58 |
|
|
59 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
60 |
C === Local variables === |
C === Local variables === |
|
#ifdef SEAICE_DEBUG |
|
|
c ToM<<< debug seaice_growth |
|
|
C msgBuf :: Informational/error message buffer |
|
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
|
|
c ToM>>> |
|
|
#endif |
|
61 |
C |
C |
62 |
C unit/sign convention: |
C unit/sign convention: |
63 |
C Within the thermodynamic computation all stocks, except HSNOW, |
C Within the thermodynamic computation all stocks, except HSNOW, |
93 |
INTEGER kSurface |
INTEGER kSurface |
94 |
C IT :: ice thickness category index (MULTICATEGORIES and ITD code) |
C IT :: ice thickness category index (MULTICATEGORIES and ITD code) |
95 |
INTEGER IT |
INTEGER IT |
96 |
_RL pFac |
C msgBuf :: Informational/error message buffer |
97 |
|
#ifdef ALLOW_BALANCE_FLUXES |
98 |
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
99 |
|
#elif (defined (SEAICE_DEBUG)) |
100 |
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
101 |
|
CHARACTER*12 msgBufForm |
102 |
|
#endif |
103 |
C constants |
C constants |
104 |
|
_RL pFac |
105 |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
106 |
_RL QI, QS, recip_QI |
_RL QI, QS, recip_QI |
107 |
_RL lhSublim |
_RL lhSublim |
135 |
|
|
136 |
C temporary variables available for the various computations |
C temporary variables available for the various computations |
137 |
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
138 |
|
#ifdef SEAICE_ITD |
139 |
|
_RL tmpscal1itd(1:sNx,1:sNy), tmpscal2itd(1:sNx,1:sNy) |
140 |
|
_RL tmpscal3itd(1:sNx,1:sNy) |
141 |
|
#endif |
142 |
|
|
143 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
144 |
INTEGER iTr |
INTEGER iTr |
170 |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
171 |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
172 |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
|
_RL leadIceThickMin |
|
173 |
#endif |
#endif |
174 |
|
|
175 |
C wind speed |
C wind speed |
194 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
195 |
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
196 |
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
197 |
|
c for lateral melt parameterization: |
198 |
|
_RL latMeltFrac (1:sNx,1:sNy,MULTDIM) |
199 |
|
_RL latMeltRate (1:sNx,1:sNy,MULTDIM) |
200 |
|
_RL floeAlpha |
201 |
|
_RL floeDiameter |
202 |
|
_RL floeDiameterMin |
203 |
|
_RL floeDiameterMax |
204 |
#endif |
#endif |
205 |
|
|
206 |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
270 |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
271 |
#endif |
#endif |
272 |
|
|
273 |
|
#ifdef SEAICE_ITD |
274 |
|
_RL d_HEFFbySublim_ITD (1:sNx,1:sNy,1:nITD) |
275 |
|
_RL d_HSNWbySublim_ITD (1:sNx,1:sNy,1:nITD) |
276 |
|
_RL d_HEFFbyOCNonICE_ITD (1:sNx,1:sNy,1:nITD) |
277 |
|
_RL d_HSNWbyATMonSNW_ITD (1:sNx,1:sNy,1:nITD) |
278 |
|
_RL d_HEFFbyATMonOCN_ITD (1:sNx,1:sNy,1:nITD) |
279 |
|
_RL d_HEFFbyATMonOCN_cover_ITD (1:sNx,1:sNy,1:nITD) |
280 |
|
_RL d_HEFFbyATMonOCN_open_ITD (1:sNx,1:sNy,1:nITD) |
281 |
|
_RL d_HSNWbyRAIN_ITD (1:sNx,1:sNy,1:nITD) |
282 |
|
_RL d_HSNWbyOCNonSNW_ITD (1:sNx,1:sNy,1:nITD) |
283 |
|
_RL d_HEFFbyFLOODING_ITD (1:sNx,1:sNy,1:nITD) |
284 |
|
#endif |
285 |
|
|
286 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
287 |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
288 |
_RL d_AREAbyATM (1:sNx,1:sNy) |
_RL d_AREAbyATM (1:sNx,1:sNy) |
305 |
_RL HFsiGlob |
_RL HFsiGlob |
306 |
_RL FWF2HFsiTile(nSx,nSy) |
_RL FWF2HFsiTile(nSx,nSy) |
307 |
_RL FWF2HFsiGlob |
_RL FWF2HFsiGlob |
|
CHARACTER*(max_len_mbuf) msgbuf |
|
308 |
#endif |
#endif |
309 |
|
|
310 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
323 |
c#ifdef SEAICE_ITD |
c#ifdef SEAICE_ITD |
324 |
CToM this is now set by MULTDIM = nITD in SEAICE_SIZE.h |
CToM this is now set by MULTDIM = nITD in SEAICE_SIZE.h |
325 |
C (see SEAICE_SIZE.h and seaice_readparms.F) |
C (see SEAICE_SIZE.h and seaice_readparms.F) |
326 |
c SEAICE_multDim = nITD |
c SEAICE_multDim = nITD |
327 |
c#endif |
c#endif |
328 |
recip_multDim = SEAICE_multDim |
recip_multDim = SEAICE_multDim |
329 |
recip_multDim = ONE / recip_multDim |
recip_multDim = ONE / recip_multDim |
358 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
359 |
convertPRECIP2HI=SEAICE_deltaTtherm*rhoConstFresh/SEAICE_rhoIce |
convertPRECIP2HI=SEAICE_deltaTtherm*rhoConstFresh/SEAICE_rhoIce |
360 |
convertHI2PRECIP = ONE/convertPRECIP2HI |
convertHI2PRECIP = ONE/convertPRECIP2HI |
361 |
|
#ifdef SEAICE_ITD |
362 |
|
c constants for lateral melt parameterization: |
363 |
|
c following Steele (1992), Equ. 2 |
364 |
|
floeAlpha = 0.66 _d 0 |
365 |
|
c typical mean diameter used in CICE 4.1: |
366 |
|
c floeDiameter = 300. _d 0 |
367 |
|
c parameters needed for variable floe diameter following Luepkes et al. (2012): |
368 |
|
floeDiameterMin = 8. _d 0 |
369 |
|
floeDiameterMax = 300. _d 0 |
370 |
|
#endif |
371 |
|
|
372 |
DO bj=myByLo(myThid),myByHi(myThid) |
DO bj=myByLo(myThid),myByHi(myThid) |
373 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
DO bi=myBxLo(myThid),myBxHi(myThid) |
446 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
447 |
#endif |
#endif |
448 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
449 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
d_HEFFbySublim_ITD(I,J,IT) = 0.0 _d 0 |
450 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
d_HSNWbySublim_ITD(I,J,IT) = 0.0 _d 0 |
451 |
|
d_HEFFbyOCNonICE_ITD(I,J,IT) = 0.0 _d 0 |
452 |
|
d_HSNWbyATMonSNW_ITD(I,J,IT) = 0.0 _d 0 |
453 |
|
d_HEFFbyATMonOCN_ITD(I,J,IT) = 0.0 _d 0 |
454 |
|
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = 0.0 _d 0 |
455 |
|
d_HEFFbyATMonOCN_open_ITD(I,J,IT) = 0.0 _d 0 |
456 |
|
d_HSNWbyRAIN_ITD(I,J,IT) = 0.0 _d 0 |
457 |
|
d_HSNWbyOCNonSNW_ITD(I,J,IT) = 0.0 _d 0 |
458 |
|
d_HEFFbyFLOODING_ITD(I,J,IT) = 0.0 _d 0 |
459 |
|
r_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
460 |
|
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
461 |
|
c for lateral melt parameterization: |
462 |
|
latMeltFrac(I,J,IT) = 0.0 _d 0 |
463 |
|
latMeltRate(I,J,IT) = 0.0 _d 0 |
464 |
#endif |
#endif |
465 |
ENDDO |
ENDDO |
466 |
ENDDO |
ENDDO |
477 |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
478 |
C ===================================================================== |
C ===================================================================== |
479 |
|
|
|
#ifdef SEAICE_GROWTH_LEGACY |
|
|
|
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
HEFFpreTH(I,J)=HEFFNM1(I,J,bi,bj) |
|
|
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
|
|
AREApreTH(I,J)=AREANM1(I,J,bi,bj) |
|
|
d_HEFFbyNEG(I,J)=0. _d 0 |
|
|
d_HSNWbyNEG(I,J)=0. _d 0 |
|
|
#ifdef ALLOW_DIAGNOSTICS |
|
|
DIAGarrayA(I,J) = AREANM1(I,J,bi,bj) |
|
|
DIAGarrayB(I,J) = AREANM1(I,J,bi,bj) |
|
|
DIAGarrayC(I,J) = HEFFNM1(I,J,bi,bj) |
|
|
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
|
|
#endif |
|
|
ENDDO |
|
|
ENDDO |
|
|
#ifdef SEAICE_ITD |
|
|
DO IT=1,nITD |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
|
|
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
|
|
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
#endif |
|
|
|
|
|
#else /* SEAICE_GROWTH_LEGACY */ |
|
|
|
|
480 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
481 |
Cgf no dependency through pathological cases treatment |
Cgf no dependency through pathological cases treatment |
482 |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
502 |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
503 |
ENDIF |
ENDIF |
504 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
505 |
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
506 |
& + d_AREAbyRLX(i,j) |
& + d_AREAbyRLX(i,j) |
507 |
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
508 |
& + d_HEFFbyRLX(i,j) |
& + d_HEFFbyRLX(i,j) |
521 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
522 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
523 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
524 |
|
#ifdef SEAICE_ITD |
525 |
|
DO IT=1,nITD |
526 |
|
#endif |
527 |
DO J=1,sNy |
DO J=1,sNy |
528 |
DO I=1,sNx |
DO I=1,sNx |
529 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
530 |
DO IT=1,nITD |
tmpscal2=0. _d 0 |
531 |
tmpscal2=0. _d 0 |
tmpscal3=0. _d 0 |
532 |
tmpscal3=0. _d 0 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
533 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
534 |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
535 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
536 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
537 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
538 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
|
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
|
|
ENDDO |
|
539 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
540 |
C by calling SEAICE_ITD_SUM |
C by calling SEAICE_ITD_SUM |
541 |
#else |
#else |
547 |
#endif |
#endif |
548 |
ENDDO |
ENDDO |
549 |
ENDDO |
ENDDO |
550 |
|
#ifdef SEAICE_ITD |
551 |
|
ENDDO |
552 |
|
#endif |
553 |
|
|
554 |
C 1.25) treat the case of very thin ice: |
C 1.25) treat the case of very thin ice: |
555 |
|
|
556 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
557 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
558 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
559 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
560 |
DO IT=1,nITD |
DO IT=1,nITD |
561 |
#endif |
#endif |
562 |
tmpscal2=0. _d 0 |
DO J=1,sNy |
563 |
tmpscal3=0. _d 0 |
DO I=1,sNx |
564 |
|
tmpscal2=0. _d 0 |
565 |
|
tmpscal3=0. _d 0 |
566 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
567 |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
568 |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
569 |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
570 |
TICES(I,J,IT,bi,bj)=celsius2K |
TICES(I,J,IT,bi,bj)=celsius2K |
571 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
572 |
ENDIF |
ENDIF |
573 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
574 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
575 |
#else |
#else |
576 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
577 |
tmpscal2=-HEFF(I,J,bi,bj) |
tmpscal2=-HEFF(I,J,bi,bj) |
586 |
#endif |
#endif |
587 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
588 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
|
#ifdef SEAICE_ITD |
|
|
ENDDO |
|
|
#endif |
|
589 |
ENDDO |
ENDDO |
590 |
ENDDO |
ENDDO |
591 |
|
#ifdef SEAICE_ITD |
592 |
|
ENDDO |
593 |
|
#endif |
594 |
|
|
595 |
C 1.5) treat the case of area but no ice/snow: |
C 1.5) treat the case of area but no ice/snow: |
596 |
|
|
598 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
599 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
600 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
601 |
|
#ifdef SEAICE_ITD |
602 |
|
DO IT=1,nITD |
603 |
|
#endif |
604 |
DO J=1,sNy |
DO J=1,sNy |
605 |
DO I=1,sNx |
DO I=1,sNx |
606 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
607 |
DO IT=1,nITD |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
608 |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
609 |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
|
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
|
|
ENDDO |
|
610 |
#else |
#else |
611 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
612 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
613 |
#endif |
#endif |
614 |
ENDDO |
ENDDO |
615 |
ENDDO |
ENDDO |
616 |
|
#ifdef SEAICE_ITD |
617 |
|
ENDDO |
618 |
|
#endif |
619 |
|
|
620 |
C 2) treat the case of very small area: |
C 2) treat the case of very small area: |
621 |
|
|
623 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
624 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
625 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
626 |
|
#ifdef SEAICE_ITD |
627 |
|
DO IT=1,nITD |
628 |
|
#endif |
629 |
DO J=1,sNy |
DO J=1,sNy |
630 |
DO I=1,sNx |
DO I=1,sNx |
631 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
632 |
DO IT=1,nITD |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
633 |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
634 |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
635 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
C hence use SEAICE_area_floor devided by nITD |
636 |
C hence use SEAICE_area_floor devided by nITD |
C (or install a warning in e.g. seaice_readparms.F) |
637 |
C (or install a warning in e.g. seaice_readparms.F) |
AREAITD(I,J,IT,bi,bj)= |
638 |
AREAITD(I,J,IT,bi,bj)= |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
639 |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
ENDIF |
|
ENDIF |
|
|
ENDDO |
|
640 |
#else |
#else |
641 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
642 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
644 |
#endif |
#endif |
645 |
ENDDO |
ENDDO |
646 |
ENDDO |
ENDDO |
647 |
|
#ifdef SEAICE_ITD |
648 |
|
ENDDO |
649 |
|
#endif |
650 |
#endif /* DISABLE_AREA_FLOOR */ |
#endif /* DISABLE_AREA_FLOOR */ |
651 |
|
|
652 |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
672 |
|
|
673 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
674 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
675 |
DO J=1,sNy |
DO IT=1,nITD |
676 |
DO I=1,sNx |
DO J=1,sNy |
677 |
|
DO I=1,sNx |
678 |
C TICES was changed above (item 1.25), now update TICE as ice volume |
C TICES was changed above (item 1.25), now update TICE as ice volume |
679 |
C weighted average of TICES |
C weighted average of TICES |
680 |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
681 |
tmpscal1 = 0. _d 0 |
IF (IT .eq. 1) THEN |
682 |
tmpscal2 = 0. _d 0 |
tmpscal1itd(i,j) = 0. _d 0 |
683 |
tmpscal3 = 0. _d 0 |
tmpscal2itd(i,j) = 0. _d 0 |
684 |
DO IT=1,nITD |
tmpscal3itd(i,j) = 0. _d 0 |
685 |
tmpscal1=tmpscal1 + TICES(I,J,IT,bi,bj)*HEFFITD(I,J,IT,bi,bj) |
ENDIF |
686 |
tmpscal2=tmpscal2 + HEFFITD(I,J,IT,bi,bj) |
tmpscal1itd(i,j)=tmpscal1itd(i,j) + TICES(I,J,IT,bi,bj) |
687 |
tmpscal3=tmpscal3 + AREAITD(I,J,IT,bi,bj) |
& * HEFFITD(I,J,IT,bi,bj) |
688 |
ENDDO |
tmpscal2itd(i,j)=tmpscal2itd(i,j) + HEFFITD(I,J,IT,bi,bj) |
689 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
tmpscal3itd(i,j)=tmpscal3itd(i,j) + AREAITD(I,J,IT,bi,bj) |
690 |
C lines of item 2.5 that were omitted: |
IF (IT .eq. nITD) THEN |
691 |
|
TICE(I,J,bi,bj)=tmpscal1itd(i,j)/tmpscal2itd(i,j) |
692 |
|
C lines of item 2.5 that were omitted: |
693 |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
694 |
C hence we execute them here before SEAICE_ITD_REDIST is called |
C hence we execute them here before SEAICE_ITD_REDIST is called |
695 |
C although this means that AREA has not been completely regularized |
C although this means that AREA has not been completely regularized |
696 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
697 |
DIAGarrayA(I,J) = tmpscal3 |
DIAGarrayA(I,J) = tmpscal3itd(i,j) |
698 |
#endif |
#endif |
699 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
700 |
SItrAREA(I,J,bi,bj,1)=tmpscal3 |
SItrAREA(I,J,bi,bj,1)=tmpscal3itd(i,j) |
701 |
#endif |
#endif |
702 |
|
ENDIF |
703 |
|
ENDDO |
704 |
ENDDO |
ENDDO |
705 |
ENDDO |
ENDDO |
706 |
|
|
709 |
C and update AREA, HEFF, and HSNOW |
C and update AREA, HEFF, and HSNOW |
710 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
711 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
712 |
|
#endif /* SEAICE_ITD */ |
713 |
|
|
714 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
715 |
c ToM<<< debug seaice_growth |
#ifdef SEAICE_ITD |
716 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBufForm,'(A,I2,A)') '(A,',nITD,'F14.10)' |
|
& ' SEAICE_GROWTH: Heff increments 0, HEFFITD = ', |
|
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 0, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
#endif |
|
717 |
#else |
#else |
718 |
#ifdef SEAICE_DEBUG |
WRITE(msgBufForm,'(A,A)') '(A, F14.10)' |
719 |
WRITE(msgBuf,'(A,7F8.4)') |
#endif |
720 |
|
WRITE(msgBuf,msgBufForm) |
721 |
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
722 |
|
#ifdef SEAICE_ITD |
723 |
|
& HEFFITD(1,1,:,bi,bj) |
724 |
|
#else |
725 |
& HEFF(1,1,bi,bj) |
& HEFF(1,1,bi,bj) |
726 |
|
#endif |
727 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
728 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
729 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
730 |
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
731 |
|
#ifdef SEAICE_ITD |
732 |
|
& AREAITD(1,1,:,bi,bj) |
733 |
|
#else |
734 |
& AREA(1,1,bi,bj) |
& AREA(1,1,bi,bj) |
735 |
|
#endif |
736 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
737 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
738 |
c ToM>>> |
#endif /* SEAICE_DEBUG */ |
739 |
#endif |
|
|
#endif /* SEAICE_ITD */ |
|
740 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
741 |
C end SEAICEadjMODE.EQ.0 statement: |
C end SEAICEadjMODE.EQ.0 statement: |
742 |
ENDIF |
ENDIF |
763 |
DO IT=1,nITD |
DO IT=1,nITD |
764 |
DO J=1,sNy |
DO J=1,sNy |
765 |
DO I=1,sNx |
DO I=1,sNx |
766 |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
767 |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
768 |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
769 |
|
|
770 |
C memorize areal and volume fraction of each ITD category |
C memorize areal and volume fraction of each ITD category |
771 |
IF (AREA(I,J,bi,bj) .GT. ZERO) THEN |
IF (AREA(I,J,bi,bj) .GT. ZERO) THEN |
772 |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
773 |
ELSE |
ELSE |
774 |
C if there's no ice, potential growth starts in 1st category |
C if there is no ice, potential growth starts in 1st category |
775 |
IF (IT .EQ. 1) THEN |
IF (IT .EQ. 1) THEN |
776 |
areaFracFactor(I,J,IT)=ONE |
areaFracFactor(I,J,IT)=ONE |
777 |
ELSE |
ELSE |
778 |
areaFracFactor(I,J,IT)=ZERO |
areaFracFactor(I,J,IT)=ZERO |
779 |
ENDIF |
ENDIF |
780 |
ENDIF |
ENDIF |
781 |
ENDDO |
ENDDO |
782 |
ENDDO |
ENDDO |
783 |
ENDDO |
ENDDO |
817 |
ENDDO |
ENDDO |
818 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
#endif /* SEAICE_VARIABLE_SALINITY */ |
819 |
|
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
|
|
|
820 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
821 |
IF ( useDiagnostics ) THEN |
IF ( useDiagnostics ) THEN |
822 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIareaPR',0,1,3,bi,bj,myThid) |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIareaPR',0,1,3,bi,bj,myThid) |
888 |
|
|
889 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
890 |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
|
#ifdef SEAICE_GROWTH_LEGACY |
|
|
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
|
|
& AREAITDpreTH(I,J,IT)) |
|
|
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT)/tmpscal1 |
|
|
tmpscal2 = HEFFITDpreTH(I,J,IT)/tmpscal1 |
|
|
heffActualMult(I,J,IT) = MAX(tmpscal2,SEAICE_hice_reg) |
|
|
#else /* SEAICE_GROWTH_LEGACY */ |
|
891 |
cif regularize AREA with SEAICE_area_reg |
cif regularize AREA with SEAICE_area_reg |
892 |
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
893 |
& + area_reg_sq) |
& + area_reg_sq) |
894 |
cif heffActual calculated with the regularized AREA |
cif heffActual calculated with the regularized AREA |
895 |
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
896 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
897 |
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
898 |
& + hice_reg_sq) |
& + hice_reg_sq) |
899 |
cif hsnowActual calculated with the regularized AREA |
cif hsnowActual calculated with the regularized AREA |
900 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
901 |
cif regularize the inverse of heffActual by hice_reg |
cif regularize the inverse of heffActual by hice_reg |
902 |
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
903 |
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
904 |
& + hice_reg_sq) |
& + hice_reg_sq) |
905 |
cif Do not regularize when HEFFpreTH = 0 |
cif Do not regularize when HEFFpreTH = 0 |
906 |
ELSE |
ELSE |
910 |
ENDIF |
ENDIF |
911 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
912 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
|
#ifdef SEAICE_GROWTH_LEGACY |
|
|
tmpscal1 = MAX(SEAICE_area_reg,AREApreTH(I,J)) |
|
|
hsnowActual(I,J) = HSNWpreTH(I,J)/tmpscal1 |
|
|
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
|
|
heffActual(I,J) = MAX(tmpscal2,SEAICE_hice_reg) |
|
|
#else /* SEAICE_GROWTH_LEGACY */ |
|
913 |
Cif regularize AREA with SEAICE_area_reg |
Cif regularize AREA with SEAICE_area_reg |
914 |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
915 |
Cif heffActual calculated with the regularized AREA |
Cif heffActual calculated with the regularized AREA |
918 |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
919 |
Cif hsnowActual calculated with the regularized AREA |
Cif hsnowActual calculated with the regularized AREA |
920 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
921 |
Cif regularize the inverse of heffActual by hice_reg |
Cif regularize the inverse of heffActual by hice_reg |
922 |
recip_heffActual(I,J) = AREApreTH(I,J) / |
recip_heffActual(I,J) = AREApreTH(I,J) / |
923 |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
1045 |
|
|
1046 |
C-- Start loop over multi-categories |
C-- Start loop over multi-categories |
1047 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1048 |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
DO IT=1,nITD |
1049 |
#endif |
DO J=1,sNy |
1050 |
|
DO I=1,sNx |
1051 |
|
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
1052 |
|
C (instead of heffActual and latentHeatFluxMax) |
1053 |
|
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1054 |
|
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1055 |
|
TICE(I,J,bi,bj) = ZERO |
1056 |
|
TICES(I,J,IT,bi,bj) = ZERO |
1057 |
|
ENDDO |
1058 |
|
ENDDO |
1059 |
|
ENDDO |
1060 |
|
#else |
1061 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
1062 |
C homogeneous distribution between 0 and 2 x heffActual |
C homogeneous distribution between 0 and 2 x heffActual |
|
#ifndef SEAICE_ITD |
|
1063 |
pFac = (2.0 _d 0*IT - 1.0 _d 0)*recip_multDim |
pFac = (2.0 _d 0*IT - 1.0 _d 0)*recip_multDim |
1064 |
pFacSnow = 1. _d 0 |
pFacSnow = 1. _d 0 |
1065 |
IF ( SEAICE_useMultDimSnow ) pFacSnow=pFac |
IF ( SEAICE_useMultDimSnow ) pFacSnow=pFac |
|
#endif |
|
1066 |
DO J=1,sNy |
DO J=1,sNy |
1067 |
DO I=1,sNx |
DO I=1,sNx |
|
#ifndef SEAICE_ITD |
|
|
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
|
|
C (instead of heffActual and latentHeatFluxMax) |
|
1068 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
1069 |
hsnowActualMult(I,J,IT)=hsnowActual(I,J)*pFacSnow |
hsnowActualMult(I,J,IT)=hsnowActual(I,J)*pFacSnow |
1070 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1071 |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
1072 |
#endif |
#endif |
|
#endif |
|
1073 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1074 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1075 |
TICE(I,J,bi,bj) = ZERO |
TICE(I,J,bi,bj) = ZERO |
1077 |
ENDDO |
ENDDO |
1078 |
ENDDO |
ENDDO |
1079 |
ENDDO |
ENDDO |
1080 |
|
#endif |
1081 |
|
|
1082 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1083 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1130 |
C update TICE & TICES |
C update TICE & TICES |
1131 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1132 |
C calculate area weighted mean |
C calculate area weighted mean |
1133 |
C (although the ice's temperature relates to its energy content |
C (although the ice temperature relates to its energy content |
1134 |
C and hence should be averaged weighted by ice volume, |
C and hence should be averaged weighted by ice volume, |
1135 |
C the temperature here is a result of the fluxes through the ice surface |
C the temperature here is a result of the fluxes through the ice surface |
1136 |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1137 |
C and hence is averaged area weighted [areaFracFactor]) |
C and hence is averaged area weighted [areaFracFactor]) |
1138 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1139 |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
1193 |
|
|
1194 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
C switch heat fluxes from W/m2 to 'effective' ice meters |
1195 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1196 |
DO IT=1,nITD |
DO IT=1,nITD |
1197 |
DO J=1,sNy |
DO J=1,sNy |
1198 |
DO I=1,sNx |
DO I=1,sNx |
1199 |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1210 |
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
1211 |
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
1212 |
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
1213 |
ENDDO |
ENDDO |
1214 |
ENDDO |
ENDDO |
1215 |
ENDDO |
ENDDO |
1216 |
DO J=1,sNy |
DO J=1,sNy |
1266 |
Cgf no additional dependency through ice cover |
Cgf no additional dependency through ice cover |
1267 |
IF ( SEAICEadjMODE.GE.3 ) THEN |
IF ( SEAICEadjMODE.GE.3 ) THEN |
1268 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1269 |
DO IT=1,nITD |
DO IT=1,nITD |
1270 |
DO J=1,sNy |
DO J=1,sNy |
1271 |
DO I=1,sNx |
DO I=1,sNx |
1272 |
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1274 |
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
1275 |
ENDDO |
ENDDO |
1276 |
ENDDO |
ENDDO |
1277 |
ENDDO |
ENDDO |
1278 |
#else |
#else |
1279 |
DO J=1,sNy |
DO J=1,sNy |
1280 |
DO I=1,sNx |
DO I=1,sNx |
1331 |
ENDDO |
ENDDO |
1332 |
ENDDO |
ENDDO |
1333 |
|
|
1334 |
|
#ifdef SEAICE_ITD |
1335 |
|
C determine lateral melt rate at floe edges based on an |
1336 |
|
C average floe diameter or a floe size distribution |
1337 |
|
C following Steele (1992, Tab. 2) |
1338 |
|
C ====================================================== |
1339 |
|
DO J=1,sNy |
1340 |
|
DO I=1,sNx |
1341 |
|
tmpscal1=(theta(I,J,kSurface,bi,bj)-tempFrz) |
1342 |
|
tmpscal2=sqrt(0.87 + 0.067*UG(i,j)) * UG(i,j) |
1343 |
|
c |
1344 |
|
c variable floe diameter following Luepkes et al. (2012, JGR, Equ. 26) with beta=1 |
1345 |
|
tmpscal3=ONE/(ONE-(floeDiameterMin/floeDiameterMax)) |
1346 |
|
floeDiameter = floeDiameterMin |
1347 |
|
& * (tmpscal3 / (tmpscal3-AREApreTH(I,J))) |
1348 |
|
DO IT=1,nITD |
1349 |
|
C following the idea of SEAICE_areaLossFormula == 1: |
1350 |
|
IF (r_QbyATMmult_cover(i,j,it).LT.ZERO .OR. |
1351 |
|
& r_QbyATM_open(i,j) .LT.ZERO .OR. |
1352 |
|
& r_QbyOCN(i,j) .LT.ZERO) THEN |
1353 |
|
c lateral melt rate as suggested by Perovich, 1983 (PhD thesis) |
1354 |
|
c latMeltRate(i,j,it) = 1.6 _d -6 * tmpscal1**1.36 |
1355 |
|
c lateral melt rate as suggested by Maykut and Perovich, 1987 (JGR 92(C7)), Equ. 24 |
1356 |
|
c latMeltRate(i,j,it) = 13.5 _d -6 * tmpscal2 * tmpscal1**1.3 |
1357 |
|
c further suggestion by Maykut and Perovich to avoid latMeltRate -> 0 for UG -> 0 |
1358 |
|
latMeltRate(i,j,it) = (1.6 _d -6 + 13.5 _d -6 * tmpscal2) |
1359 |
|
& * tmpscal1**1.3 |
1360 |
|
c factor determining fraction of area and ice volume reduction |
1361 |
|
c due to lateral melt |
1362 |
|
latMeltFrac(i,j,it) = |
1363 |
|
& latMeltRate(i,j,it)*SEAICE_deltaTtherm*PI / |
1364 |
|
& (floeAlpha * floeDiameter) |
1365 |
|
latMeltFrac(i,j,it)=max(ZERO, min(latMeltFrac(i,j,it),ONE)) |
1366 |
|
print*,'latMelt',it,tmpscal1,latMeltRate(i,j,it), |
1367 |
|
& areaitd(i,j,it,bi,bj),latMeltFrac(i,j,it) |
1368 |
|
ELSE |
1369 |
|
c latMeltRate(i,j,it)=0.0 _d 0 |
1370 |
|
latMeltFrac(i,j,it)=0.0 _d 0 |
1371 |
|
print*,'latMelt',it,' 0.0 0.0 ', |
1372 |
|
& areaitd(i,j,it,bi,bj),latMeltFrac(i,j,it) |
1373 |
|
ENDIF |
1374 |
|
ENDDO |
1375 |
|
ENDDO |
1376 |
|
ENDDO |
1377 |
|
#endif |
1378 |
|
|
1379 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1380 |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
1381 |
#endif |
#endif |
1401 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1402 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1403 |
& *SNOW2ICE),ZERO) |
& *SNOW2ICE),ZERO) |
1404 |
|
d_HSNWbySublim_ITD(I,J,IT) = - tmpscal2 * ICE2SNOW |
1405 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1406 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1407 |
& *ICE2SNOW |
& *ICE2SNOW |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
|
|
& *ICE2SNOW |
|
1408 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
1409 |
#else |
#else |
1410 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1424 |
tmpscal2 = |
tmpscal2 = |
1425 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1426 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1427 |
|
d_HEFFbySublim_ITD(I,J,IT) = - tmpscal2 |
1428 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1429 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HEFFbySublim(I,J) = d_HEFFbySublim(I,J) - tmpscal2 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
|
1430 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
1431 |
#else |
#else |
1432 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1454 |
ENDDO |
ENDDO |
1455 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1456 |
C end IT loop |
C end IT loop |
1457 |
ENDDO |
ENDDO |
1458 |
#endif |
#endif |
1459 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1460 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1461 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1462 |
|
& ' SEAICE_GROWTH: Hsnow increments 1, d_HSNWySublim = ', |
1463 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1464 |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
& d_HSNWbySublim_ITD(1,1,:) |
1465 |
& HEFFITD(1,1,:,bi,bj) |
#else |
1466 |
|
& d_HSNWbySublim(1,1) |
1467 |
|
#endif |
1468 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1469 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1470 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1471 |
& ' SEAICE_GROWTH: Area increments 1, AREAITD = ', |
& ' SEAICE_GROWTH: Heff increments 1, d_HEFFbySublim = ', |
1472 |
& AREAITD(1,1,:,bi,bj) |
#ifdef SEAICE_ITD |
1473 |
|
& d_HEFFbySublim_ITD(1,1,:) |
1474 |
#else |
#else |
1475 |
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
& d_HEFFbySublim(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1476 |
#endif |
#endif |
1477 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1478 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1479 |
c ToM>>> |
c ToM>>> |
1480 |
#endif |
#endif /* SEAICE_DEBUG */ |
1481 |
|
|
1482 |
C compute ice thickness tendency due to ice-ocean interaction |
C compute ice thickness tendency due to ice-ocean interaction |
1483 |
C =========================================================== |
C =========================================================== |
1491 |
DO IT=1,nITD |
DO IT=1,nITD |
1492 |
DO J=1,sNy |
DO J=1,sNy |
1493 |
DO I=1,sNx |
DO I=1,sNx |
1494 |
C ice growth/melt due to ocean heat r_QbyOCN (W/m^2) is |
C ice growth/melt due to ocean heat r_QbyOCN (W/m^2) is |
1495 |
C equally distributed under the ice and hence weighted by |
C equally distributed under the ice and hence weighted by |
1496 |
C fractional area of each thickness category |
C fractional area of each thickness category |
1497 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1498 |
& -HEFFITD(I,J,IT,bi,bj)) |
& -HEFFITD(I,J,IT,bi,bj)) |
1499 |
|
d_HEFFbyOCNonICE_ITD(I,J,IT)=tmpscal1 |
1500 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
|
|
#ifdef ALLOW_SITRACER |
|
|
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
|
|
& + HEFFITD(I,J,IT,bi,bj) |
|
|
#endif |
|
1501 |
ENDDO |
ENDDO |
1502 |
ENDDO |
ENDDO |
1503 |
ENDDO |
ENDDO |
1504 |
|
#ifdef ALLOW_SITRACER |
1505 |
|
DO J=1,sNy |
1506 |
|
DO I=1,sNx |
1507 |
|
SItrHEFF(I,J,bi,bj,2) = HEFFpreTH(I,J) |
1508 |
|
& + d_HEFFbySublim(I,J) |
1509 |
|
& + d_HEFFbyOCNonICE(I,J) |
1510 |
|
ENDDO |
1511 |
|
ENDDO |
1512 |
|
#endif |
1513 |
DO J=1,sNy |
DO J=1,sNy |
1514 |
DO I=1,sNx |
DO I=1,sNx |
1515 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1529 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1530 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1531 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1532 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1533 |
|
& ' SEAICE_GROWTH: Heff increments 2, d_HEFFbyOCNonICE = ', |
1534 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1535 |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
& d_HEFFbyOCNonICE_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 2, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1536 |
#else |
#else |
1537 |
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
& d_HEFFbyOCNonICE(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1538 |
#endif |
#endif |
1539 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1540 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1541 |
c ToM>>> |
c ToM>>> |
1542 |
#endif |
#endif /* SEAICE_DEBUG */ |
1543 |
|
|
1544 |
C compute snow melt tendency due to snow-atmosphere interaction |
C compute snow melt tendency due to snow-atmosphere interaction |
1545 |
C ================================================================== |
C ================================================================== |
1550 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1551 |
|
|
1552 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1553 |
DO IT=1,nITD |
DO IT=1,nITD |
1554 |
DO J=1,sNy |
DO J=1,sNy |
1555 |
DO I=1,sNx |
DO I=1,sNx |
1556 |
C Convert to standard units (meters of ice) rather than to meters |
C Convert to standard units (meters of ice) rather than to meters |
1562 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1563 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1564 |
#endif |
#endif |
1565 |
|
d_HSNWbyATMonSNW_ITD(I,J,IT) = tmpscal2*ICE2SNOW |
1566 |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1567 |
& + tmpscal2*ICE2SNOW |
& + tmpscal2*ICE2SNOW |
1568 |
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
|
& + tmpscal2*ICE2SNOW |
|
|
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
|
1569 |
& - tmpscal2 |
& - tmpscal2 |
1570 |
ENDDO |
ENDDO |
1571 |
ENDDO |
ENDDO |
1572 |
ENDDO |
ENDDO |
1573 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
1574 |
DO J=1,sNy |
DO J=1,sNy |
1575 |
DO I=1,sNx |
DO I=1,sNx |
1589 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1590 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1591 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1592 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1593 |
|
& ' SEAICE_GROWTH: Hsnow increments 3, d_HSNWbyATMonSNW = ', |
1594 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1595 |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
& d_HSNWbyATMonSNW_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 3, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1596 |
#else |
#else |
1597 |
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
& d_HSNWbyATMonSNW(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1598 |
#endif |
#endif |
1599 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1600 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1601 |
c ToM>>> |
c ToM>>> |
1602 |
#endif |
#endif /* SEAICE_DEBUG */ |
1603 |
|
|
1604 |
C compute ice thickness tendency due to the atmosphere |
C compute ice thickness tendency due to the atmosphere |
1605 |
C ==================================================== |
C ==================================================== |
1615 |
Cgf warming conditions, the lab_sea results were not changed. |
Cgf warming conditions, the lab_sea results were not changed. |
1616 |
|
|
1617 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1618 |
DO IT=1,nITD |
DO IT=1,nITD |
1619 |
DO J=1,sNy |
DO J=1,sNy |
1620 |
DO I=1,sNx |
DO I=1,sNx |
1621 |
#ifdef SEAICE_GROWTH_LEGACY |
tmpscal1 = HEFFITDpreTH(I,J,IT) |
1622 |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
& + d_HEFFbySublim_ITD(I,J,IT) |
1623 |
& r_QbyATMmult_cover(I,J,IT)) |
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1624 |
#else |
tmpscal2 = MAX(-tmpscal1, |
|
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
|
1625 |
& r_QbyATMmult_cover(I,J,IT) |
& r_QbyATMmult_cover(I,J,IT) |
1626 |
c Limit ice growth by potential melt by ocean |
c Limit ice growth by potential melt by ocean |
1627 |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1628 |
#endif /* SEAICE_GROWTH_LEGACY */ |
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = tmpscal2 |
1629 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1630 |
& + tmpscal2 |
& + tmpscal2 |
1631 |
|
d_HEFFbyATMonOCN_ITD(I,J,IT) = d_HEFFbyATMonOCN_ITD(I,J,IT) |
1632 |
|
& + tmpscal2 |
1633 |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1634 |
& + tmpscal2 |
& + tmpscal2 |
1635 |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1636 |
& - tmpscal2 |
& - tmpscal2 |
1637 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
ENDDO |
1638 |
|
ENDDO |
1639 |
|
ENDDO |
1640 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1641 |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
DO J=1,sNy |
1642 |
& + HEFFITD(I,J,IT,bi,bj) |
DO I=1,sNx |
1643 |
|
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,2) |
1644 |
|
& + d_HEFFbyATMonOCN_cover(I,J) |
1645 |
|
ENDDO |
1646 |
|
ENDDO |
1647 |
#endif |
#endif |
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
1648 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
1649 |
DO J=1,sNy |
DO J=1,sNy |
1650 |
DO I=1,sNx |
DO I=1,sNx |
1651 |
|
|
|
#ifdef SEAICE_GROWTH_LEGACY |
|
|
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
|
|
#else |
|
1652 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
1653 |
C Limit ice growth by potential melt by ocean |
C Limit ice growth by potential melt by ocean |
1654 |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
1655 |
|
|
1656 |
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
1657 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
1666 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1667 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1668 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1669 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1670 |
|
& ' SEAICE_GROWTH: Heff increments 4, d_HEFFbyATMonOCN_cover = ', |
1671 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1672 |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
& d_HEFFbyATMonOCN_cover_ITD(1,1,:) |
1673 |
& HEFFITD(1,1,:,bi,bj) |
#else |
1674 |
|
& d_HEFFbyATMonOCN_cover(1,1) |
1675 |
|
#endif |
1676 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1677 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1678 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1679 |
& ' SEAICE_GROWTH: Area increments 4, AREAITD = ', |
& ' SEAICE_GROWTH: Heff increments 4, d_HEFFbyATMonOCN = ', |
1680 |
& AREAITD(1,1,:,bi,bj) |
#ifdef SEAICE_ITD |
1681 |
|
& d_HEFFbyATMonOCN_ITD(1,1,:) |
1682 |
#else |
#else |
1683 |
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
& d_HEFFbyATMonOCN(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1684 |
#endif |
#endif |
1685 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1686 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1687 |
c ToM>>> |
c ToM>>> |
1688 |
#endif |
#endif /* SEAICE_DEBUG */ |
1689 |
|
|
1690 |
C add snow precipitation to HSNOW. |
C add snow precipitation to HSNOW. |
1691 |
C ================================================= |
C ================================================= |
1729 |
ENDDO |
ENDDO |
1730 |
ENDDO |
ENDDO |
1731 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1732 |
DO IT=1,nITD |
DO IT=1,nITD |
1733 |
DO J=1,sNy |
DO J=1,sNy |
1734 |
DO I=1,sNx |
DO I=1,sNx |
1735 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
d_HSNWbyRAIN_ITD(I,J,IT) |
1736 |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
& = d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1737 |
ENDDO |
ENDDO |
1738 |
ENDDO |
ENDDO |
1739 |
ENDDO |
ENDDO |
1740 |
#else |
#else |
1741 |
DO J=1,sNy |
DO J=1,sNy |
1742 |
DO I=1,sNx |
DO I=1,sNx |
1752 |
#endif /* ALLOW_ATM_TEMP */ |
#endif /* ALLOW_ATM_TEMP */ |
1753 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1754 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1755 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1756 |
|
& ' SEAICE_GROWTH: Hsnow increments 5, d_HSNWbyRAIN = ', |
1757 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1758 |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
& d_HSNWbyRAIN_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 5, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1759 |
#else |
#else |
1760 |
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
& d_HSNWbyRAIN(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1761 |
#endif |
#endif |
1762 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1763 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1764 |
c ToM>>> |
c ToM>>> |
1765 |
#endif |
#endif /* SEAICE_DEBUG */ |
1766 |
|
|
1767 |
C compute snow melt due to heat available from ocean. |
C compute snow melt due to heat available from ocean. |
1768 |
C ================================================================= |
C ================================================================= |
1779 |
DO IT=1,nITD |
DO IT=1,nITD |
1780 |
DO J=1,sNy |
DO J=1,sNy |
1781 |
DO I=1,sNx |
DO I=1,sNx |
1782 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1783 |
& -HSNOWITD(I,J,IT,bi,bj)) |
& + d_HSNWbySublim_ITD(I,J,IT) |
1784 |
|
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1785 |
|
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1786 |
|
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1787 |
|
& -tmpscal4) |
1788 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1789 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1790 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1791 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1792 |
#endif |
#endif |
1793 |
|
d_HSNWbyOCNonSNW_ITD(I,J,IT) = tmpscal2 |
1794 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1795 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) + tmpscal2 |
|
1796 |
ENDDO |
ENDDO |
1797 |
ENDDO |
ENDDO |
1798 |
ENDDO |
ENDDO |
1816 |
Cph) |
Cph) |
1817 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1818 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1819 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1820 |
|
& ' SEAICE_GROWTH: Hsnow increments 6, d_HSNWbyOCNonSNW = ', |
1821 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1822 |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
& d_HSNWbyOCNonSNW_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 6, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1823 |
#else |
#else |
1824 |
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
& d_HSNWbyOCNonSNW(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1825 |
#endif |
#endif |
1826 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1827 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1828 |
c ToM>>> |
c ToM>>> |
1829 |
#endif |
#endif /* SEAICE_DEBUG */ |
1830 |
|
|
1831 |
C gain of new ice over open water |
C gain of new ice over open water |
1832 |
C =============================== |
C =============================== |
1840 |
|
|
1841 |
DO J=1,sNy |
DO J=1,sNy |
1842 |
DO I=1,sNx |
DO I=1,sNx |
1843 |
|
#ifdef SEAICE_ITD |
1844 |
|
C HEFF will be updated at the end of PART 3, |
1845 |
|
C hence sum of tendencies so far is needed |
1846 |
|
tmpscal4 = HEFFpreTH(I,J) |
1847 |
|
& + d_HEFFbySublim(I,J) |
1848 |
|
& + d_HEFFbyOCNonICE(I,J) |
1849 |
|
& + d_HEFFbyATMonOCN(I,J) |
1850 |
|
#else |
1851 |
|
C HEFF is updated step by step throughout seaice_growth |
1852 |
|
tmpscal4 = HEFF(I,J,bi,bj) |
1853 |
|
#endif |
1854 |
C Initial ice growth is triggered by open water |
C Initial ice growth is triggered by open water |
1855 |
C heat flux overcoming potential melt by ocean |
C heat flux overcoming potential melt by ocean |
1856 |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
1861 |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
1862 |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1863 |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
1864 |
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
& -tmpscal4*facOpenMelt)*HEFFM(I,J,bi,bj) |
1865 |
|
#ifdef SEAICE_ITD |
1866 |
|
C ice growth in open water adds to first category |
1867 |
|
d_HEFFbyATMonOCN_open_ITD(I,J,1)=tmpscal3 |
1868 |
|
d_HEFFbyATMonOCN_ITD(I,J,1) =d_HEFFbyATMonOCN_ITD(I,J,1) |
1869 |
|
& +tmpscal3 |
1870 |
|
#endif |
1871 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1872 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1873 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
|
#ifdef SEAICE_ITD |
|
|
C open water area fraction |
|
|
tmpscal0 = ONE-AREApreTH(I,J) |
|
|
C determine thickness of new ice |
|
|
ctomC considering the entire open water area to refreeze |
|
|
ctom tmpscal1 = tmpscal3/tmpscal0 |
|
|
C considering a minimum lead ice thickness of 10 cm |
|
|
C WATCH that leadIceThickMin is smaller that Hlimit(1)! |
|
|
leadIceThickMin = 0.1 |
|
|
tmpscal1 = MAX(leadIceThickMin,tmpscal3/tmpscal0) |
|
|
C adjust ice area fraction covered by new ice |
|
|
tmpscal0 = tmpscal3/tmpscal1 |
|
|
C then add new ice volume to appropriate thickness category |
|
|
DO IT=1,nITD |
|
|
IF (tmpscal1.LT.Hlimit(IT)) THEN |
|
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
|
|
tmpscal3=ZERO |
|
|
C not sure if AREAITD should be changed here since AREA is incremented |
|
|
C in PART 4 below in non-itd code |
|
|
C in this scenario all open water is covered by new ice instantaneously, |
|
|
C i.e. no delayed lead closing is concidered such as is associated with |
|
|
C Hibler's h_0 parameter |
|
|
AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
|
|
& + tmpscal0 |
|
|
tmpscal0=ZERO |
|
|
ENDIF |
|
|
ENDDO |
|
|
#else |
|
1874 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
|
#endif |
|
1875 |
ENDDO |
ENDDO |
1876 |
ENDDO |
ENDDO |
1877 |
|
|
1878 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
|
#ifdef SEAICE_ITD |
|
|
DO IT=1,nITD |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
c needs to be here to allow use also with LEGACY branch |
|
|
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
|
|
& + HEFFITD(I,J,IT,bi,bj) |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
#else |
|
1879 |
DO J=1,sNy |
DO J=1,sNy |
1880 |
DO I=1,sNx |
DO I=1,sNx |
1881 |
C needs to be here to allow use also with LEGACY branch |
C needs to be here to allow use also with LEGACY branch |
1882 |
|
#ifdef SEAICE_ITD |
1883 |
|
SItrHEFF(I,J,bi,bj,4)=SItrHEFF(I,J,bi,bj,3) |
1884 |
|
& +d_HEFFbyATMonOCN_open(I,J) |
1885 |
|
#else |
1886 |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1887 |
|
#endif |
1888 |
ENDDO |
ENDDO |
1889 |
ENDDO |
ENDDO |
|
#endif |
|
1890 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1891 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1892 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1893 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1894 |
|
& ' SEAICE_GROWTH: Heff increments 7, d_HEFFbyATMonOCN_open = ', |
1895 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1896 |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
& d_HEFFbyATMonOCN_open_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 7, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1897 |
#else |
#else |
1898 |
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
& d_HEFFbyATMonOCN_open(1,1) |
1899 |
& HEFF(1,1,bi,bj) |
#endif |
1900 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1901 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1902 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1903 |
& ' SEAICE_GROWTH: Area increments 7, AREA = ', |
& ' SEAICE_GROWTH: Heff increments 7, d_HEFFbyATMonOCN = ', |
1904 |
& AREA(1,1,bi,bj) |
#ifdef SEAICE_ITD |
1905 |
|
& d_HEFFbyATMonOCN_ITD(1,1,:) |
1906 |
|
#else |
1907 |
|
& d_HEFFbyATMonOCN(1,1) |
1908 |
#endif |
#endif |
1909 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1910 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1911 |
c ToM>>> |
c ToM>>> |
1912 |
#endif |
#endif /* SEAICE_DEBUG */ |
1913 |
|
|
1914 |
C convert snow to ice if submerged. |
C convert snow to ice if submerged. |
1915 |
C ================================= |
C ================================= |
1916 |
|
|
|
#ifndef SEAICE_GROWTH_LEGACY |
|
1917 |
C note: in legacy, this process is done at the end |
C note: in legacy, this process is done at the end |
1918 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1919 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1921 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1922 |
IF ( SEAICEuseFlooding ) THEN |
IF ( SEAICEuseFlooding ) THEN |
1923 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1924 |
DO IT=1,nITD |
DO IT=1,nITD |
1925 |
DO J=1,sNy |
DO J=1,sNy |
1926 |
DO I=1,sNx |
DO I=1,sNx |
1927 |
tmpscal0 = (HSNOWITD(I,J,IT,bi,bj)*SEAICE_rhoSnow |
tmpscal3 = HEFFITDpreTH(I,J,IT) |
1928 |
& + HEFFITD(I,J,IT,bi,bj) *SEAICE_rhoIce) |
& + d_HEFFbySublim_ITD(I,J,IT) |
1929 |
& *recip_rhoConst |
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1930 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,IT,bi,bj)) |
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1931 |
|
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1932 |
|
& + d_HSNWbySublim_ITD(I,J,IT) |
1933 |
|
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1934 |
|
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1935 |
|
tmpscal0 = (tmpscal4*SEAICE_rhoSnow |
1936 |
|
& + tmpscal3*SEAICE_rhoIce) |
1937 |
|
& * recip_rhoConst |
1938 |
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - tmpscal3) |
1939 |
|
d_HEFFbyFLOODING_ITD(I,J,IT) = tmpscal1 |
1940 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1941 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
ENDDO |
1942 |
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) - tmpscal1 |
ENDDO |
1943 |
& * ICE2SNOW |
ENDDO |
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
1944 |
#else |
#else |
1945 |
DO J=1,sNy |
DO J=1,sNy |
1946 |
DO I=1,sNx |
DO I=1,sNx |
1955 |
ENDDO |
ENDDO |
1956 |
#endif |
#endif |
1957 |
ENDIF |
ENDIF |
1958 |
#endif /* SEAICE_GROWTH_LEGACY */ |
|
1959 |
#ifdef SEAICE_DEBUG |
#ifdef SEAICE_DEBUG |
1960 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1961 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1962 |
|
& ' SEAICE_GROWTH: Heff increments 8, d_HEFFbyFLOODING = ', |
1963 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1964 |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
& d_HEFFbyFLOODING_ITD(1,1,:) |
1965 |
& HEFFITD(1,1,:,bi,bj) |
#else |
1966 |
|
& d_HEFFbyFLOODING(1,1) |
1967 |
|
#endif |
1968 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1969 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1970 |
WRITE(msgBuf,'(A,7F8.4)') |
c ToM>>> |
1971 |
& ' SEAICE_GROWTH: Area increments 8, AREAITD = ', |
#endif /* SEAICE_DEBUG */ |
1972 |
& AREAITD(1,1,:,bi,bj) |
#ifdef SEAICE_ITD |
1973 |
|
C apply ice and snow thickness changes |
1974 |
|
C ================================================================= |
1975 |
|
DO IT=1,nITD |
1976 |
|
DO J=1,sNy |
1977 |
|
DO I=1,sNx |
1978 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) |
1979 |
|
& + d_HEFFbySublim_ITD(I,J,IT) |
1980 |
|
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1981 |
|
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1982 |
|
& + d_HEFFbyFLOODING_ITD(I,J,IT) |
1983 |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1984 |
|
& + d_HSNWbySublim_ITD(I,J,IT) |
1985 |
|
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1986 |
|
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1987 |
|
& + d_HSNWbyOCNonSNW_ITD(I,J,IT) |
1988 |
|
& - d_HEFFbyFLOODING_ITD(I,J,IT) |
1989 |
|
& * ICE2SNOW |
1990 |
|
ENDDO |
1991 |
|
ENDDO |
1992 |
|
ENDDO |
1993 |
|
#endif |
1994 |
|
#ifdef SEAICE_DEBUG |
1995 |
|
c ToM<<< debug seaice_growth |
1996 |
|
WRITE(msgBuf,msgBufForm) |
1997 |
|
& ' SEAICE_GROWTH: Heff increments 9, HEFF = ', |
1998 |
|
#ifdef SEAICE_ITD |
1999 |
|
& HEFFITD(1,1,:,bi,bj) |
2000 |
#else |
#else |
|
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
|
2001 |
& HEFF(1,1,bi,bj) |
& HEFF(1,1,bi,bj) |
2002 |
|
#endif |
2003 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2004 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
2005 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
2006 |
& ' SEAICE_GROWTH: Area increments 8, AREA = ', |
& ' SEAICE_GROWTH: Area increments 9, AREA = ', |
2007 |
|
#ifdef SEAICE_ITD |
2008 |
|
& AREAITD(1,1,:,bi,bj) |
2009 |
|
#else |
2010 |
& AREA(1,1,bi,bj) |
& AREA(1,1,bi,bj) |
2011 |
#endif |
#endif |
2012 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2013 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
2014 |
c ToM>>> |
c ToM>>> |
2015 |
#endif |
#endif /* SEAICE_DEBUG */ |
2016 |
|
|
2017 |
C =================================================================== |
C =================================================================== |
2018 |
C ==========PART 4: determine ice cover fraction increments=========- |
C ==========PART 4: determine ice cover fraction increments=========- |
2039 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2040 |
|
|
2041 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
2042 |
C replaces Hibler '79 scheme and lead closing parameter |
C-- account for lateral ice growth and melt only in thinnest category |
2043 |
C because ITD accounts explicitly for lead openings and |
C-- use HEFF, ARE, HSNOW, etc. temporarily for 1st category |
2044 |
C different melt rates due to varying ice thickness |
C (this way we can use same code for ITD and non-ITD case) |
2045 |
C |
DO J=1,sNy |
2046 |
C only consider ice area loss due to total ice thickness loss; |
DO I=1,sNx |
2047 |
C ice area gain due to freezing of open water is handled above |
HEFF(I,J,bi,bj)=HEFFITD(I,J,1,bi,bj) |
2048 |
C under "gain of new ice over open water" |
AREA(I,J,bi,bj)=AREAITD(I,J,1,bi,bj) |
2049 |
C |
HSNOW(I,J,bi,bj)=HSNOWITD(I,J,1,bi,bj) |
2050 |
C does not account for lateral melt of ice floes |
HEFFpreTH(I,J)=HEFFITDpreTH(I,J,1) |
2051 |
C |
AREApreTH(I,J)=AREAITDpreTH(I,J,1) |
2052 |
C AREAITD is incremented in section "gain of new ice over open water" above |
recip_heffActual(I,J)=recip_heffActualMult(I,J,1) |
2053 |
C |
ENDDO |
2054 |
DO IT=1,nITD |
ENDDO |
2055 |
DO J=1,sNy |
C all other categories only experience basal growth or melt, |
2056 |
DO I=1,sNx |
C i.e. change sin AREA only occur when all ice in a category is melted |
2057 |
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
IF (nITD .gt. 1) THEN |
2058 |
AREAITD(I,J,IT,bi,bj)=ZERO |
DO IT=2,nITD |
2059 |
ENDIF |
DO J=1,sNy |
2060 |
#ifdef ALLOW_SITRACER |
DO I=1,sNx |
2061 |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
2062 |
& + AREAITD(I,J,IT,bi,bj) |
AREAITD(I,J,IT,bi,bj)=ZERO |
2063 |
#endif /* ALLOW_SITRACER */ |
ELSE |
2064 |
ENDDO |
c melt ice laterally based on an average floe sice |
2065 |
ENDDO |
c following Steele (1992) |
2066 |
ENDDO |
AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
2067 |
#else /* SEAICE_ITD */ |
& * (ONE - latMeltFrac(I,J,IT)) |
2068 |
|
AREAITD(I,J,IT,bi,bj) = max(ZERO,AREAITD(I,J,IT,bi,bj)) |
2069 |
|
ENDIF |
2070 |
|
ENDDO |
2071 |
|
ENDDO |
2072 |
|
ENDDO |
2073 |
|
ENDIF |
2074 |
|
#endif |
2075 |
DO J=1,sNy |
DO J=1,sNy |
2076 |
DO I=1,sNx |
DO I=1,sNx |
2077 |
|
|
2080 |
ELSE |
ELSE |
2081 |
recip_HO=1. _d 0 / HO |
recip_HO=1. _d 0 / HO |
2082 |
ENDIF |
ENDIF |
2083 |
#ifdef SEAICE_GROWTH_LEGACY |
recip_HH = recip_heffActual(I,J) |
|
tmpscal0=HEFF(I,J,bi,bj) - d_HEFFbyATMonOCN(I,J) |
|
|
recip_HH = AREApreTH(I,J) /(tmpscal0+.00001 _d 0) |
|
|
#else |
|
|
recip_HH = recip_heffActual(I,J) |
|
|
#endif |
|
2084 |
|
|
2085 |
C gain of ice over open water : computed from |
C gain of ice over open water : computed from |
2086 |
C (SEAICE_areaGainFormula.EQ.1) from growth by ATM |
C (SEAICE_areaGainFormula.EQ.1) from growth by ATM |
2136 |
#endif /* ALLOW_DIAGNOSTICS */ |
#endif /* ALLOW_DIAGNOSTICS */ |
2137 |
ENDDO |
ENDDO |
2138 |
ENDDO |
ENDDO |
2139 |
#endif /* SEAICE_ITD */ |
#ifdef SEAICE_ITD |
2140 |
|
C transfer 1st category values back into ITD variables |
2141 |
|
DO J=1,sNy |
2142 |
|
DO I=1,sNx |
2143 |
|
HEFFITD(I,J,1,bi,bj)=HEFF(I,J,bi,bj) |
2144 |
|
AREAITD(I,J,1,bi,bj)=AREA(I,J,bi,bj) |
2145 |
|
HSNOWITD(I,J,1,bi,bj)=HSNOW(I,J,bi,bj) |
2146 |
|
ENDDO |
2147 |
|
ENDDO |
2148 |
|
#endif |
2149 |
|
|
2150 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
2151 |
Cgf 'bulk' linearization of area=f(HEFF) |
Cgf 'bulk' linearization of area=f(HEFF) |
2152 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
IF ( SEAICEadjMODE.GE.1 ) THEN |
2153 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
2154 |
DO IT=1,nITD |
DO IT=1,nITD |
2155 |
DO J=1,sNy |
DO J=1,sNy |
2156 |
DO I=1,sNx |
DO I=1,sNx |
2157 |
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
2216 |
|
|
2217 |
#ifdef SEAICE_VARIABLE_SALINITY |
#ifdef SEAICE_VARIABLE_SALINITY |
2218 |
|
|
|
#ifdef SEAICE_GROWTH_LEGACY |
|
|
# ifdef ALLOW_AUTODIFF_TAMC |
|
|
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
|
|
# endif /* ALLOW_AUTODIFF_TAMC */ |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
C set HSALT = 0 if HSALT < 0 and compute salt to remove from ocean |
|
|
IF ( HSALT(I,J,bi,bj) .LT. 0.0 ) THEN |
|
|
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
|
|
& HSALT(I,J,bi,bj) * recip_deltaTtherm |
|
|
HSALT(I,J,bi,bj) = 0.0 _d 0 |
|
|
ENDIF |
|
|
ENDDO |
|
|
ENDDO |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
|
|
|
2219 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
2220 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2221 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2262 |
& saltFlux(I,J,bi,bj) * SEAICE_deltaTtherm |
& saltFlux(I,J,bi,bj) * SEAICE_deltaTtherm |
2263 |
saltFlux(I,J,bi,bj) = |
saltFlux(I,J,bi,bj) = |
2264 |
& saltFlux(I,J,bi,bj) + saltFluxAdjust(I,J) |
& saltFlux(I,J,bi,bj) + saltFluxAdjust(I,J) |
|
#ifdef SEAICE_GROWTH_LEGACY |
|
|
C set HSALT = 0 if HEFF = 0 and compute salt to dump into ocean |
|
|
IF ( HEFF(I,J,bi,bj) .EQ. 0.0 ) THEN |
|
|
saltFlux(I,J,bi,bj) = saltFlux(I,J,bi,bj) - |
|
|
& HEFFM(I,J,bi,bj) * HSALT(I,J,bi,bj) * recip_deltaTtherm |
|
|
HSALT(I,J,bi,bj) = 0.0 _d 0 |
|
|
#ifdef ALLOW_SALT_PLUME |
|
|
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
|
|
#endif /* ALLOW_SALT_PLUME */ |
|
|
ENDIF |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
2265 |
ENDDO |
ENDDO |
2266 |
ENDDO |
ENDDO |
2267 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
#endif /* SEAICE_VARIABLE_SALINITY */ |
2268 |
|
|
|
C ======================================================================= |
|
|
C ==LEGACY PART 6 (LEGACY) treat pathological cases, then do flooding === |
|
|
C ======================================================================= |
|
|
|
|
|
#ifdef SEAICE_GROWTH_LEGACY |
|
|
|
|
|
C treat values of ice cover fraction oustide |
|
|
C the [0 1] range, and other such issues. |
|
|
C =========================================== |
|
|
|
|
|
Cgf note: this part cannot be heat and water conserving |
|
|
|
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
|
|
CADJ & key = iicekey, byte = isbyte |
|
|
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, |
|
|
CADJ & key = iicekey, byte = isbyte |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
C NOW SET AREA(I,J,bi,bj)=0 WHERE THERE IS NO ICE |
|
|
CML replaced "/.0001 _d 0" by "*1. _d 4", 1e-4 is probably |
|
|
CML meant to be something like a minimum thickness |
|
|
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),HEFF(I,J,bi,bj)*1. _d 4) |
|
|
ENDDO |
|
|
ENDDO |
|
|
|
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
|
|
CADJ & key = iicekey, byte = isbyte |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
C NOW TRUNCATE AREA |
|
|
AREA(I,J,bi,bj)=MIN(ONE,AREA(I,J,bi,bj)) |
|
|
ENDDO |
|
|
ENDDO |
|
|
|
|
|
#ifdef ALLOW_AUTODIFF_TAMC |
|
|
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
|
|
CADJ & key = iicekey, byte = isbyte |
|
|
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, |
|
|
CADJ & key = iicekey, byte = isbyte |
|
|
#endif /* ALLOW_AUTODIFF_TAMC */ |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
AREA(I,J,bi,bj) = MAX(ZERO,AREA(I,J,bi,bj)) |
|
|
HSNOW(I,J,bi,bj) = MAX(ZERO,HSNOW(I,J,bi,bj)) |
|
|
AREA(I,J,bi,bj) = AREA(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
|
|
#ifdef SEAICE_CAP_HEFF |
|
|
C This is not energy conserving, but at least it conserves fresh water |
|
|
tmpscal0 = -MAX(HEFF(I,J,bi,bj)-MAX_HEFF,0. _d 0) |
|
|
d_HEFFbyNeg(I,J) = d_HEFFbyNeg(I,J) + tmpscal0 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal0 |
|
|
#endif /* SEAICE_CAP_HEFF */ |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
|
|
ENDDO |
|
|
ENDDO |
|
|
|
|
|
C convert snow to ice if submerged. |
|
|
C ================================= |
|
|
|
|
|
IF ( SEAICEuseFlooding ) THEN |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
|
|
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
|
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
|
|
d_HEFFbyFLOODING(I,J)=tmpscal1 |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
|
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
|
|
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDIF |
|
|
|
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
|
|
|
2269 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
2270 |
DO J=1,sNy |
DO J=1,sNy |
2271 |
DO I=1,sNx |
DO I=1,sNx |
2297 |
DO J=1,sNy |
DO J=1,sNy |
2298 |
DO I=1,sNx |
DO I=1,sNx |
2299 |
cToM if fluxes in W/m^2 then |
cToM if fluxes in W/m^2 then |
2300 |
c a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
c a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2301 |
c & + a_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
c & + a_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2302 |
c r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
c r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2303 |
c & + r_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
c & + r_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2304 |
c a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
c a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2305 |
c & + a_QSWbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
c & + a_QSWbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2306 |
c r_FWbySublim(I,J)=r_FWbySublim(I,J) |
c r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2307 |
c & + r_FWbySublimMult(I,J,IT) * areaFracFactor(I,J,IT) |
c & + r_FWbySublimMult(I,J,IT) * areaFracFactor(I,J,IT) |
2308 |
cToM if fluxes in effective ice meters, i.e. ice volume per area, then |
cToM if fluxes in effective ice meters, i.e. ice volume per area, then |
2309 |
a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2310 |
& + a_QbyATMmult_cover(I,J,IT) |
& + a_QbyATMmult_cover(I,J,IT) |
2311 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2312 |
& + r_QbyATMmult_cover(I,J,IT) |
& + r_QbyATMmult_cover(I,J,IT) |
2313 |
a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2314 |
& + a_QSWbyATMmult_cover(I,J,IT) |
& + a_QSWbyATMmult_cover(I,J,IT) |
2315 |
r_FWbySublim(I,J)=r_FWbySublim(I,J) |
r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2316 |
& + r_FWbySublimMult(I,J,IT) |
& + r_FWbySublimMult(I,J,IT) |
2317 |
ENDDO |
ENDDO |
2318 |
ENDDO |
ENDDO |
2327 |
DO J=1,sNy |
DO J=1,sNy |
2328 |
DO I=1,sNx |
DO I=1,sNx |
2329 |
QNET(I,J,bi,bj) = r_QbyATM_cover(I,J) + r_QbyATM_open(I,J) |
QNET(I,J,bi,bj) = r_QbyATM_cover(I,J) + r_QbyATM_open(I,J) |
|
#ifndef SEAICE_GROWTH_LEGACY |
|
|
C in principle a_QSWbyATM_cover should always be included here, however |
|
|
C for backward compatibility it is left out of the LEGACY branch |
|
2330 |
& + a_QSWbyATM_cover(I,J) |
& + a_QSWbyATM_cover(I,J) |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
2331 |
& - ( d_HEFFbyOCNonICE(I,J) |
& - ( d_HEFFbyOCNonICE(I,J) |
2332 |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2333 |
& + d_HEFFbyNEG(I,J) |
& + d_HEFFbyNEG(I,J) |
2371 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2372 |
cgf Unlike for evap and precip, the temperature of gained/lost |
cgf Unlike for evap and precip, the temperature of gained/lost |
2373 |
C ocean liquid water due to melt/freeze of solid water cannot be chosen |
C ocean liquid water due to melt/freeze of solid water cannot be chosen |
2374 |
C arbitrarily to be e.g. the ocean SST. Indeed the present seaice model |
C arbitrarily to be e.g. the ocean SST. Indeed the present seaice model |
2375 |
C implies a constant ice temperature of 0degC. If melt/freeze water is exchanged |
C implies a constant ice temperature of 0degC. If melt/freeze water is exchanged |
2376 |
C at a different temperature, it leads to a loss of conservation in the |
C at a different temperature, it leads to a loss of conservation in the |
2377 |
C ocean+ice system. While this is mostly a serious issue in the |
C ocean+ice system. While this is mostly a serious issue in the |
2378 |
C real fresh water + non linear free surface framework, a mismatch |
C real fresh water + non linear free surface framework, a mismatch |
2379 |
C between ice and ocean boundary condition can result in all cases. |
C between ice and ocean boundary condition can result in all cases. |
2380 |
C Below we therefore anticipate on external_forcing_surf.F |
C Below we therefore anticipate on external_forcing_surf.F |
2381 |
C to diagnoze and/or apply the correction to QNET. |
C to diagnoze and/or apply the correction to QNET. |
2382 |
DO J=1,sNy |
DO J=1,sNy |
2383 |
DO I=1,sNx |
DO I=1,sNx |
2431 |
CML since it does not contribute to heating the air. |
CML since it does not contribute to heating the air. |
2432 |
CML So this diagnostic is only good for heat budget calculations within |
CML So this diagnostic is only good for heat budget calculations within |
2433 |
CML the ice-ocean system. |
CML the ice-ocean system. |
2434 |
SIatmQnt(I,J,bi,bj) = |
SIatmQnt(I,J,bi,bj) = |
2435 |
& maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
& maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
|
#ifndef SEAICE_GROWTH_LEGACY |
|
2436 |
& a_QSWbyATM_cover(I,J) + |
& a_QSWbyATM_cover(I,J) + |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
2437 |
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
2438 |
cgf 2) SItflux (analogous to tflux; includes advection by water |
cgf 2) SItflux (analogous to tflux; includes advection by water |
2439 |
C exchanged between atmosphere and ocean+ice) |
C exchanged between atmosphere and ocean+ice) |
2440 |
C solid water going to atm, in precip units |
C solid water going to atm, in precip units |
2441 |
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
2470 |
tmpscal2= ZERO |
tmpscal2= ZERO |
2471 |
ENDIF |
ENDIF |
2472 |
SItflux(I,J,bi,bj)= |
SItflux(I,J,bi,bj)= |
2473 |
& SIatmQnt(I,J,bi,bj)-tmpscal1-tmpscal2 |
& SIatmQnt(I,J,bi,bj)-tmpscal1-tmpscal2 |
2474 |
ENDDO |
ENDDO |
2475 |
ENDDO |
ENDDO |
2476 |
|
|
2512 |
& + a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
& + a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2513 |
|
|
2514 |
ENDDO |
ENDDO |
2515 |
ENDDO |
ENDDO |
2516 |
|
|
2517 |
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
2518 |
C-- |
C-- |
2590 |
IF ( balanceEmPmR ) THEN |
IF ( balanceEmPmR ) THEN |
2591 |
DO j=1,sNy |
DO j=1,sNy |
2592 |
DO i=1,sNx |
DO i=1,sNx |
2593 |
FWFsiTile(bi,bj) = |
FWFsiTile(bi,bj) = |
2594 |
& FWFsiTile(bi,bj) + SIatmFW(i,j,bi,bj) |
& FWFsiTile(bi,bj) + SIatmFW(i,j,bi,bj) |
2595 |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2596 |
ENDDO |
ENDDO |
2597 |
ENDDO |
ENDDO |
2598 |
ENDIF |
ENDIF |
2599 |
c to translate global mean FWF adjustements (see below) we may need : |
c to translate global mean FWF adjustements (see below) we may need : |
2600 |
FWF2HFsiTile(bi,bj) = 0. _d 0 |
FWF2HFsiTile(bi,bj) = 0. _d 0 |
2601 |
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2602 |
DO j=1,sNy |
DO j=1,sNy |
2603 |
DO i=1,sNx |
DO i=1,sNx |
2611 |
IF ( balanceQnet ) THEN |
IF ( balanceQnet ) THEN |
2612 |
DO j=1,sNy |
DO j=1,sNy |
2613 |
DO i=1,sNx |
DO i=1,sNx |
2614 |
HFsiTile(bi,bj) = |
HFsiTile(bi,bj) = |
2615 |
& HFsiTile(bi,bj) + SItflux(i,j,bi,bj) |
& HFsiTile(bi,bj) + SItflux(i,j,bi,bj) |
2616 |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2617 |
ENDDO |
ENDDO |
2723 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2724 |
FWFsiGlob=0. _d 0 |
FWFsiGlob=0. _d 0 |
2725 |
IF ( balanceEmPmR ) |
IF ( balanceEmPmR ) |
2726 |
& CALL GLOBAL_SUM_TILE_RL( FWFsiTile, FWFsiGlob, myThid ) |
& CALL GLOBAL_SUM_TILE_RL( FWFsiTile, FWFsiGlob, myThid ) |
2727 |
FWF2HFsiGlob=0. _d 0 |
FWF2HFsiGlob=0. _d 0 |
2728 |
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2729 |
CALL GLOBAL_SUM_TILE_RL(FWF2HFsiTile, FWF2HFsiGlob, myThid) |
CALL GLOBAL_SUM_TILE_RL(FWF2HFsiTile, FWF2HFsiGlob, myThid) |
2753 |
DO i=1-OLx,sNx+OLx |
DO i=1-OLx,sNx+OLx |
2754 |
empmr(i,j,bi,bj) = empmr(i,j,bi,bj) - tmpscal0 |
empmr(i,j,bi,bj) = empmr(i,j,bi,bj) - tmpscal0 |
2755 |
SIatmFW(i,j,bi,bj) = SIatmFW(i,j,bi,bj) - tmpscal0 |
SIatmFW(i,j,bi,bj) = SIatmFW(i,j,bi,bj) - tmpscal0 |
2756 |
c adjust SItflux consistently |
c adjust SItflux consistently |
2757 |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND. |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND. |
2758 |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2759 |
tmpscal1= |
tmpscal1= |
2776 |
ENDDO |
ENDDO |
2777 |
IF ( balancePrintMean ) THEN |
IF ( balancePrintMean ) THEN |
2778 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
2779 |
WRITE(msgbuf,'(a,a,e24.17)') 'rm Global mean of ', |
WRITE(msgBuf,'(a,a,e24.17)') 'rm Global mean of ', |
2780 |
& 'SIatmFW = ', tmpscal0 |
& 'SIatmFW = ', tmpscal0 |
2781 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2782 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
2797 |
ENDDO |
ENDDO |
2798 |
IF ( balancePrintMean ) THEN |
IF ( balancePrintMean ) THEN |
2799 |
_BEGIN_MASTER( myThid ) |
_BEGIN_MASTER( myThid ) |
2800 |
WRITE(msgbuf,'(a,a,e24.17)') 'rm Global mean of ', |
WRITE(msgBuf,'(a,a,e24.17)') 'rm Global mean of ', |
2801 |
& 'SItflux = ', tmpscal2 |
& 'SItflux = ', tmpscal2 |
2802 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2803 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
2804 |
_END_MASTER( myThid ) |
_END_MASTER( myThid ) |
2805 |
ENDIF |
ENDIF |
2806 |
ENDIF |
ENDIF |
2807 |
#endif /* */ |
#endif /* ALLOW_BALANCE_FLUXES */ |
2808 |
|
|
2809 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
2810 |
c these diags need to be done outside of the bi,bj loop so that |
c these diags need to be done outside of the bi,bj loop so that |