115 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
116 |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
117 |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
118 |
C a_QbyOCN :: available heat (in in W/m^2) due to the |
C a_QbyOCN :: available heat (in W/m^2) due to the |
119 |
C interaction of the ice pack and the ocean surface |
C interaction of the ice pack and the ocean surface |
120 |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
121 |
C processes have been accounted for |
C processes have been accounted for |
141 |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
142 |
#endif |
#endif |
143 |
|
|
|
#ifdef SEAICE_ITD |
|
|
c The change of mean ice area due to out-of-bounds values following |
|
|
c sea ice dynamics |
|
|
_RL d_AREAbyNEG (1:sNx,1:sNy) |
|
|
#endif |
|
144 |
c The change of mean ice thickness due to out-of-bounds values following |
c The change of mean ice thickness due to out-of-bounds values following |
145 |
c sea ice dynamics |
c sea ice dynamics |
146 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
174 |
_RL d_HEFFbySublim (1:sNx,1:sNy) |
_RL d_HEFFbySublim (1:sNx,1:sNy) |
175 |
_RL d_HSNWbySublim (1:sNx,1:sNy) |
_RL d_HSNWbySublim (1:sNx,1:sNy) |
176 |
|
|
177 |
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
#ifdef SEAICE_CAP_SUBLIM |
178 |
C The latent heat flux which will sublimate all snow and ice |
C The latent heat flux which will sublimate all snow and ice |
179 |
C over one time step |
C over one time step |
180 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
201 |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
202 |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
203 |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
|
_RL heffFracFactor (1:sNx,1:sNy,1:nITD) |
|
204 |
#endif |
#endif |
205 |
|
|
206 |
C wind speed |
C wind speed |
227 |
|
|
228 |
INTEGER ilockey |
INTEGER ilockey |
229 |
INTEGER it |
INTEGER it |
|
#ifdef SEAICE_ITD |
|
|
INTEGER K |
|
|
#endif |
|
230 |
_RL pFac |
_RL pFac |
231 |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
232 |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
358 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
359 |
#endif |
#endif |
360 |
|
|
|
#ifdef SEAICE_ITD |
|
|
d_AREAbyNEG(I,J) = 0.0 _d 0 |
|
|
#endif |
|
361 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
362 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
363 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
391 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
392 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
393 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
394 |
|
#ifdef SEAICE_CAP_SUBLIM |
395 |
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
396 |
|
#endif |
397 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
398 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
399 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
400 |
#endif |
#endif |
|
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
|
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
|
|
#endif |
|
401 |
ENDDO |
ENDDO |
402 |
ENDDO |
ENDDO |
403 |
ENDDO |
ENDDO |
432 |
ENDDO |
ENDDO |
433 |
ENDDO |
ENDDO |
434 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
435 |
DO K=1,nITD |
DO IT=1,nITD |
436 |
DO J=1,sNy |
DO J=1,sNy |
437 |
DO I=1,sNx |
DO I=1,sNx |
438 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
439 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
440 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
441 |
ENDDO |
ENDDO |
442 |
ENDDO |
ENDDO |
443 |
ENDDO |
ENDDO |
492 |
DO J=1,sNy |
DO J=1,sNy |
493 |
DO I=1,sNx |
DO I=1,sNx |
494 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
495 |
DO K=1,nITD |
DO IT=1,nITD |
|
tmpscal1=0. _d 0 |
|
496 |
tmpscal2=0. _d 0 |
tmpscal2=0. _d 0 |
497 |
tmpscal3=0. _d 0 |
tmpscal3=0. _d 0 |
498 |
tmpscal2=MAX(-HEFFITD(I,J,K,bi,bj),0. _d 0) |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
499 |
HEFFITD(I,J,K,bi,bj)=HEFFITD(I,J,K,bi,bj)+tmpscal2 |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
500 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
501 |
tmpscal3=MAX(-HSNOWITD(I,J,K,bi,bj),0. _d 0) |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
502 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
503 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
504 |
tmpscal1=MAX(-AREAITD(I,J,K,bi,bj),0. _d 0) |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
|
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj)+tmpscal1 |
|
|
d_AREAbyNEG(I,J)=d_AREAbyNEG(I,J)+tmpscal1 |
|
505 |
ENDDO |
ENDDO |
506 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
507 |
C by calling SEAICE_ITD_SUM |
C by calling SEAICE_ITD_SUM |
508 |
#else |
#else |
509 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
|
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
|
|
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
|
510 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
511 |
|
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
512 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
513 |
|
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
514 |
#endif |
#endif |
515 |
ENDDO |
ENDDO |
516 |
ENDDO |
ENDDO |
523 |
DO J=1,sNy |
DO J=1,sNy |
524 |
DO I=1,sNx |
DO I=1,sNx |
525 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
526 |
DO K=1,nITD |
DO IT=1,nITD |
527 |
#endif |
#endif |
528 |
tmpscal2=0. _d 0 |
tmpscal2=0. _d 0 |
529 |
tmpscal3=0. _d 0 |
tmpscal3=0. _d 0 |
530 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
531 |
IF (HEFFITD(I,J,K,bi,bj).LE.siEps) THEN |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
532 |
tmpscal2=-HEFFITD(I,J,K,bi,bj) |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
533 |
tmpscal3=-HSNOWITD(I,J,K,bi,bj) |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
534 |
TICES(I,J,K,bi,bj)=celsius2K |
TICES(I,J,IT,bi,bj)=celsius2K |
535 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
536 |
ENDIF |
ENDIF |
537 |
HEFFITD(I,J,K,bi,bj) =HEFFITD(I,J,K,bi,bj) +tmpscal2 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
538 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
539 |
#else |
#else |
540 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
541 |
tmpscal2=-HEFF(I,J,bi,bj) |
tmpscal2=-HEFF(I,J,bi,bj) |
565 |
DO J=1,sNy |
DO J=1,sNy |
566 |
DO I=1,sNx |
DO I=1,sNx |
567 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
568 |
DO K=1,nITD |
DO IT=1,nITD |
569 |
IF ((HEFFITD(i,j,k,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
570 |
& (HSNOWITD(i,j,k,bi,bj).EQ.0. _d 0)) |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
571 |
& AREAITD(I,J,K,bi,bj)=0. _d 0 |
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
572 |
ENDDO |
ENDDO |
573 |
#else |
#else |
574 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
586 |
DO J=1,sNy |
DO J=1,sNy |
587 |
DO I=1,sNx |
DO I=1,sNx |
588 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
589 |
DO K=1,nITD |
DO IT=1,nITD |
590 |
IF ((HEFFITD(i,j,k,bi,bj).GT.0).OR. |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
591 |
& (HSNOWITD(i,j,k,bi,bj).GT.0)) THEN |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
592 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
593 |
C hence use SEAICE_area_floor devided by nITD |
C hence use SEAICE_area_floor devided by nITD |
594 |
C (or install a warning in e.g. seaice_readparms.F) |
C (or install a warning in e.g. seaice_readparms.F) |
595 |
AREAITD(I,J,K,bi,bj)= |
AREAITD(I,J,IT,bi,bj)= |
596 |
& MAX(AREAITD(I,J,K,bi,bj),SEAICE_area_floor/float(nITD)) |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
597 |
ENDIF |
ENDIF |
598 |
ENDDO |
ENDDO |
599 |
#else |
#else |
624 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
625 |
ENDDO |
ENDDO |
626 |
ENDDO |
ENDDO |
627 |
#endif /* SEAICE_ITD */ |
#endif /* notSEAICE_ITD */ |
628 |
|
|
629 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
630 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
|
C first, update AREA and HEFF: |
|
|
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
|
|
C |
|
631 |
DO J=1,sNy |
DO J=1,sNy |
632 |
DO I=1,sNx |
DO I=1,sNx |
633 |
C TICES was changed above (item 1.25), now update TICE as ice volume |
C TICES was changed above (item 1.25), now update TICE as ice volume |
634 |
C weighted average of TICES |
C weighted average of TICES |
635 |
|
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
636 |
tmpscal1 = 0. _d 0 |
tmpscal1 = 0. _d 0 |
637 |
tmpscal2 = 0. _d 0 |
tmpscal2 = 0. _d 0 |
638 |
DO K=1,nITD |
tmpscal3 = 0. _d 0 |
639 |
tmpscal1=tmpscal1 + TICES(I,J,K,bi,bj)*HEFFITD(I,J,K,bi,bj) |
DO IT=1,nITD |
640 |
tmpscal2=tmpscal2 + HEFFITD(I,J,K,bi,bj) |
tmpscal1=tmpscal1 + TICES(I,J,IT,bi,bj)*HEFFITD(I,J,IT,bi,bj) |
641 |
|
tmpscal2=tmpscal2 + HEFFITD(I,J,IT,bi,bj) |
642 |
|
tmpscal3=tmpscal3 + AREAITD(I,J,IT,bi,bj) |
643 |
ENDDO |
ENDDO |
644 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
645 |
C lines of item 2.5 that were omitted: |
C lines of item 2.5 that were omitted: |
647 |
C hence we execute them here before SEAICE_ITD_REDIST is called |
C hence we execute them here before SEAICE_ITD_REDIST is called |
648 |
C although this means that AREA has not been completely regularized |
C although this means that AREA has not been completely regularized |
649 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
650 |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
DIAGarrayA(I,J) = tmpscal3 |
651 |
#endif |
#endif |
652 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
653 |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
SItrAREA(I,J,bi,bj,1)=tmpscal3 |
654 |
#endif |
#endif |
655 |
ENDDO |
ENDDO |
656 |
ENDDO |
ENDDO |
661 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
662 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
663 |
|
|
664 |
#endif |
c ToM<<< debug seaice_growth |
665 |
|
WRITE(msgBuf,'(A,7F6.2)') |
666 |
|
& ' SEAICE_GROWTH: Heff increments 0, HEFFITD = ', |
667 |
|
& HEFFITD(20,20,:,bi,bj) |
668 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
669 |
|
& SQUEEZE_RIGHT , myThid) |
670 |
|
WRITE(msgBuf,'(A,7F6.2)') |
671 |
|
& ' SEAICE_GROWTH: Area increments 0, AREAITD = ', |
672 |
|
& AREAITD(20,20,:,bi,bj) |
673 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
674 |
|
& SQUEEZE_RIGHT , myThid) |
675 |
|
#else |
676 |
|
WRITE(msgBuf,'(A,7F6.2)') |
677 |
|
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
678 |
|
& HEFF(20,20,bi,bj) |
679 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
680 |
|
& SQUEEZE_RIGHT , myThid) |
681 |
|
WRITE(msgBuf,'(A,7F6.2)') |
682 |
|
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
683 |
|
& AREA(20,20,bi,bj) |
684 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
685 |
|
& SQUEEZE_RIGHT , myThid) |
686 |
|
c ToM>>> |
687 |
|
#endif /* SEAICE_ITD */ |
688 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
689 |
C ENDIF SEAICEadjMODE.EQ.0 |
C end SEAICEadjMODE.EQ.0 statement: |
690 |
ENDIF |
ENDIF |
691 |
#endif |
#endif |
692 |
|
|
708 |
ENDDO |
ENDDO |
709 |
ENDDO |
ENDDO |
710 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
711 |
DO K=1,nITD |
DO IT=1,nITD |
712 |
DO J=1,sNy |
DO J=1,sNy |
713 |
DO I=1,sNx |
DO I=1,sNx |
714 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
715 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
716 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
717 |
|
|
718 |
C memorize areal and volume fraction of each ITD category |
C memorize areal and volume fraction of each ITD category |
719 |
IF (AREA(I,J,bi,bj).GT.0) THEN |
IF (AREA(I,J,bi,bj).GT.0) THEN |
720 |
areaFracFactor(I,J,K)=AREAITD(I,J,K,bi,bj)/AREA(I,J,bi,bj) |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
|
ELSE |
|
|
areaFracFactor(I,J,K)=ZERO |
|
|
ENDIF |
|
|
IF (HEFF(I,J,bi,bj).GT.0) THEN |
|
|
heffFracFactor(I,J,K)=HEFFITD(I,J,K,bi,bj)/HEFF(I,J,bi,bj) |
|
721 |
ELSE |
ELSE |
722 |
heffFracFactor(I,J,K)=ZERO |
C if there's no ice, potential growth starts in 1st category |
723 |
|
IF (IT .EQ. 1) THEN |
724 |
|
areaFracFactor(I,J,IT)=ONE |
725 |
|
ELSE |
726 |
|
areaFracFactor(I,J,IT)=ZERO |
727 |
|
ENDIF |
728 |
ENDIF |
ENDIF |
729 |
ENDDO |
ENDDO |
730 |
ENDDO |
ENDDO |
731 |
ENDDO |
ENDDO |
732 |
C prepare SItrHEFF to be computed as cumulative sum |
C prepare SItrHEFF to be computed as cumulative sum |
733 |
DO K=2,5 |
DO iTr=2,5 |
734 |
DO J=1,sNy |
DO J=1,sNy |
735 |
DO I=1,sNx |
DO I=1,sNx |
736 |
SItrHEFF(I,J,bi,bj,K)=ZERO |
SItrHEFF(I,J,bi,bj,iTr)=ZERO |
737 |
ENDDO |
ENDDO |
738 |
ENDDO |
ENDDO |
739 |
ENDDO |
ENDDO |
799 |
ENDDO |
ENDDO |
800 |
ENDDO |
ENDDO |
801 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
802 |
DO K=1,nITD |
DO IT=1,nITD |
803 |
DO J=1,sNy |
DO J=1,sNy |
804 |
DO I=1,sNx |
DO I=1,sNx |
805 |
HEFFITDpreTH(I,J,K) = 0. _d 0 |
HEFFITDpreTH(I,J,IT) = 0. _d 0 |
806 |
HSNWITDpreTH(I,J,K) = 0. _d 0 |
HSNWITDpreTH(I,J,IT) = 0. _d 0 |
807 |
AREAITDpreTH(I,J,K) = 0. _d 0 |
AREAITDpreTH(I,J,IT) = 0. _d 0 |
808 |
ENDDO |
ENDDO |
809 |
ENDDO |
ENDDO |
810 |
ENDDO |
ENDDO |
829 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
830 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
831 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
832 |
DO K=1,nITD |
DO IT=1,nITD |
833 |
#endif |
#endif |
834 |
DO J=1,sNy |
DO J=1,sNy |
835 |
DO I=1,sNx |
DO I=1,sNx |
836 |
|
|
837 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
838 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
839 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
840 |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
841 |
& AREAITDpreTH(I,J,K)) |
& AREAITDpreTH(I,J,IT)) |
842 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K)/tmpscal1 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT)/tmpscal1 |
843 |
tmpscal2 = HEFFITDpreTH(I,J,K)/tmpscal1 |
tmpscal2 = HEFFITDpreTH(I,J,IT)/tmpscal1 |
844 |
heffActualMult(I,J,K) = MAX(tmpscal2,SEAICE_hice_reg) |
heffActualMult(I,J,IT) = MAX(tmpscal2,SEAICE_hice_reg) |
845 |
#else /* SEAICE_GROWTH_LEGACY */ |
#else /* SEAICE_GROWTH_LEGACY */ |
846 |
cif regularize AREA with SEAICE_area_reg |
cif regularize AREA with SEAICE_area_reg |
847 |
tmpscal1 = SQRT(AREAITDpreTH(I,J,K) * AREAITDpreTH(I,J,K) |
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
848 |
& + area_reg_sq) |
& + area_reg_sq) |
849 |
cif heffActual calculated with the regularized AREA |
cif heffActual calculated with the regularized AREA |
850 |
tmpscal2 = HEFFITDpreTH(I,J,K) / tmpscal1 |
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
851 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
852 |
heffActualMult(I,J,K) = SQRT(tmpscal2 * tmpscal2 |
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
853 |
& + hice_reg_sq) |
& + hice_reg_sq) |
854 |
cif hsnowActual calculated with the regularized AREA |
cif hsnowActual calculated with the regularized AREA |
855 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K) / tmpscal1 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
856 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
857 |
cif regularize the inverse of heffActual by hice_reg |
cif regularize the inverse of heffActual by hice_reg |
858 |
recip_heffActualMult(I,J,K) = AREAITDpreTH(I,J,K) / |
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
859 |
& sqrt(HEFFITDpreTH(I,J,K) * HEFFITDpreTH(I,J,K) |
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
860 |
& + hice_reg_sq) |
& + hice_reg_sq) |
861 |
cif Do not regularize when HEFFpreTH = 0 |
cif Do not regularize when HEFFpreTH = 0 |
862 |
ELSE |
ELSE |
863 |
heffActualMult(I,J,K) = ZERO |
heffActualMult(I,J,IT) = ZERO |
864 |
hsnowActualMult(I,J,K) = ZERO |
hsnowActualMult(I,J,IT) = ZERO |
865 |
recip_heffActualMult(I,J,K) = ZERO |
recip_heffActualMult(I,J,IT) = ZERO |
866 |
ENDIF |
ENDIF |
867 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
868 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
908 |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
909 |
C AND SNOW THICKNESS |
C AND SNOW THICKNESS |
910 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
911 |
DO K=1,nITD |
DO IT=1,nITD |
912 |
#endif |
#endif |
913 |
DO J=1,sNy |
DO J=1,sNy |
914 |
DO I=1,sNx |
DO I=1,sNx |
916 |
c will sublimate all of the snow and ice over one time |
c will sublimate all of the snow and ice over one time |
917 |
c step (W/m^2) |
c step (W/m^2) |
918 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
919 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
920 |
latentHeatFluxMaxMult(I,J,K) = lhSublim*recip_deltaTtherm * |
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
921 |
& (HEFFITDpreTH(I,J,K)*SEAICE_rhoIce + |
& (HEFFITDpreTH(I,J,IT)*SEAICE_rhoIce + |
922 |
& HSNWITDpreTH(I,J,K)*SEAICE_rhoSnow)/AREAITDpreTH(I,J,K) |
& HSNWITDpreTH(I,J,IT)*SEAICE_rhoSnow) |
923 |
|
& /AREAITDpreTH(I,J,IT) |
924 |
ELSE |
ELSE |
925 |
latentHeatFluxMaxMult(I,J,K) = ZERO |
latentHeatFluxMaxMult(I,J,IT) = ZERO |
926 |
ENDIF |
ENDIF |
927 |
#else |
#else |
928 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
1088 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1089 |
C calculate area weighted mean |
C calculate area weighted mean |
1090 |
C (although the ice's temperature relates to its energy content |
C (although the ice's temperature relates to its energy content |
1091 |
C and hence should be averaged weighted by ice volume [heffFracFactor], |
C and hence should be averaged weighted by ice volume, |
1092 |
C the temperature here is a result of the fluxes through the ice surface |
C the temperature here is a result of the fluxes through the ice surface |
1093 |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1094 |
C and hence is averaged area weighted [areaFracFactor]) |
C and hence is averaged area weighted [areaFracFactor]) |
1095 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1096 |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,K) |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
1097 |
#else |
#else |
1098 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1099 |
& + ticeOutMult(I,J,IT)*recip_multDim |
& + ticeOutMult(I,J,IT)*recip_multDim |
1104 |
C calculate area weighted mean |
C calculate area weighted mean |
1105 |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
1106 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1107 |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1108 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1109 |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1110 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1111 |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,K) |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,IT) |
1112 |
#else |
#else |
1113 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1114 |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1150 |
|
|
1151 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
C switch heat fluxes from W/m2 to 'effective' ice meters |
1152 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1153 |
DO K=1,nITD |
DO IT=1,nITD |
1154 |
DO J=1,sNy |
DO J=1,sNy |
1155 |
DO I=1,sNx |
DO I=1,sNx |
1156 |
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1157 |
& * convertQ2HI * AREAITDpreTH(I,J,K) |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1158 |
a_QSWbyATMmult_cover(I,J,K) = a_QSWbyATMmult_cover(I,J,K) |
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
1159 |
& * convertQ2HI * AREAITDpreTH(I,J,K) |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1160 |
C and initialize r_QbyATM_cover |
C and initialize r_QbyATM_cover |
1161 |
r_QbyATMmult_cover(I,J,K)=a_QbyATMmult_cover(I,J,K) |
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
1162 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1163 |
C Negative sublimation is resublimation and will be added as snow. |
C Negative sublimation is resublimation and will be added as snow. |
1164 |
#ifdef SEAICE_DISABLE_SUBLIM |
#ifdef SEAICE_DISABLE_SUBLIM |
1165 |
a_FWbySublimMult(I,J,K) = ZERO |
a_FWbySublimMult(I,J,IT) = ZERO |
1166 |
#endif |
#endif |
1167 |
a_FWbySublimMult(I,J,K) = SEAICE_deltaTtherm*recip_rhoIce |
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
1168 |
& * a_FWbySublimMult(I,J,K)*AREAITDpreTH(I,J,K) |
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
1169 |
r_FWbySublimMult(I,J,K)=a_FWbySublimMult(I,J,K) |
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
1170 |
ENDDO |
ENDDO |
1171 |
ENDDO |
ENDDO |
1172 |
ENDDO |
ENDDO |
1173 |
DO J=1,sNy |
DO J=1,sNy |
1174 |
DO I=1,sNx |
DO I=1,sNx |
1175 |
|
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1176 |
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1177 |
|
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1178 |
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1179 |
C and initialize r_QbyATM_open |
C and initialize r_QbyATM_open |
1180 |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1181 |
ENDDO |
ENDDO |
1223 |
Cgf no additional dependency through ice cover |
Cgf no additional dependency through ice cover |
1224 |
IF ( SEAICEadjMODE.GE.3 ) THEN |
IF ( SEAICEadjMODE.GE.3 ) THEN |
1225 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1226 |
DO K=1,nITD |
DO IT=1,nITD |
1227 |
DO J=1,sNy |
DO J=1,sNy |
1228 |
DO I=1,sNx |
DO I=1,sNx |
1229 |
a_QbyATMmult_cover(I,J,K) = 0. _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1230 |
r_QbyATMmult_cover(I,J,K) = 0. _d 0 |
r_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1231 |
a_QSWbyATMmult_cover(I,J,K) = 0. _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
1232 |
ENDDO |
ENDDO |
1233 |
ENDDO |
ENDDO |
1234 |
ENDDO |
ENDDO |
1285 |
a_QbyOCN(i,j) = |
a_QbyOCN(i,j) = |
1286 |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
1287 |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
|
ctm |
|
|
if (i.eq.20 .and. j.eq.20) then |
|
|
print *, HeatCapacity_Cp |
|
|
print *, rhoConst |
|
|
print *, recip_QI |
|
|
print *, theta(20,20,kSurface,bi,bj) |
|
|
print *, tempFrz |
|
|
print *, SEAICE_deltaTtherm |
|
|
print *, maskC(20,20,kSurface,bi,bj) |
|
|
print *, tmpscal2 |
|
|
print *, a_QbyOCN(20,20) |
|
|
endif |
|
|
ctm |
|
1288 |
ENDDO |
ENDDO |
1289 |
ENDDO |
ENDDO |
1290 |
|
|
1305 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1306 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1307 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1308 |
DO K=1,nITD |
DO IT=1,nITD |
1309 |
#endif |
#endif |
1310 |
DO J=1,sNy |
DO J=1,sNy |
1311 |
DO I=1,sNx |
DO I=1,sNx |
1312 |
C First sublimate/deposite snow |
C First sublimate/deposite snow |
1313 |
tmpscal2 = |
tmpscal2 = |
1314 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1315 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HSNOWITD(I,J,K,bi,bj) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1316 |
& *SNOW2ICE),ZERO) |
& *SNOW2ICE),ZERO) |
1317 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1318 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1319 |
& *ICE2SNOW |
& *ICE2SNOW |
1320 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal2 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
1321 |
& *ICE2SNOW |
& *ICE2SNOW |
1322 |
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
1323 |
C keep total up to date, too |
C keep total up to date, too |
1324 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1325 |
#else |
#else |
1326 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1327 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1339 |
C If anything is left, sublimate ice |
C If anything is left, sublimate ice |
1340 |
tmpscal2 = |
tmpscal2 = |
1341 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1342 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HEFFITD(I,J,K,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1343 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1344 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1345 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) - tmpscal2 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
1346 |
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
1347 |
C keep total up to date, too |
C keep total up to date, too |
1348 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1349 |
#else |
#else |
1360 |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1361 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1362 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1363 |
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1364 |
& - r_FWbySublimMult(I,J,K) |
& - r_FWbySublimMult(I,J,IT) |
1365 |
r_QbyATMmult_cover(I,J,K) = r_QbyATMmult_cover(I,J,K) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1366 |
& - r_FWbySublimMult(I,J,K) |
& - r_FWbySublimMult(I,J,IT) |
1367 |
ENDDO |
ENDDO |
1368 |
ENDDO |
ENDDO |
1369 |
C end K loop |
C end IT loop |
1370 |
ENDDO |
ENDDO |
1371 |
C then update totals |
C then update totals |
1372 |
DO J=1,sNy |
DO J=1,sNy |
1378 |
ENDDO |
ENDDO |
1379 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1380 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F6.2)') |
1381 |
|
#ifdef SEAICE_ITD |
1382 |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
1383 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(20,20,:,bi,bj) |
1384 |
|
#else |
1385 |
|
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
1386 |
|
& HEFF(20,20,bi,bj) |
1387 |
|
#endif |
1388 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1389 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1390 |
c ToM>>> |
c ToM>>> |
1398 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1399 |
|
|
1400 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1401 |
DO K=1,nITD |
DO IT=1,nITD |
1402 |
DO J=1,sNy |
DO J=1,sNy |
1403 |
DO I=1,sNx |
DO I=1,sNx |
1404 |
C ice growth/melt due to ocean heat is equally distributed under the ice |
C ice growth/melt due to ocean heat r_QbyOCN (W/m^2) is |
1405 |
C and hence weighted by fractional area of each thickness category |
C equally distributed under the ice and hence weighted by |
1406 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,K), |
C fractional area of each thickness category |
1407 |
& -HEFFITD(I,J,K,bi,bj)) |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1408 |
d_HEFFbyOCNonICE(I,J)= d_HEFFbyOCNonICE(I,J) + tmpscal1 |
& -HEFFITD(I,J,IT,bi,bj)) |
1409 |
r_QbyOCN(I,J) = r_QbyOCN(I,J) - tmpscal1 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1410 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1411 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1412 |
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
1413 |
& + HEFFITD(I,J,K,bi,bj) |
& + HEFFITD(I,J,IT,bi,bj) |
1414 |
#endif |
#endif |
1415 |
ENDDO |
ENDDO |
1416 |
ENDDO |
ENDDO |
1417 |
ENDDO |
ENDDO |
1418 |
c ToM<<< debug seaice_growth |
DO J=1,sNy |
1419 |
WRITE(msgBuf,'(A,7F9.6)') |
DO I=1,sNx |
1420 |
& ' SEAICE_GROWTH: d_HEFFbyOCNonICE w/ITD: ', |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1421 |
& d_HEFFbyOCNonICE(20,20) |
ENDDO |
1422 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
ENDDO |
|
& SQUEEZE_RIGHT , myThid) |
|
|
c ToM>>> |
|
1423 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
1424 |
DO J=1,sNy |
DO J=1,sNy |
1425 |
DO I=1,sNx |
DO I=1,sNx |
1431 |
#endif |
#endif |
1432 |
ENDDO |
ENDDO |
1433 |
ENDDO |
ENDDO |
|
c ToM<<< debug seaice_growth |
|
|
WRITE(msgBuf,'(A,7F9.6)') |
|
|
& ' SEAICE_GROWTH: d_HEFFbyOCNonICE w/o ITD: ', |
|
|
& d_HEFFbyOCNonICE(20,20) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
c ToM>>> |
|
1434 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1435 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1436 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F6.2)') |
1437 |
|
#ifdef SEAICE_ITD |
1438 |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
1439 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(20,20,:,bi,bj) |
1440 |
|
#else |
1441 |
|
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
1442 |
|
& HEFF(20,20,bi,bj) |
1443 |
|
#endif |
1444 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1445 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1446 |
c ToM>>> |
c ToM>>> |
1454 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1455 |
|
|
1456 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1457 |
DO K=1,nITD |
DO IT=1,nITD |
1458 |
DO J=1,sNy |
DO J=1,sNy |
1459 |
DO I=1,sNx |
DO I=1,sNx |
1460 |
C Convert to standard units (meters of ice) rather than to meters |
C Convert to standard units (meters of ice) rather than to meters |
1461 |
C of snow. This appears to be more robust. |
C of snow. This appears to be more robust. |
1462 |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,K),-HSNOWITD(I,J,K,bi,bj) |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,IT), |
1463 |
& *SNOW2ICE) |
& -HSNOWITD(I,J,IT,bi,bj)*SNOW2ICE) |
1464 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1465 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1466 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1467 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1468 |
#endif |
#endif |
1469 |
d_HSNWbyATMonSNW(I,J)=d_HSNWbyATMonSNW(I,J)+tmpscal2*ICE2SNOW |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1470 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal2*ICE2SNOW |
& + tmpscal2*ICE2SNOW |
1471 |
r_QbyATMmult_cover(I,J,K)=r_QbyATMmult_cover(I,J,K) - tmpscal2 |
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) |
1472 |
C keep the total up to date, too |
& + tmpscal2*ICE2SNOW |
1473 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1474 |
|
& - tmpscal2 |
1475 |
|
C keep the total up to date, too |
1476 |
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1477 |
ENDDO |
ENDDO |
1478 |
ENDDO |
ENDDO |
1479 |
ENDDO |
ENDDO |
1496 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1497 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1498 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F6.2)') |
1499 |
|
#ifdef SEAICE_ITD |
1500 |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
1501 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(20,20,:,bi,bj) |
1502 |
|
#else |
1503 |
|
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
1504 |
|
& HEFF(20,20,bi,bj) |
1505 |
|
#endif |
1506 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1507 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1508 |
c ToM>>> |
c ToM>>> |
1521 |
Cgf warming conditions, the lab_sea results were not changed. |
Cgf warming conditions, the lab_sea results were not changed. |
1522 |
|
|
1523 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1524 |
DO K=1,nITD |
DO IT=1,nITD |
1525 |
DO J=1,sNy |
DO J=1,sNy |
1526 |
DO I=1,sNx |
DO I=1,sNx |
1527 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
1528 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K)) |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1529 |
|
& r_QbyATMmult_cover(I,J,IT)) |
1530 |
#else |
#else |
1531 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K) |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1532 |
|
& r_QbyATMmult_cover(I,J,IT) |
1533 |
c Limit ice growth by potential melt by ocean |
c Limit ice growth by potential melt by ocean |
1534 |
& + AREAITDpreTH(I,J,K) * r_QbyOCN(I,J)) |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1535 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1536 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1537 |
& + tmpscal2 |
& + tmpscal2 |
1539 |
& + tmpscal2 |
& + tmpscal2 |
1540 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
1541 |
& - tmpscal2 |
& - tmpscal2 |
1542 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal2 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
1543 |
|
|
1544 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1545 |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
1546 |
& + HEFFITD(I,J,K,bi,bj) |
& + HEFFITD(I,J,IT,bi,bj) |
1547 |
#endif |
#endif |
1548 |
ENDDO |
ENDDO |
1549 |
ENDDO |
ENDDO |
1573 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1574 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1575 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F6.2)') |
1576 |
|
#ifdef SEAICE_ITD |
1577 |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
1578 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(20,20,:,bi,bj) |
1579 |
|
#else |
1580 |
|
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
1581 |
|
& HEFF(20,20,bi,bj) |
1582 |
|
#endif |
1583 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1584 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1585 |
c ToM>>> |
c ToM>>> |
1612 |
ENDDO |
ENDDO |
1613 |
ENDDO |
ENDDO |
1614 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1615 |
DO K=1,nITD |
DO IT=1,nITD |
1616 |
DO J=1,sNy |
DO J=1,sNy |
1617 |
DO I=1,sNx |
DO I=1,sNx |
1618 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1619 |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,K) |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1620 |
ENDDO |
ENDDO |
1621 |
ENDDO |
ENDDO |
1622 |
ENDDO |
ENDDO |
1633 |
#endif /* ALLOW_ATM_TEMP */ |
#endif /* ALLOW_ATM_TEMP */ |
1634 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1635 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F6.2)') |
1636 |
|
#ifdef SEAICE_ITD |
1637 |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
1638 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(20,20,:,bi,bj) |
1639 |
|
#else |
1640 |
|
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
1641 |
|
& HEFF(20,20,bi,bj) |
1642 |
|
#endif |
1643 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1644 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1645 |
c ToM>>> |
c ToM>>> |
1656 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1657 |
|
|
1658 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1659 |
DO K=1,nITD |
DO IT=1,nITD |
1660 |
DO J=1,sNy |
DO J=1,sNy |
1661 |
DO I=1,sNx |
DO I=1,sNx |
1662 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,K), |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1663 |
& -HSNOWITD(I,J,K,bi,bj)) |
& -HSNOWITD(I,J,IT,bi,bj)) |
1664 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1665 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1666 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1668 |
#endif |
#endif |
1669 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1670 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
1671 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) + tmpscal2 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) + tmpscal2 |
1672 |
ENDDO |
ENDDO |
1673 |
ENDDO |
ENDDO |
1674 |
ENDDO |
ENDDO |
1692 |
Cph) |
Cph) |
1693 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1694 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F6.2)') |
1695 |
|
#ifdef SEAICE_ITD |
1696 |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
1697 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(20,20,:,bi,bj) |
1698 |
|
#else |
1699 |
|
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
1700 |
|
& HEFF(20,20,bi,bj) |
1701 |
|
#endif |
1702 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1703 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1704 |
c ToM>>> |
c ToM>>> |
1736 |
C considering the entire open water area to refreeze |
C considering the entire open water area to refreeze |
1737 |
tmpscal1 = tmpscal3/tmpscal0 |
tmpscal1 = tmpscal3/tmpscal0 |
1738 |
C then add new ice volume to appropriate thickness category |
C then add new ice volume to appropriate thickness category |
1739 |
DO K=1,nITD |
DO IT=1,nITD |
1740 |
IF (tmpscal1.LT.Hlimit(K)) THEN |
IF (tmpscal1.LT.Hlimit(IT)) THEN |
1741 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal3 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
1742 |
tmpscal3=ZERO |
tmpscal3=ZERO |
1743 |
C not sure if AREAITD should be changed here since AREA is incremented |
C not sure if AREAITD should be changed here since AREA is incremented |
1744 |
C in PART 4 below in non-itd code |
C in PART 4 below in non-itd code |
1745 |
C in this scenario all open water is covered by new ice instantaneously, |
C in this scenario all open water is covered by new ice instantaneously, |
1746 |
C i.e. no delayed lead closing is concidered such as is associated with |
C i.e. no delayed lead closing is concidered such as is associated with |
1747 |
C Hibler's h_0 parameter |
C Hibler's h_0 parameter |
1748 |
AREAITD(I,J,K,bi,bj) = AREAITD(I,J,K,bi,bj) |
AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
1749 |
& + tmpscal0 |
& + tmpscal0 |
1750 |
tmpscal0=ZERO |
tmpscal0=ZERO |
1751 |
ENDIF |
ENDIF |
1758 |
|
|
1759 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1760 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1761 |
DO K=1,nITD |
DO IT=1,nITD |
1762 |
DO J=1,sNy |
DO J=1,sNy |
1763 |
DO I=1,sNx |
DO I=1,sNx |
1764 |
c needs to be here to allow use also with LEGACY branch |
c needs to be here to allow use also with LEGACY branch |
1765 |
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
1766 |
& + HEFFITD(I,J,K,bi,bj) |
& + HEFFITD(I,J,IT,bi,bj) |
1767 |
ENDDO |
ENDDO |
1768 |
ENDDO |
ENDDO |
1769 |
ENDDO |
ENDDO |
1778 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1779 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1780 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F6.2)') |
1781 |
|
#ifdef SEAICE_ITD |
1782 |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
1783 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(20,20,:,bi,bj) |
1784 |
|
#else |
1785 |
|
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
1786 |
|
& HEFF(20,20,bi,bj) |
1787 |
|
#endif |
1788 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1789 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1790 |
c ToM>>> |
c ToM>>> |
1800 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1801 |
IF ( SEAICEuseFlooding ) THEN |
IF ( SEAICEuseFlooding ) THEN |
1802 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1803 |
DO K=1,nITD |
DO IT=1,nITD |
1804 |
DO J=1,sNy |
DO J=1,sNy |
1805 |
DO I=1,sNx |
DO I=1,sNx |
1806 |
tmpscal0 = (HSNOWITD(I,J,K,bi,bj)*SEAICE_rhoSnow |
tmpscal0 = (HSNOWITD(I,J,IT,bi,bj)*SEAICE_rhoSnow |
1807 |
& +HEFFITD(I,J,K,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
& + HEFFITD(I,J,IT,bi,bj) *SEAICE_rhoIce) |
1808 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,K,bi,bj)) |
& *recip_rhoConst |
1809 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,IT,bi,bj)) |
1810 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1811 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal1 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1812 |
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) - tmpscal1 |
1813 |
& * ICE2SNOW |
& * ICE2SNOW |
1814 |
ENDDO |
ENDDO |
1815 |
ENDDO |
ENDDO |
1831 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1832 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1833 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F6.2)') |
1834 |
|
#ifdef SEAICE_ITD |
1835 |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
1836 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(20,20,:,bi,bj) |
1837 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1838 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1839 |
|
WRITE(msgBuf,'(A,7F6.2)') |
1840 |
|
& ' SEAICE_GROWTH: Area increments 8, AREAITD = ', |
1841 |
|
& AREAITD(20,20,:,bi,bj) |
1842 |
|
#else |
1843 |
|
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
1844 |
|
& HEFF(20,20,bi,bj) |
1845 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1846 |
|
& SQUEEZE_RIGHT , myThid) |
1847 |
|
WRITE(msgBuf,'(A,7F6.2)') |
1848 |
|
& ' SEAICE_GROWTH: Area increments 8, AREA = ', |
1849 |
|
& AREA(20,20,bi,bj) |
1850 |
|
#endif |
1851 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1852 |
|
& SQUEEZE_RIGHT , myThid) |
1853 |
c ToM>>> |
c ToM>>> |
1854 |
|
|
1855 |
C =================================================================== |
C =================================================================== |
1889 |
C |
C |
1890 |
C AREAITD is incremented in section "gain of new ice over open water" above |
C AREAITD is incremented in section "gain of new ice over open water" above |
1891 |
C |
C |
1892 |
DO K=1,nITD |
DO IT=1,nITD |
1893 |
DO J=1,sNy |
DO J=1,sNy |
1894 |
DO I=1,sNx |
DO I=1,sNx |
1895 |
IF (HEFFITD(I,J,K,bi,bj).LE.ZERO) THEN |
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
1896 |
AREAITD(I,J,K,bi,bj)=ZERO |
AREAITD(I,J,IT,bi,bj)=ZERO |
1897 |
ENDIF |
ENDIF |
1898 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1899 |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
1900 |
& + AREAITD(I,J,K,bi,bj) |
& + AREAITD(I,J,IT,bi,bj) |
1901 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1902 |
ENDDO |
ENDDO |
1903 |
ENDDO |
ENDDO |
1978 |
Cgf 'bulk' linearization of area=f(HEFF) |
Cgf 'bulk' linearization of area=f(HEFF) |
1979 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
IF ( SEAICEadjMODE.GE.1 ) THEN |
1980 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1981 |
DO K=1,nITD |
DO IT=1,nITD |
1982 |
DO J=1,sNy |
DO J=1,sNy |
1983 |
DO I=1,sNx |
DO I=1,sNx |
1984 |
AREAITD(I,J,K,bi,bj) = AREAITDpreTH(I,J,K) + 0.1 _d 0 * |
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
1985 |
& ( HEFFITD(I,J,K,bi,bj) - HEFFITDpreTH(I,J,K) ) |
& ( HEFFITD(I,J,IT,bi,bj) - HEFFITDpreTH(I,J,IT) ) |
1986 |
ENDDO |
ENDDO |
1987 |
ENDDO |
ENDDO |
1988 |
ENDDO |
ENDDO |