HF/FWF global integrals and balancing============= |
2817 |
|
C =================================================================== |
2818 |
|
|
2819 |
|
#ifdef ALLOW_BALANCE_FLUXES |
2820 |
|
|
2821 |
|
c 1) global sums |
2822 |
|
# ifdef ALLOW_AUTODIFF_TAMC |
2823 |
|
CADJ STORE FWFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2824 |
|
CADJ STORE HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2825 |
|
CADJ STORE FWF2HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2826 |
|
# endif /* ALLOW_AUTODIFF_TAMC */ |
2827 |
|
FWFsiGlob=0. _d 0 |
2828 |
|
IF ( balanceEmPmR ) |
2829 |
|
& CALL GLOBAL_SUM_TILE_RL( FWFsiTile, FWFsiGlob, myThid ) |
2830 |
|
FWF2HFsiGlob=0. _d 0 |
2831 |
|
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2832 |
|
CALL GLOBAL_SUM_TILE_RL(FWF2HFsiTile, FWF2HFsiGlob, myThid) |
2833 |
|
ELSEIF ( balanceEmPmR ) THEN |
2834 |
|
FWF2HFsiGlob=HeatCapacity_Cp * temp_EvPrRn * globalArea |
2835 |
|
ENDIF |
2836 |
|
HFsiGlob=0. _d 0 |
2837 |
|
IF ( balanceQnet ) |
2838 |
|
& CALL GLOBAL_SUM_TILE_RL( HFsiTile, HFsiGlob, myThid ) |
2839 |
|
|
2840 |
|
c 2) global means |
2841 |
|
c mean SIatmFW |
2842 |
|
tmpscal0=FWFsiGlob / globalArea |
2843 |
|
c corresponding mean advection by atm to ocean+ice water exchange |
2844 |
|
c (if mean SIatmFW was removed uniformely from ocean) |
2845 |
|
tmpscal1=FWFsiGlob / globalArea * FWF2HFsiGlob / globalArea |
2846 |
|
c mean SItflux (before potential adjustement due to SIatmFW) |
2847 |
|
tmpscal2=HFsiGlob / globalArea |
2848 |
|
c mean SItflux (after potential adjustement due to SIatmFW) |
2849 |
|
IF ( balanceEmPmR ) tmpscal2=tmpscal2-tmpscal1 |
2850 |
|
|
2851 |
|
c 3) balancing adjustments |
2852 |
|
IF ( balanceEmPmR ) THEN |
2853 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
2854 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
2855 |
|
DO j=1-OLy,sNy+OLy |
2856 |
|
DO i=1-OLx,sNx+OLx |
2857 |
|
empmr(i,j,bi,bj) = empmr(i,j,bi,bj) - tmpscal0 |
2858 |
|
SIatmFW(i,j,bi,bj) = SIatmFW(i,j,bi,bj) - tmpscal0 |
2859 |
|
c adjust SItflux consistently |
2860 |
|
IF ( (temp_EvPrRn.NE.UNSET_RL).AND. |
2861 |
|
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2862 |
|
tmpscal1= |
2863 |
|
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2864 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND. |
2865 |
|
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2866 |
|
tmpscal1= |
2867 |
|
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2868 |
|
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2869 |
|
tmpscal1= |
2870 |
|
& HeatCapacity_Cp*(temp_EvPrRn - theta(I,J,kSurface,bi,bj)) |
2871 |
|
ELSE |
2872 |
|
tmpscal1=ZERO |
2873 |
|
ENDIF |
2874 |
|
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal0*tmpscal1 |
2875 |
|
c no qnet or tflux adjustement is needed |
2876 |
|
ENDDO |
2877 |
|
ENDDO |
2878 |
|
ENDDO |
2879 |
|
ENDDO |
2880 |
|
IF ( balancePrintMean ) THEN |
2881 |
|
_BEGIN_MASTER( myThid ) |
2882 |
|
WRITE(msgBuf,'(a,a,e24.17)') 'rm Global mean of ', |
2883 |
|
& 'SIatmFW = ', tmpscal0 |
2884 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2885 |
|
& SQUEEZE_RIGHT , myThid) |
2886 |
|
_END_MASTER( myThid ) |
2887 |
|
ENDIF |
2888 |
|
ENDIF |
2889 |
|
IF ( balanceQnet ) THEN |
2890 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
2891 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
2892 |
|
DO j=1-OLy,sNy+OLy |
2893 |
|
DO i=1-OLx,sNx+OLx |
2894 |
|
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal2 |
2895 |
|
qnet(i,j,bi,bj) = qnet(i,j,bi,bj) - tmpscal2 |
2896 |
|
SIatmQnt(i,j,bi,bj) = SIatmQnt(i,j,bi,bj) - tmpscal2 |
2897 |
|
ENDDO |
2898 |
|
ENDDO |
2899 |
|
ENDDO |
2900 |
|
ENDDO |
2901 |
|
IF ( balancePrintMean ) THEN |
2902 |
|
_BEGIN_MASTER( myThid ) |
2903 |
|
WRITE(msgBuf,'(a,a,e24.17)') 'rm Global mean of ', |
2904 |
|
& 'SItflux = ', tmpscal2 |
2905 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2906 |
|
& SQUEEZE_RIGHT , myThid) |
2907 |
|
_END_MASTER( myThid ) |
2908 |
|
ENDIF |
2909 |
|
ENDIF |
2910 |
|
#endif /* ALLOW_BALANCE_FLUXES */ |
2911 |
|
|
2912 |
|
#ifdef ALLOW_DIAGNOSTICS |
2913 |
|
c these diags need to be done outside of the bi,bj loop so that |
2914 |
|
c we may do potential global mean adjustement to them consistently. |
2915 |
|
CALL DIAGNOSTICS_FILL(SItflux, |
2916 |
|
& 'SItflux ',0,1,0,1,1,myThid) |
2917 |
|
CALL DIAGNOSTICS_FILL(SIatmQnt, |
2918 |
|
& 'SIatmQnt',0,1,0,1,1,myThid) |
2919 |
|
c SIatmFW follows the same convention as empmr -- SIatmFW diag does not |
2920 |
|
tmpscal1= - 1. _d 0 |
2921 |
|
CALL DIAGNOSTICS_SCALE_FILL(SIatmFW, |
2922 |
|
& tmpscal1,1,'SIatmFW ',0,1,0,1,1,myThid) |
2923 |
|
#endif /* ALLOW_DIAGNOSTICS */ |
2924 |
|
|
2925 |
RETURN |
RETURN |
2926 |
END |
END |