58 |
|
|
59 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
60 |
C === Local variables === |
C === Local variables === |
61 |
|
#ifdef SEAICE_DEBUG |
62 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
63 |
C msgBuf :: Informational/error message buffer |
C msgBuf :: Informational/error message buffer |
64 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
65 |
c ToM>>> |
c ToM>>> |
66 |
|
#endif |
67 |
C |
C |
68 |
C unit/sign convention: |
C unit/sign convention: |
69 |
C Within the thermodynamic computation all stocks, except HSNOW, |
C Within the thermodynamic computation all stocks, except HSNOW, |
97 |
INTEGER i, j, bi, bj |
INTEGER i, j, bi, bj |
98 |
C number of surface interface layer |
C number of surface interface layer |
99 |
INTEGER kSurface |
INTEGER kSurface |
100 |
|
C IT :: ice thickness category index (MULTICATEGORIES and ITD code) |
101 |
|
INTEGER IT |
102 |
|
_RL pFac |
103 |
C constants |
C constants |
104 |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
105 |
_RL QI, QS, recip_QI |
_RL QI, QS, recip_QI |
106 |
|
_RL lhSublim |
|
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
|
|
_RL TmixLoc (1:sNx,1:sNy) |
|
|
|
|
|
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
|
|
C the atmosphere and the ocean surface - for ice covered water |
|
|
C a_QbyATM_open :: same but for open water |
|
|
C r_QbyATM_cover :: residual of a_QbyATM_cover after freezing/melting processes |
|
|
C r_QbyATM_open :: same but for open water |
|
|
_RL a_QbyATM_cover (1:sNx,1:sNy) |
|
|
_RL a_QbyATM_open (1:sNx,1:sNy) |
|
|
_RL r_QbyATM_cover (1:sNx,1:sNy) |
|
|
_RL r_QbyATM_open (1:sNx,1:sNy) |
|
|
C a_QSWbyATM_open - short wave heat flux over ocean in W/m^2 |
|
|
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
|
|
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
|
|
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
|
|
C a_QbyOCN :: available heat (in in W/m^2) due to the |
|
|
C interaction of the ice pack and the ocean surface |
|
|
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
|
|
C processes have been accounted for |
|
|
_RL a_QbyOCN (1:sNx,1:sNy) |
|
|
_RL r_QbyOCN (1:sNx,1:sNy) |
|
107 |
|
|
108 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
109 |
_RL convertQ2HI, convertHI2Q |
_RL convertQ2HI, convertHI2Q |
110 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
111 |
_RL convertPRECIP2HI, convertHI2PRECIP |
_RL convertPRECIP2HI, convertHI2PRECIP |
112 |
|
C Factor by which we increase the upper ocean friction velocity (u*) when |
113 |
|
C ice is absent in a grid cell (dimensionless) |
114 |
|
_RL MixedLayerTurbulenceFactor |
115 |
|
|
116 |
#ifdef ALLOW_DIAGNOSTICS |
C wind speed square |
117 |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
_RL SPEED_SQ |
|
_RL d_AREAbyATM (1:sNx,1:sNy) |
|
|
_RL d_AREAbyOCN (1:sNx,1:sNy) |
|
|
_RL d_AREAbyICE (1:sNx,1:sNy) |
|
|
#endif |
|
|
|
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
|
|
C ICE/SNOW stocks tendency associated with relaxation towards observation |
|
|
_RL d_AREAbyRLX (1:sNx,1:sNy) |
|
|
c The change of mean ice thickness due to relaxation |
|
|
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
|
|
#endif |
|
|
|
|
|
#ifdef SEAICE_ITD |
|
|
c The change of mean ice area due to out-of-bounds values following |
|
|
c sea ice dynamics |
|
|
_RL d_AREAbyNEG (1:sNx,1:sNy) |
|
|
#endif |
|
|
c The change of mean ice thickness due to out-of-bounds values following |
|
|
c sea ice dynamics |
|
|
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
|
|
|
|
|
c The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
|
|
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
|
|
|
|
|
c The sum of mean ice thickness increments due to atmospheric fluxes over the open water |
|
|
c fraction and ice-covered fractions of the grid cell |
|
|
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
|
|
c The change of mean ice thickness due to flooding by snow |
|
|
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
|
118 |
|
|
119 |
c The mean ice thickness increments due to atmospheric fluxes over the open water |
C Regularization values squared |
120 |
c fraction and ice-covered fractions of the grid cell, respectively |
_RL area_reg_sq, hice_reg_sq |
121 |
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
C pathological cases thresholds |
122 |
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
_RL heffTooHeavy |
123 |
|
|
124 |
_RL d_HSNWbyNEG (1:sNx,1:sNy) |
C Helper variables: reciprocal of some constants |
125 |
_RL d_HSNWbyATMonSNW (1:sNx,1:sNy) |
_RL recip_multDim |
126 |
_RL d_HSNWbyOCNonSNW (1:sNx,1:sNy) |
_RL recip_deltaTtherm |
127 |
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
_RL recip_rhoIce |
128 |
|
C local value (=1/HO or 1/HO_south) |
129 |
|
_RL recip_HO |
130 |
|
C local value (=1/ice thickness) |
131 |
|
_RL recip_HH |
132 |
|
C facilitate multi-category snow implementation |
133 |
|
_RL pFacSnow |
134 |
|
|
135 |
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
C temporary variables available for the various computations |
136 |
C |
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
|
C a_FWbySublim :: fresh water flux implied by latent heat of |
|
|
C sublimation to atmosphere, same sign convention |
|
|
C as EVAP (positive upward) |
|
|
_RL a_FWbySublim (1:sNx,1:sNy) |
|
|
_RL r_FWbySublim (1:sNx,1:sNy) |
|
|
_RL d_HEFFbySublim (1:sNx,1:sNy) |
|
|
_RL d_HSNWbySublim (1:sNx,1:sNy) |
|
137 |
|
|
138 |
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
#ifdef ALLOW_SITRACER |
139 |
C The latent heat flux which will sublimate all snow and ice |
INTEGER iTr |
140 |
C over one time step |
#ifdef ALLOW_DIAGNOSTICS |
141 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
CHARACTER*8 diagName |
|
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
|
142 |
#endif |
#endif |
143 |
|
#endif /* ALLOW_SITRACER */ |
144 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
145 |
|
INTEGER ilockey |
146 |
|
#endif |
147 |
|
|
148 |
|
C== local arrays == |
149 |
|
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
150 |
|
_RL TmixLoc (1:sNx,1:sNy) |
151 |
|
|
152 |
C actual ice thickness (with upper and lower limit) |
C actual ice thickness (with upper and lower limit) |
153 |
_RL heffActual (1:sNx,1:sNy) |
_RL heffActual (1:sNx,1:sNy) |
155 |
_RL hsnowActual (1:sNx,1:sNy) |
_RL hsnowActual (1:sNx,1:sNy) |
156 |
C actual ice thickness (with lower limit only) Reciprocal |
C actual ice thickness (with lower limit only) Reciprocal |
157 |
_RL recip_heffActual (1:sNx,1:sNy) |
_RL recip_heffActual (1:sNx,1:sNy) |
|
C local value (=1/HO or 1/HO_south) |
|
|
_RL recip_HO |
|
|
C local value (=1/ice thickness) |
|
|
_RL recip_HH |
|
158 |
|
|
159 |
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
160 |
_RL AREApreTH (1:sNx,1:sNy) |
_RL AREApreTH (1:sNx,1:sNy) |
165 |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
166 |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
167 |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
168 |
_RL heffFracFactor (1:sNx,1:sNy,1:nITD) |
_RL leadIceThickMin |
169 |
#endif |
#endif |
170 |
|
|
171 |
C wind speed |
C wind speed |
172 |
_RL UG (1:sNx,1:sNy) |
_RL UG (1:sNx,1:sNy) |
|
#ifdef ALLOW_ATM_WIND |
|
|
_RL SPEED_SQ |
|
|
#endif |
|
|
|
|
|
C Regularization values squared |
|
|
_RL area_reg_sq, hice_reg_sq |
|
|
|
|
|
C pathological cases thresholds |
|
|
_RL heffTooHeavy |
|
|
|
|
|
_RL lhSublim |
|
173 |
|
|
174 |
C temporary variables available for the various computations |
C temporary variables available for the various computations |
|
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
|
175 |
_RL tmparr1 (1:sNx,1:sNy) |
_RL tmparr1 (1:sNx,1:sNy) |
|
|
|
176 |
#ifdef SEAICE_VARIABLE_SALINITY |
#ifdef SEAICE_VARIABLE_SALINITY |
177 |
_RL saltFluxAdjust (1:sNx,1:sNy) |
_RL saltFluxAdjust (1:sNx,1:sNy) |
178 |
#endif |
#endif |
179 |
|
|
|
INTEGER ilockey |
|
|
INTEGER it |
|
|
#ifdef SEAICE_ITD |
|
|
INTEGER K |
|
|
#endif |
|
|
_RL pFac |
|
180 |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
181 |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
182 |
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
|
#ifdef SEAICE_ITD |
|
183 |
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
184 |
|
#ifdef SEAICE_ITD |
185 |
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
186 |
#endif |
#endif |
187 |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
191 |
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
192 |
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
193 |
#endif |
#endif |
|
C Helper variables: reciprocal of some constants |
|
|
_RL recip_multDim |
|
|
_RL recip_deltaTtherm |
|
|
_RL recip_rhoIce |
|
194 |
|
|
195 |
C Factor by which we increase the upper ocean friction velocity (u*) when |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
196 |
C ice is absent in a grid cell (dimensionless) |
C the atmosphere and the ocean surface - for ice covered water |
197 |
_RL MixedLayerTurbulenceFactor |
C a_QbyATM_open :: same but for open water |
198 |
|
C r_QbyATM_cover :: residual of a_QbyATM_cover after freezing/melting processes |
199 |
|
C r_QbyATM_open :: same but for open water |
200 |
|
_RL a_QbyATM_cover (1:sNx,1:sNy) |
201 |
|
_RL a_QbyATM_open (1:sNx,1:sNy) |
202 |
|
_RL r_QbyATM_cover (1:sNx,1:sNy) |
203 |
|
_RL r_QbyATM_open (1:sNx,1:sNy) |
204 |
|
C a_QSWbyATM_open - short wave heat flux over ocean in W/m^2 |
205 |
|
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
206 |
|
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
207 |
|
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
208 |
|
C a_QbyOCN :: available heat (in W/m^2) due to the |
209 |
|
C interaction of the ice pack and the ocean surface |
210 |
|
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
211 |
|
C processes have been accounted for |
212 |
|
_RL a_QbyOCN (1:sNx,1:sNy) |
213 |
|
_RL r_QbyOCN (1:sNx,1:sNy) |
214 |
|
|
215 |
#ifdef ALLOW_SITRACER |
C The change of mean ice thickness due to out-of-bounds values following |
216 |
INTEGER iTr |
C sea ice dyhnamics |
217 |
CHARACTER*8 diagName |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
218 |
|
|
219 |
|
C The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
220 |
|
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
221 |
|
|
222 |
|
C The sum of mean ice thickness increments due to atmospheric fluxes over |
223 |
|
C the open water fraction and ice-covered fractions of the grid cell |
224 |
|
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
225 |
|
C The change of mean ice thickness due to flooding by snow |
226 |
|
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
227 |
|
|
228 |
|
C The mean ice thickness increments due to atmospheric fluxes over the open |
229 |
|
C water fraction and ice-covered fractions of the grid cell, respectively |
230 |
|
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
231 |
|
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
232 |
|
|
233 |
|
_RL d_HSNWbyNEG (1:sNx,1:sNy) |
234 |
|
_RL d_HSNWbyATMonSNW (1:sNx,1:sNy) |
235 |
|
_RL d_HSNWbyOCNonSNW (1:sNx,1:sNy) |
236 |
|
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
237 |
|
|
238 |
|
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
239 |
|
|
240 |
|
C a_FWbySublim :: fresh water flux implied by latent heat of |
241 |
|
C sublimation to atmosphere, same sign convention |
242 |
|
C as EVAP (positive upward) |
243 |
|
_RL a_FWbySublim (1:sNx,1:sNy) |
244 |
|
_RL r_FWbySublim (1:sNx,1:sNy) |
245 |
|
_RL d_HEFFbySublim (1:sNx,1:sNy) |
246 |
|
_RL d_HSNWbySublim (1:sNx,1:sNy) |
247 |
|
|
248 |
|
#ifdef SEAICE_CAP_SUBLIM |
249 |
|
C The latent heat flux which will sublimate all snow and ice |
250 |
|
C over one time step |
251 |
|
_RL latentHeatFluxMax (1:sNx,1:sNy) |
252 |
|
_RL latentHeatFluxMaxMult(1:sNx,1:sNy,MULTDIM) |
253 |
#endif |
#endif |
254 |
|
|
255 |
|
#ifdef EXF_ALLOW_SEAICE_RELAX |
256 |
|
C ICE/SNOW stocks tendency associated with relaxation towards observation |
257 |
|
_RL d_AREAbyRLX (1:sNx,1:sNy) |
258 |
|
C The change of mean ice thickness due to relaxation |
259 |
|
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
260 |
|
#endif |
261 |
|
|
262 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
263 |
c Helper variables for diagnostics |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
264 |
|
_RL d_AREAbyATM (1:sNx,1:sNy) |
265 |
|
_RL d_AREAbyOCN (1:sNx,1:sNy) |
266 |
|
_RL d_AREAbyICE (1:sNx,1:sNy) |
267 |
|
C Helper variables for diagnostics |
268 |
_RL DIAGarrayA (1:sNx,1:sNy) |
_RL DIAGarrayA (1:sNx,1:sNy) |
269 |
_RL DIAGarrayB (1:sNx,1:sNy) |
_RL DIAGarrayB (1:sNx,1:sNy) |
270 |
_RL DIAGarrayC (1:sNx,1:sNy) |
_RL DIAGarrayC (1:sNx,1:sNy) |
271 |
_RL DIAGarrayD (1:sNx,1:sNy) |
_RL DIAGarrayD (1:sNx,1:sNy) |
272 |
#endif |
#endif /* ALLOW_DIAGNOSTICS */ |
273 |
|
|
274 |
|
_RL SItflux (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
275 |
|
_RL SIatmQnt (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
276 |
|
_RL SIatmFW (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
277 |
|
#ifdef ALLOW_BALANCE_FLUXES |
278 |
|
_RL FWFsiTile(nSx,nSy) |
279 |
|
_RL FWFsiGlob |
280 |
|
_RL HFsiTile(nSx,nSy) |
281 |
|
_RL HFsiGlob |
282 |
|
_RL FWF2HFsiTile(nSx,nSy) |
283 |
|
_RL FWF2HFsiGlob |
284 |
|
CHARACTER*(max_len_mbuf) msgbuf |
285 |
|
#endif |
286 |
|
|
287 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
288 |
|
|
297 |
ENDIF |
ENDIF |
298 |
|
|
299 |
C avoid unnecessary divisions in loops |
C avoid unnecessary divisions in loops |
300 |
#ifdef SEAICE_ITD |
c#ifdef SEAICE_ITD |
301 |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
CToM this is now set by MULTDIM = nITD in SEAICE_SIZE.h |
302 |
#endif |
C (see SEAICE_SIZE.h and seaice_readparms.F) |
303 |
|
c SEAICE_multDim = nITD |
304 |
|
c#endif |
305 |
recip_multDim = SEAICE_multDim |
recip_multDim = SEAICE_multDim |
306 |
recip_multDim = ONE / recip_multDim |
recip_multDim = ONE / recip_multDim |
307 |
C above/below: double/single precision calculation of recip_multDim |
C above/below: double/single precision calculation of recip_multDim |
352 |
& + act4*max1*max2*max3 |
& + act4*max1*max2*max3 |
353 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
354 |
|
|
|
|
|
355 |
C array initializations |
C array initializations |
356 |
C ===================== |
C ===================== |
357 |
|
|
374 |
d_AREAbyOCN(I,J) = 0.0 _d 0 |
d_AREAbyOCN(I,J) = 0.0 _d 0 |
375 |
#endif |
#endif |
376 |
|
|
377 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
378 |
d_AREAbyRLX(I,J) = 0.0 _d 0 |
d_AREAbyRLX(I,J) = 0.0 _d 0 |
379 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
380 |
#endif |
#endif |
381 |
|
|
|
#ifdef SEAICE_ITD |
|
|
d_AREAbyNEG(I,J) = 0.0 _d 0 |
|
|
#endif |
|
382 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
383 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
384 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
398 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
399 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
400 |
#endif |
#endif |
|
c |
|
401 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
|
|
|
402 |
tmparr1(I,J) = 0.0 _d 0 |
tmparr1(I,J) = 0.0 _d 0 |
|
|
|
403 |
#ifdef SEAICE_VARIABLE_SALINITY |
#ifdef SEAICE_VARIABLE_SALINITY |
404 |
saltFluxAdjust(I,J) = 0.0 _d 0 |
saltFluxAdjust(I,J) = 0.0 _d 0 |
405 |
#endif |
#endif |
409 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
410 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
411 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
412 |
|
#ifdef SEAICE_CAP_SUBLIM |
413 |
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
414 |
|
#endif |
415 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
416 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
417 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
418 |
#endif |
#endif |
|
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
|
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
|
|
#endif |
|
419 |
ENDDO |
ENDDO |
420 |
ENDDO |
ENDDO |
421 |
ENDDO |
ENDDO |
427 |
ENDDO |
ENDDO |
428 |
#endif |
#endif |
429 |
|
|
|
|
|
430 |
C ===================================================================== |
C ===================================================================== |
431 |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
432 |
C ===================================================================== |
C ===================================================================== |
449 |
ENDDO |
ENDDO |
450 |
ENDDO |
ENDDO |
451 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
452 |
DO K=1,nITD |
DO IT=1,nITD |
453 |
DO J=1,sNy |
DO J=1,sNy |
454 |
DO I=1,sNx |
DO I=1,sNx |
455 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
456 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
457 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
458 |
ENDDO |
ENDDO |
459 |
ENDDO |
ENDDO |
460 |
ENDDO |
ENDDO |
467 |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
468 |
#endif |
#endif |
469 |
|
|
470 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
471 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
472 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
473 |
C 0) relax sea ice concentration towards observation |
C 0) relax sea ice concentration towards observation |
497 |
ENDDO |
ENDDO |
498 |
ENDDO |
ENDDO |
499 |
ENDIF |
ENDIF |
500 |
#endif /* SEAICE_ALLOW_AREA_RELAXATION */ |
#endif /* EXF_ALLOW_SEAICE_RELAX */ |
501 |
|
|
502 |
C 1) treat the case of negative values: |
C 1) treat the case of negative values: |
503 |
|
|
509 |
DO J=1,sNy |
DO J=1,sNy |
510 |
DO I=1,sNx |
DO I=1,sNx |
511 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
512 |
DO K=1,nITD |
DO IT=1,nITD |
|
tmpscal1=0. _d 0 |
|
513 |
tmpscal2=0. _d 0 |
tmpscal2=0. _d 0 |
514 |
tmpscal3=0. _d 0 |
tmpscal3=0. _d 0 |
515 |
tmpscal2=MAX(-HEFFITD(I,J,K,bi,bj),0. _d 0) |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
516 |
HEFFITD(I,J,K,bi,bj)=HEFFITD(I,J,K,bi,bj)+tmpscal2 |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
517 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
518 |
tmpscal3=MAX(-HSNOWITD(I,J,K,bi,bj),0. _d 0) |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
519 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
520 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
521 |
tmpscal1=MAX(-AREAITD(I,J,K,bi,bj),0. _d 0) |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
|
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj)+tmpscal1 |
|
|
d_AREAbyNEG(I,J)=d_AREAbyNEG(I,J)+tmpscal1 |
|
522 |
ENDDO |
ENDDO |
523 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
524 |
C by calling SEAICE_ITD_SUM |
C by calling SEAICE_ITD_SUM |
525 |
#else |
#else |
526 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
|
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
|
|
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
|
527 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
528 |
|
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
529 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
530 |
|
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
531 |
#endif |
#endif |
532 |
ENDDO |
ENDDO |
533 |
ENDDO |
ENDDO |
540 |
DO J=1,sNy |
DO J=1,sNy |
541 |
DO I=1,sNx |
DO I=1,sNx |
542 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
543 |
DO K=1,nITD |
DO IT=1,nITD |
544 |
#endif |
#endif |
545 |
tmpscal2=0. _d 0 |
tmpscal2=0. _d 0 |
546 |
tmpscal3=0. _d 0 |
tmpscal3=0. _d 0 |
547 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
548 |
IF (HEFFITD(I,J,K,bi,bj).LE.siEps) THEN |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
549 |
tmpscal2=-HEFFITD(I,J,K,bi,bj) |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
550 |
tmpscal3=-HSNOWITD(I,J,K,bi,bj) |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
551 |
TICES(I,J,K,bi,bj)=celsius2K |
TICES(I,J,IT,bi,bj)=celsius2K |
552 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
553 |
ENDIF |
ENDIF |
554 |
HEFFITD(I,J,K,bi,bj) =HEFFITD(I,J,K,bi,bj) +tmpscal2 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
555 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
556 |
#else |
#else |
557 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
558 |
tmpscal2=-HEFF(I,J,bi,bj) |
tmpscal2=-HEFF(I,J,bi,bj) |
582 |
DO J=1,sNy |
DO J=1,sNy |
583 |
DO I=1,sNx |
DO I=1,sNx |
584 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
585 |
DO K=1,nITD |
DO IT=1,nITD |
586 |
IF ((HEFFITD(i,j,k,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
587 |
& (HSNOWITD(i,j,k,bi,bj).EQ.0. _d 0)) |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
588 |
& AREAITD(I,J,K,bi,bj)=0. _d 0 |
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
589 |
ENDDO |
ENDDO |
590 |
#else |
#else |
591 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
603 |
DO J=1,sNy |
DO J=1,sNy |
604 |
DO I=1,sNx |
DO I=1,sNx |
605 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
606 |
DO K=1,nITD |
DO IT=1,nITD |
607 |
IF ((HEFFITD(i,j,k,bi,bj).GT.0).OR. |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
608 |
& (HSNOWITD(i,j,k,bi,bj).GT.0)) THEN |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
609 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
610 |
C hence use SEAICE_area_floor devided by nITD |
C hence use SEAICE_area_floor devided by nITD |
611 |
C (or install a warning in e.g. seaice_readparms.F) |
C (or install a warning in e.g. seaice_readparms.F) |
612 |
AREAITD(I,J,K,bi,bj)= |
AREAITD(I,J,IT,bi,bj)= |
613 |
& MAX(AREAITD(I,J,K,bi,bj),SEAICE_area_floor/float(nITD)) |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
614 |
ENDIF |
ENDIF |
615 |
ENDDO |
ENDDO |
616 |
#else |
#else |
641 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
642 |
ENDDO |
ENDDO |
643 |
ENDDO |
ENDDO |
644 |
#endif /* SEAICE_ITD */ |
#endif /* notSEAICE_ITD */ |
645 |
|
|
646 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
647 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
|
C first, update AREA and HEFF: |
|
|
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
|
|
C |
|
648 |
DO J=1,sNy |
DO J=1,sNy |
649 |
DO I=1,sNx |
DO I=1,sNx |
650 |
C TICES was changed above (item 1.25), now update TICE as ice volume |
C TICES was changed above (item 1.25), now update TICE as ice volume |
651 |
C weighted average of TICES |
C weighted average of TICES |
652 |
|
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
653 |
tmpscal1 = 0. _d 0 |
tmpscal1 = 0. _d 0 |
654 |
tmpscal2 = 0. _d 0 |
tmpscal2 = 0. _d 0 |
655 |
DO K=1,nITD |
tmpscal3 = 0. _d 0 |
656 |
tmpscal1=tmpscal1 + TICES(I,J,K,bi,bj)*HEFFITD(I,J,K,bi,bj) |
DO IT=1,nITD |
657 |
tmpscal2=tmpscal2 + HEFFITD(I,J,K,bi,bj) |
tmpscal1=tmpscal1 + TICES(I,J,IT,bi,bj)*HEFFITD(I,J,IT,bi,bj) |
658 |
|
tmpscal2=tmpscal2 + HEFFITD(I,J,IT,bi,bj) |
659 |
|
tmpscal3=tmpscal3 + AREAITD(I,J,IT,bi,bj) |
660 |
ENDDO |
ENDDO |
661 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
662 |
C lines of item 2.5 that were omitted: |
C lines of item 2.5 that were omitted: |
664 |
C hence we execute them here before SEAICE_ITD_REDIST is called |
C hence we execute them here before SEAICE_ITD_REDIST is called |
665 |
C although this means that AREA has not been completely regularized |
C although this means that AREA has not been completely regularized |
666 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
667 |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
DIAGarrayA(I,J) = tmpscal3 |
668 |
#endif |
#endif |
669 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
670 |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
SItrAREA(I,J,bi,bj,1)=tmpscal3 |
671 |
#endif |
#endif |
672 |
ENDDO |
ENDDO |
673 |
ENDDO |
ENDDO |
678 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
679 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
680 |
|
|
681 |
|
#ifdef SEAICE_DEBUG |
682 |
|
c ToM<<< debug seaice_growth |
683 |
|
WRITE(msgBuf,'(A,7F8.4)') |
684 |
|
& ' SEAICE_GROWTH: Heff increments 0, HEFFITD = ', |
685 |
|
& HEFFITD(1,1,:,bi,bj) |
686 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
687 |
|
& SQUEEZE_RIGHT , myThid) |
688 |
|
WRITE(msgBuf,'(A,7F8.4)') |
689 |
|
& ' SEAICE_GROWTH: Area increments 0, AREAITD = ', |
690 |
|
& AREAITD(1,1,:,bi,bj) |
691 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
692 |
|
& SQUEEZE_RIGHT , myThid) |
693 |
#endif |
#endif |
694 |
|
#else |
695 |
|
#ifdef SEAICE_DEBUG |
696 |
|
WRITE(msgBuf,'(A,7F8.4)') |
697 |
|
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
698 |
|
& HEFF(1,1,bi,bj) |
699 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
700 |
|
& SQUEEZE_RIGHT , myThid) |
701 |
|
WRITE(msgBuf,'(A,7F8.4)') |
702 |
|
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
703 |
|
& AREA(1,1,bi,bj) |
704 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
705 |
|
& SQUEEZE_RIGHT , myThid) |
706 |
|
c ToM>>> |
707 |
|
#endif |
708 |
|
#endif /* SEAICE_ITD */ |
709 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
710 |
C ENDIF SEAICEadjMODE.EQ.0 |
C end SEAICEadjMODE.EQ.0 statement: |
711 |
ENDIF |
ENDIF |
712 |
#endif |
#endif |
713 |
|
|
729 |
ENDDO |
ENDDO |
730 |
ENDDO |
ENDDO |
731 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
732 |
DO K=1,nITD |
DO IT=1,nITD |
733 |
DO J=1,sNy |
DO J=1,sNy |
734 |
DO I=1,sNx |
DO I=1,sNx |
735 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
736 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
737 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
738 |
|
|
739 |
C memorize areal and volume fraction of each ITD category |
C memorize areal and volume fraction of each ITD category |
740 |
IF (AREA(I,J,bi,bj).GT.0) THEN |
IF (AREA(I,J,bi,bj) .GT. ZERO) THEN |
741 |
areaFracFactor(I,J,K)=AREAITD(I,J,K,bi,bj)/AREA(I,J,bi,bj) |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
|
ELSE |
|
|
areaFracFactor(I,J,K)=ZERO |
|
|
ENDIF |
|
|
IF (HEFF(I,J,bi,bj).GT.0) THEN |
|
|
heffFracFactor(I,J,K)=HEFFITD(I,J,K,bi,bj)/HEFF(I,J,bi,bj) |
|
742 |
ELSE |
ELSE |
743 |
heffFracFactor(I,J,K)=ZERO |
C if there's no ice, potential growth starts in 1st category |
744 |
|
IF (IT .EQ. 1) THEN |
745 |
|
areaFracFactor(I,J,IT)=ONE |
746 |
|
ELSE |
747 |
|
areaFracFactor(I,J,IT)=ZERO |
748 |
|
ENDIF |
749 |
ENDIF |
ENDIF |
750 |
ENDDO |
ENDDO |
751 |
ENDDO |
ENDDO |
752 |
ENDDO |
ENDDO |
753 |
C prepare SItrHEFF to be computed as cumulative sum |
C prepare SItrHEFF to be computed as cumulative sum |
754 |
DO K=2,5 |
DO iTr=2,5 |
755 |
DO J=1,sNy |
DO J=1,sNy |
756 |
DO I=1,sNx |
DO I=1,sNx |
757 |
SItrHEFF(I,J,bi,bj,K)=ZERO |
SItrHEFF(I,J,bi,bj,iTr)=ZERO |
758 |
ENDDO |
ENDDO |
759 |
ENDDO |
ENDDO |
760 |
ENDDO |
ENDDO |
820 |
ENDDO |
ENDDO |
821 |
ENDDO |
ENDDO |
822 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
823 |
DO K=1,nITD |
DO IT=1,nITD |
824 |
DO J=1,sNy |
DO J=1,sNy |
825 |
DO I=1,sNx |
DO I=1,sNx |
826 |
HEFFITDpreTH(I,J,K) = 0. _d 0 |
HEFFITDpreTH(I,J,IT) = 0. _d 0 |
827 |
HSNWITDpreTH(I,J,K) = 0. _d 0 |
HSNWITDpreTH(I,J,IT) = 0. _d 0 |
828 |
AREAITDpreTH(I,J,K) = 0. _d 0 |
AREAITDpreTH(I,J,IT) = 0. _d 0 |
829 |
ENDDO |
ENDDO |
830 |
ENDDO |
ENDDO |
831 |
ENDDO |
ENDDO |
850 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
851 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
852 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
853 |
DO K=1,nITD |
DO IT=1,nITD |
854 |
#endif |
#endif |
855 |
DO J=1,sNy |
DO J=1,sNy |
856 |
DO I=1,sNx |
DO I=1,sNx |
857 |
|
|
858 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
859 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
860 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
861 |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
862 |
& AREAITDpreTH(I,J,K)) |
& AREAITDpreTH(I,J,IT)) |
863 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K)/tmpscal1 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT)/tmpscal1 |
864 |
tmpscal2 = HEFFITDpreTH(I,J,K)/tmpscal1 |
tmpscal2 = HEFFITDpreTH(I,J,IT)/tmpscal1 |
865 |
heffActualMult(I,J,K) = MAX(tmpscal2,SEAICE_hice_reg) |
heffActualMult(I,J,IT) = MAX(tmpscal2,SEAICE_hice_reg) |
866 |
#else /* SEAICE_GROWTH_LEGACY */ |
#else /* SEAICE_GROWTH_LEGACY */ |
867 |
cif regularize AREA with SEAICE_area_reg |
cif regularize AREA with SEAICE_area_reg |
868 |
tmpscal1 = SQRT(AREAITDpreTH(I,J,K) * AREAITDpreTH(I,J,K) |
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
869 |
& + area_reg_sq) |
& + area_reg_sq) |
870 |
cif heffActual calculated with the regularized AREA |
cif heffActual calculated with the regularized AREA |
871 |
tmpscal2 = HEFFITDpreTH(I,J,K) / tmpscal1 |
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
872 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
873 |
heffActualMult(I,J,K) = SQRT(tmpscal2 * tmpscal2 |
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
874 |
& + hice_reg_sq) |
& + hice_reg_sq) |
875 |
cif hsnowActual calculated with the regularized AREA |
cif hsnowActual calculated with the regularized AREA |
876 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K) / tmpscal1 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
877 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
878 |
cif regularize the inverse of heffActual by hice_reg |
cif regularize the inverse of heffActual by hice_reg |
879 |
recip_heffActualMult(I,J,K) = AREAITDpreTH(I,J,K) / |
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
880 |
& sqrt(HEFFITDpreTH(I,J,K) * HEFFITDpreTH(I,J,K) |
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
881 |
& + hice_reg_sq) |
& + hice_reg_sq) |
882 |
cif Do not regularize when HEFFpreTH = 0 |
cif Do not regularize when HEFFpreTH = 0 |
883 |
ELSE |
ELSE |
884 |
heffActualMult(I,J,K) = ZERO |
heffActualMult(I,J,IT) = ZERO |
885 |
hsnowActualMult(I,J,K) = ZERO |
hsnowActualMult(I,J,IT) = ZERO |
886 |
recip_heffActualMult(I,J,K) = ZERO |
recip_heffActualMult(I,J,IT) = ZERO |
887 |
ENDIF |
ENDIF |
888 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
889 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
893 |
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
894 |
heffActual(I,J) = MAX(tmpscal2,SEAICE_hice_reg) |
heffActual(I,J) = MAX(tmpscal2,SEAICE_hice_reg) |
895 |
#else /* SEAICE_GROWTH_LEGACY */ |
#else /* SEAICE_GROWTH_LEGACY */ |
896 |
cif regularize AREA with SEAICE_area_reg |
Cif regularize AREA with SEAICE_area_reg |
897 |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
898 |
cif heffActual calculated with the regularized AREA |
Cif heffActual calculated with the regularized AREA |
899 |
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
900 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
Cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
901 |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
902 |
cif hsnowActual calculated with the regularized AREA |
Cif hsnowActual calculated with the regularized AREA |
903 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
904 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
905 |
cif regularize the inverse of heffActual by hice_reg |
Cif regularize the inverse of heffActual by hice_reg |
906 |
recip_heffActual(I,J) = AREApreTH(I,J) / |
recip_heffActual(I,J) = AREApreTH(I,J) / |
907 |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
908 |
cif Do not regularize when HEFFpreTH = 0 |
Cif Do not regularize when HEFFpreTH = 0 |
909 |
ELSE |
ELSE |
910 |
heffActual(I,J) = ZERO |
heffActual(I,J) = ZERO |
911 |
hsnowActual(I,J) = ZERO |
hsnowActual(I,J) = ZERO |
929 |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
930 |
C AND SNOW THICKNESS |
C AND SNOW THICKNESS |
931 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
932 |
DO K=1,nITD |
DO IT=1,nITD |
933 |
#endif |
#endif |
934 |
DO J=1,sNy |
DO J=1,sNy |
935 |
DO I=1,sNx |
DO I=1,sNx |
936 |
c The latent heat flux over the sea ice which |
C The latent heat flux over the sea ice which |
937 |
c will sublimate all of the snow and ice over one time |
C will sublimate all of the snow and ice over one time |
938 |
c step (W/m^2) |
C step (W/m^2) |
939 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
940 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
941 |
latentHeatFluxMaxMult(I,J,K) = lhSublim*recip_deltaTtherm * |
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
942 |
& (HEFFITDpreTH(I,J,K)*SEAICE_rhoIce + |
& (HEFFITDpreTH(I,J,IT)*SEAICE_rhoIce + |
943 |
& HSNWITDpreTH(I,J,K)*SEAICE_rhoSnow)/AREAITDpreTH(I,J,K) |
& HSNWITDpreTH(I,J,IT)*SEAICE_rhoSnow) |
944 |
|
& /AREAITDpreTH(I,J,IT) |
945 |
ELSE |
ELSE |
946 |
latentHeatFluxMaxMult(I,J,K) = ZERO |
latentHeatFluxMaxMult(I,J,IT) = ZERO |
947 |
ENDIF |
ENDIF |
948 |
#else |
#else |
949 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
993 |
C determine available heat due to the atmosphere -- for ice covered water |
C determine available heat due to the atmosphere -- for ice covered water |
994 |
C ======================================================================= |
C ======================================================================= |
995 |
|
|
996 |
#ifdef ALLOW_ATM_WIND |
IF (useRelativeWind.AND.useAtmWind) THEN |
|
IF (useRelativeWind) THEN |
|
997 |
C Compute relative wind speed over sea ice. |
C Compute relative wind speed over sea ice. |
998 |
DO J=1,sNy |
DO J=1,sNy |
999 |
DO I=1,sNx |
DO I=1,sNx |
1014 |
ENDDO |
ENDDO |
1015 |
ENDDO |
ENDDO |
1016 |
ENDIF |
ENDIF |
|
#endif /* ALLOW_ATM_WIND */ |
|
1017 |
|
|
1018 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1019 |
CADJ STORE tice(:,:,bi,bj) |
CADJ STORE tice(:,:,bi,bj) |
1032 |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
1033 |
#endif |
#endif |
1034 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
1035 |
c homogeneous distribution between 0 and 2 x heffActual |
C homogeneous distribution between 0 and 2 x heffActual |
1036 |
#ifndef SEAICE_ITD |
#ifndef SEAICE_ITD |
1037 |
pFac = (2.0 _d 0*real(IT)-1.0 _d 0)*recip_multDim |
pFac = (2.0 _d 0*IT - 1.0 _d 0)*recip_multDim |
1038 |
|
pFacSnow = 1. _d 0 |
1039 |
|
IF ( SEAICE_useMultDimSnow ) pFacSnow=pFac |
1040 |
#endif |
#endif |
1041 |
DO J=1,sNy |
DO J=1,sNy |
1042 |
DO I=1,sNx |
DO I=1,sNx |
1044 |
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
1045 |
C (instead of heffActual and latentHeatFluxMax) |
C (instead of heffActual and latentHeatFluxMax) |
1046 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
1047 |
|
hsnowActualMult(I,J,IT)=hsnowActual(I,J)*pFacSnow |
1048 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1049 |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
1050 |
#endif |
#endif |
1059 |
|
|
1060 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1061 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1062 |
|
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1063 |
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
1064 |
# ifdef SEAICE_CAP_SUBLIM |
# ifdef SEAICE_CAP_SUBLIM |
1065 |
CADJ STORE latentHeatFluxMaxMult |
CADJ STORE latentHeatFluxMaxMult |
1075 |
|
|
1076 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
1077 |
CALL SEAICE_SOLVE4TEMP( |
CALL SEAICE_SOLVE4TEMP( |
|
#ifdef SEAICE_ITD |
|
1078 |
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
|
#else |
|
|
I UG, heffActualMult(1,1,IT), hsnowActual, |
|
|
#endif |
|
1079 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1080 |
I latentHeatFluxMaxMult(1,1,IT), |
I latentHeatFluxMaxMult(1,1,IT), |
1081 |
#endif |
#endif |
1082 |
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
1083 |
O a_QbyATMmult_cover(1,1,IT), a_QSWbyATMmult_cover(1,1,IT), |
O a_QbyATMmult_cover(1,1,IT), |
1084 |
|
O a_QSWbyATMmult_cover(1,1,IT), |
1085 |
O a_FWbySublimMult(1,1,IT), |
O a_FWbySublimMult(1,1,IT), |
1086 |
I bi, bj, myTime, myIter, myThid ) |
I bi, bj, myTime, myIter, myThid ) |
1087 |
ENDDO |
ENDDO |
1088 |
|
|
1089 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1090 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1091 |
|
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1092 |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
1093 |
# ifdef SEAICE_CAP_SUBLIM |
# ifdef SEAICE_CAP_SUBLIM |
1094 |
CADJ STORE latentHeatFluxMaxMult |
CADJ STORE latentHeatFluxMaxMult |
1109 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1110 |
C calculate area weighted mean |
C calculate area weighted mean |
1111 |
C (although the ice's temperature relates to its energy content |
C (although the ice's temperature relates to its energy content |
1112 |
C and hence should be averaged weighted by ice volume [heffFracFactor], |
C and hence should be averaged weighted by ice volume, |
1113 |
C the temperature here is a result of the fluxes through the ice surface |
C the temperature here is a result of the fluxes through the ice surface |
1114 |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1115 |
C and hence is averaged area weighted [areaFracFactor]) |
C and hence is averaged area weighted [areaFracFactor]) |
1116 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1117 |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,K) |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
1118 |
#else |
#else |
1119 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1120 |
& + ticeOutMult(I,J,IT)*recip_multDim |
& + ticeOutMult(I,J,IT)*recip_multDim |
1125 |
C calculate area weighted mean |
C calculate area weighted mean |
1126 |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
1127 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1128 |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1129 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1130 |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1131 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1132 |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,K) |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,IT) |
1133 |
#else |
#else |
1134 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1135 |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1146 |
# ifdef ALLOW_DIAGNOSTICS |
# ifdef ALLOW_DIAGNOSTICS |
1147 |
DO J=1,sNy |
DO J=1,sNy |
1148 |
DO I=1,sNx |
DO I=1,sNx |
1149 |
c The actual latent heat flux realized by SOLVE4TEMP |
C The actual latent heat flux realized by SOLVE4TEMP |
1150 |
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
1151 |
ENDDO |
ENDDO |
1152 |
ENDDO |
ENDDO |
1153 |
cif The actual vs. maximum latent heat flux |
Cif The actual vs. maximum latent heat flux |
1154 |
IF ( useDiagnostics ) THEN |
IF ( useDiagnostics ) THEN |
1155 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
1156 |
& 'SIactLHF',0,1,3,bi,bj,myThid) |
& 'SIactLHF',0,1,3,bi,bj,myThid) |
1171 |
|
|
1172 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
C switch heat fluxes from W/m2 to 'effective' ice meters |
1173 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1174 |
DO K=1,nITD |
DO IT=1,nITD |
1175 |
DO J=1,sNy |
DO J=1,sNy |
1176 |
DO I=1,sNx |
DO I=1,sNx |
1177 |
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1178 |
& * convertQ2HI * AREAITDpreTH(I,J,K) |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1179 |
a_QSWbyATMmult_cover(I,J,K) = a_QSWbyATMmult_cover(I,J,K) |
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
1180 |
& * convertQ2HI * AREAITDpreTH(I,J,K) |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1181 |
C and initialize r_QbyATM_cover |
C and initialize r_QbyATMmult_cover |
1182 |
r_QbyATMmult_cover(I,J,K)=a_QbyATMmult_cover(I,J,K) |
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
1183 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1184 |
C Negative sublimation is resublimation and will be added as snow. |
C Negative sublimation is resublimation and will be added as snow. |
1185 |
#ifdef SEAICE_DISABLE_SUBLIM |
#ifdef SEAICE_DISABLE_SUBLIM |
1186 |
a_FWbySublimMult(I,J,K) = ZERO |
a_FWbySublimMult(I,J,IT) = ZERO |
1187 |
#endif |
#endif |
1188 |
a_FWbySublimMult(I,J,K) = SEAICE_deltaTtherm*recip_rhoIce |
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
1189 |
& * a_FWbySublimMult(I,J,K)*AREAITDpreTH(I,J,K) |
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
1190 |
r_FWbySublimMult(I,J,K)=a_FWbySublimMult(I,J,K) |
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
1191 |
ENDDO |
ENDDO |
1192 |
ENDDO |
ENDDO |
1193 |
ENDDO |
ENDDO |
1218 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1219 |
C Negative sublimation is resublimation and will be added as snow. |
C Negative sublimation is resublimation and will be added as snow. |
1220 |
#ifdef SEAICE_DISABLE_SUBLIM |
#ifdef SEAICE_DISABLE_SUBLIM |
1221 |
cgf just for those who may need to omit this term to reproduce old results |
Cgf just for those who may need to omit this term to reproduce old results |
1222 |
a_FWbySublim(I,J) = ZERO |
a_FWbySublim(I,J) = ZERO |
1223 |
#endif |
#endif /* SEAICE_DISABLE_SUBLIM */ |
1224 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
1225 |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
1226 |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
1244 |
Cgf no additional dependency through ice cover |
Cgf no additional dependency through ice cover |
1245 |
IF ( SEAICEadjMODE.GE.3 ) THEN |
IF ( SEAICEadjMODE.GE.3 ) THEN |
1246 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1247 |
DO K=1,nITD |
DO IT=1,nITD |
1248 |
DO J=1,sNy |
DO J=1,sNy |
1249 |
DO I=1,sNx |
DO I=1,sNx |
1250 |
a_QbyATMmult_cover(I,J,K) = 0. _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1251 |
r_QbyATMmult_cover(I,J,K) = 0. _d 0 |
r_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1252 |
a_QSWbyATMmult_cover(I,J,K) = 0. _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
1253 |
ENDDO |
ENDDO |
1254 |
ENDDO |
ENDDO |
1255 |
ENDDO |
ENDDO |
1278 |
|
|
1279 |
DO J=1,sNy |
DO J=1,sNy |
1280 |
DO I=1,sNx |
DO I=1,sNx |
1281 |
c FREEZING TEMP. OF SEA WATER (deg C) |
C FREEZING TEMP. OF SEA WATER (deg C) |
1282 |
tempFrz = SEAICE_tempFrz0 + |
tempFrz = SEAICE_tempFrz0 + |
1283 |
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
1284 |
c efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
C efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
1285 |
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
1286 |
tmpscal1 = SEAICE_mcPheePiston |
tmpscal1 = SEAICE_mcPheePiston |
1287 |
ELSE |
ELSE |
1288 |
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
1289 |
ENDIF |
ENDIF |
1290 |
c efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
C efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
1291 |
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1292 |
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
1293 |
MixedLayerTurbulenceFactor = ONE - |
MixedLayerTurbulenceFactor = ONE - |
1298 |
ELSE |
ELSE |
1299 |
MixedLayerTurbulenceFactor = ONE |
MixedLayerTurbulenceFactor = ONE |
1300 |
ENDIF |
ENDIF |
1301 |
c maximum turbulent flux, in ice meters |
C maximum turbulent flux, in ice meters |
1302 |
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
1303 |
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
1304 |
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
1305 |
c available turbulent flux |
C available turbulent flux |
1306 |
a_QbyOCN(i,j) = |
a_QbyOCN(i,j) = |
1307 |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
1308 |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
1313 |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
1314 |
#endif |
#endif |
1315 |
|
|
|
|
|
1316 |
C =================================================================== |
C =================================================================== |
1317 |
C =========PART 3: determine effective thicknesses increments======== |
C =========PART 3: determine effective thicknesses increments======== |
1318 |
C =================================================================== |
C =================================================================== |
1325 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1326 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1327 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1328 |
DO K=1,nITD |
DO IT=1,nITD |
1329 |
#endif |
#endif |
1330 |
DO J=1,sNy |
DO J=1,sNy |
1331 |
DO I=1,sNx |
DO I=1,sNx |
1332 |
C First sublimate/deposite snow |
C First sublimate/deposite snow |
1333 |
tmpscal2 = |
tmpscal2 = |
1334 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1335 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HSNOWITD(I,J,K,bi,bj) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1336 |
& *SNOW2ICE),ZERO) |
& *SNOW2ICE),ZERO) |
1337 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1338 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1339 |
& *ICE2SNOW |
& *ICE2SNOW |
1340 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal2 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
1341 |
& *ICE2SNOW |
& *ICE2SNOW |
1342 |
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
|
C keep total up to date, too |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
|
1343 |
#else |
#else |
1344 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1345 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1357 |
C If anything is left, sublimate ice |
C If anything is left, sublimate ice |
1358 |
tmpscal2 = |
tmpscal2 = |
1359 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1360 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HEFFITD(I,J,K,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1361 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1362 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1363 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) - tmpscal2 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
1364 |
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
|
C keep total up to date, too |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
|
1365 |
#else |
#else |
1366 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1367 |
d_HEFFbySublim(I,J) = - tmpscal2 |
d_HEFFbySublim(I,J) = - tmpscal2 |
1376 |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1377 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1378 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1379 |
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1380 |
& - r_FWbySublimMult(I,J,K) |
& - r_FWbySublimMult(I,J,IT) |
1381 |
r_QbyATMmult_cover(I,J,K) = r_QbyATMmult_cover(I,J,K) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1382 |
& - r_FWbySublimMult(I,J,K) |
& - r_FWbySublimMult(I,J,IT) |
1383 |
ENDDO |
#else |
|
ENDDO |
|
|
C end K loop |
|
|
ENDDO |
|
|
C then update totals |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
#endif |
|
1384 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1385 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1386 |
|
#endif |
1387 |
ENDDO |
ENDDO |
1388 |
ENDDO |
ENDDO |
1389 |
|
#ifdef SEAICE_ITD |
1390 |
|
C end IT loop |
1391 |
|
ENDDO |
1392 |
|
#endif |
1393 |
|
#ifdef SEAICE_DEBUG |
1394 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1395 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1396 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1397 |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
1398 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1399 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1400 |
|
& SQUEEZE_RIGHT , myThid) |
1401 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1402 |
|
& ' SEAICE_GROWTH: Area increments 1, AREAITD = ', |
1403 |
|
& AREAITD(1,1,:,bi,bj) |
1404 |
#else |
#else |
1405 |
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
1406 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1407 |
#endif |
#endif |
1408 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1409 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1410 |
c ToM>>> |
c ToM>>> |
1411 |
|
#endif |
1412 |
|
|
1413 |
C compute ice thickness tendency due to ice-ocean interaction |
C compute ice thickness tendency due to ice-ocean interaction |
1414 |
C =========================================================== |
C =========================================================== |
1419 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1420 |
|
|
1421 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1422 |
DO K=1,nITD |
DO IT=1,nITD |
1423 |
DO J=1,sNy |
DO J=1,sNy |
1424 |
DO I=1,sNx |
DO I=1,sNx |
1425 |
C ice growth/melt due to ocean heat is equally distributed under the ice |
C ice growth/melt due to ocean heat r_QbyOCN (W/m^2) is |
1426 |
C and hence weighted by fractional area of each thickness category |
C equally distributed under the ice and hence weighted by |
1427 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,K), |
C fractional area of each thickness category |
1428 |
& -HEFFITD(I,J,K,bi,bj)) |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1429 |
d_HEFFbyOCNonICE(I,J)= d_HEFFbyOCNonICE(I,J) + tmpscal1 |
& -HEFFITD(I,J,IT,bi,bj)) |
1430 |
r_QbyOCN(I,J) = r_QbyOCN(I,J) - tmpscal1 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1431 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1432 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1433 |
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
1434 |
& + HEFFITD(I,J,K,bi,bj) |
& + HEFFITD(I,J,IT,bi,bj) |
1435 |
#endif |
#endif |
1436 |
ENDDO |
ENDDO |
1437 |
ENDDO |
ENDDO |
1438 |
ENDDO |
ENDDO |
1439 |
|
DO J=1,sNy |
1440 |
|
DO I=1,sNx |
1441 |
|
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1442 |
|
ENDDO |
1443 |
|
ENDDO |
1444 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
1445 |
DO J=1,sNy |
DO J=1,sNy |
1446 |
DO I=1,sNx |
DO I=1,sNx |
1453 |
ENDDO |
ENDDO |
1454 |
ENDDO |
ENDDO |
1455 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1456 |
|
#ifdef SEAICE_DEBUG |
1457 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1458 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1459 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1460 |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
1461 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1462 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1463 |
|
& SQUEEZE_RIGHT , myThid) |
1464 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1465 |
|
& ' SEAICE_GROWTH: Area increments 2, AREAITD = ', |
1466 |
|
& AREAITD(1,1,:,bi,bj) |
1467 |
#else |
#else |
1468 |
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
1469 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1470 |
#endif |
#endif |
1471 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1472 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1473 |
c ToM>>> |
c ToM>>> |
1474 |
|
#endif |
1475 |
|
|
1476 |
C compute snow melt tendency due to snow-atmosphere interaction |
C compute snow melt tendency due to snow-atmosphere interaction |
1477 |
C ================================================================== |
C ================================================================== |
1482 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1483 |
|
|
1484 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1485 |
DO K=1,nITD |
DO IT=1,nITD |
1486 |
DO J=1,sNy |
DO J=1,sNy |
1487 |
DO I=1,sNx |
DO I=1,sNx |
1488 |
C Convert to standard units (meters of ice) rather than to meters |
C Convert to standard units (meters of ice) rather than to meters |
1489 |
C of snow. This appears to be more robust. |
C of snow. This appears to be more robust. |
1490 |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,K),-HSNOWITD(I,J,K,bi,bj) |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,IT), |
1491 |
& *SNOW2ICE) |
& -HSNOWITD(I,J,IT,bi,bj)*SNOW2ICE) |
1492 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1493 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1494 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1495 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1496 |
#endif |
#endif |
1497 |
d_HSNWbyATMonSNW(I,J)=d_HSNWbyATMonSNW(I,J)+tmpscal2*ICE2SNOW |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1498 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal2*ICE2SNOW |
& + tmpscal2*ICE2SNOW |
1499 |
r_QbyATMmult_cover(I,J,K)=r_QbyATMmult_cover(I,J,K) - tmpscal2 |
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) |
1500 |
C keep the total up to date, too |
& + tmpscal2*ICE2SNOW |
1501 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1502 |
|
& - tmpscal2 |
1503 |
ENDDO |
ENDDO |
1504 |
ENDDO |
ENDDO |
1505 |
ENDDO |
ENDDO |
1520 |
ENDDO |
ENDDO |
1521 |
ENDDO |
ENDDO |
1522 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1523 |
|
#ifdef SEAICE_DEBUG |
1524 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1525 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1526 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1527 |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
1528 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1529 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1530 |
|
& SQUEEZE_RIGHT , myThid) |
1531 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1532 |
|
& ' SEAICE_GROWTH: Area increments 3, AREAITD = ', |
1533 |
|
& AREAITD(1,1,:,bi,bj) |
1534 |
#else |
#else |
1535 |
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
1536 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1537 |
#endif |
#endif |
1538 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1539 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1540 |
c ToM>>> |
c ToM>>> |
1541 |
|
#endif |
1542 |
|
|
1543 |
C compute ice thickness tendency due to the atmosphere |
C compute ice thickness tendency due to the atmosphere |
1544 |
C ==================================================== |
C ==================================================== |
1554 |
Cgf warming conditions, the lab_sea results were not changed. |
Cgf warming conditions, the lab_sea results were not changed. |
1555 |
|
|
1556 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1557 |
DO K=1,nITD |
DO IT=1,nITD |
1558 |
DO J=1,sNy |
DO J=1,sNy |
1559 |
DO I=1,sNx |
DO I=1,sNx |
1560 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
1561 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K)) |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1562 |
|
& r_QbyATMmult_cover(I,J,IT)) |
1563 |
#else |
#else |
1564 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K) |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1565 |
|
& r_QbyATMmult_cover(I,J,IT) |
1566 |
c Limit ice growth by potential melt by ocean |
c Limit ice growth by potential melt by ocean |
1567 |
& + AREAITDpreTH(I,J,K) * r_QbyOCN(I,J)) |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1568 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1569 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1570 |
& + tmpscal2 |
& + tmpscal2 |
1571 |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1572 |
& + tmpscal2 |
& + tmpscal2 |
1573 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1574 |
& - tmpscal2 |
& - tmpscal2 |
1575 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal2 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
1576 |
|
|
1577 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1578 |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
1579 |
& + HEFFITD(I,J,K,bi,bj) |
& + HEFFITD(I,J,IT,bi,bj) |
1580 |
#endif |
#endif |
1581 |
ENDDO |
ENDDO |
1582 |
ENDDO |
ENDDO |
1589 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
1590 |
#else |
#else |
1591 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
1592 |
c Limit ice growth by potential melt by ocean |
C Limit ice growth by potential melt by ocean |
1593 |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
1594 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1595 |
|
|
1601 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1602 |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
1603 |
#endif |
#endif |
1604 |
ENDDO |
ENDDO |
1605 |
ENDDO |
ENDDO |
1606 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1607 |
|
#ifdef SEAICE_DEBUG |
1608 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1609 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1610 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1611 |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
1612 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1613 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1614 |
|
& SQUEEZE_RIGHT , myThid) |
1615 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1616 |
|
& ' SEAICE_GROWTH: Area increments 4, AREAITD = ', |
1617 |
|
& AREAITD(1,1,:,bi,bj) |
1618 |
#else |
#else |
1619 |
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
1620 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1621 |
#endif |
#endif |
1622 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1623 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1624 |
c ToM>>> |
c ToM>>> |
1625 |
|
#endif |
1626 |
|
|
1627 |
C attribute precip to fresh water or snow stock, |
C add snow precipitation to HSNOW. |
|
C depending on atmospheric conditions. |
|
1628 |
C ================================================= |
C ================================================= |
1629 |
#ifdef ALLOW_ATM_TEMP |
#ifdef ALLOW_ATM_TEMP |
1630 |
#ifdef ALLOW_AUTODIFF_TAMC |
# ifdef ALLOW_AUTODIFF_TAMC |
1631 |
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1632 |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1633 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1634 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
# endif /* ALLOW_AUTODIFF_TAMC */ |
1635 |
DO J=1,sNy |
IF ( snowPrecipFile .NE. ' ' ) THEN |
1636 |
DO I=1,sNx |
C add snowPrecip to HSNOW |
1637 |
|
DO J=1,sNy |
1638 |
|
DO I=1,sNx |
1639 |
|
d_HSNWbyRAIN(I,J) = convertPRECIP2HI * ICE2SNOW * |
1640 |
|
& snowPrecip(i,j,bi,bj) * AREApreTH(I,J) |
1641 |
|
d_HFRWbyRAIN(I,J) = -convertPRECIP2HI * |
1642 |
|
& ( PRECIP(I,J,bi,bj) - snowPrecip(I,J,bi,bj) ) * |
1643 |
|
& AREApreTH(I,J) |
1644 |
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1645 |
|
ENDDO |
1646 |
|
ENDDO |
1647 |
|
ELSE |
1648 |
|
C attribute precip to fresh water or snow stock, |
1649 |
|
C depending on atmospheric conditions. |
1650 |
|
DO J=1,sNy |
1651 |
|
DO I=1,sNx |
1652 |
C possible alternatives to the a_QbyATM_cover criterium |
C possible alternatives to the a_QbyATM_cover criterium |
1653 |
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
1654 |
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
1655 |
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
1656 |
C add precip as snow |
C add precip as snow |
1657 |
d_HFRWbyRAIN(I,J)=0. _d 0 |
d_HFRWbyRAIN(I,J)=0. _d 0 |
1658 |
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
1659 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1660 |
ELSE |
ELSE |
1661 |
C add precip to the fresh water bucket |
C add precip to the fresh water bucket |
1662 |
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
1663 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1664 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
1665 |
ENDIF |
ENDIF |
1666 |
ENDDO |
ENDDO |
1667 |
ENDDO |
ENDDO |
1668 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1669 |
DO K=1,nITD |
DO IT=1,nITD |
1670 |
DO J=1,sNy |
DO J=1,sNy |
1671 |
DO I=1,sNx |
DO I=1,sNx |
1672 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1673 |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,K) |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1674 |
ENDDO |
ENDDO |
1675 |
ENDDO |
ENDDO |
1676 |
ENDDO |
ENDDO |
1684 |
Cgf note: this does not affect air-sea heat flux, |
Cgf note: this does not affect air-sea heat flux, |
1685 |
Cgf since the implied air heat gain to turn |
Cgf since the implied air heat gain to turn |
1686 |
Cgf rain to snow is not a surface process. |
Cgf rain to snow is not a surface process. |
1687 |
|
C end of IF statement snowPrecipFile: |
1688 |
|
ENDIF |
1689 |
#endif /* ALLOW_ATM_TEMP */ |
#endif /* ALLOW_ATM_TEMP */ |
1690 |
|
#ifdef SEAICE_DEBUG |
1691 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1692 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1693 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1694 |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
1695 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1696 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1697 |
|
& SQUEEZE_RIGHT , myThid) |
1698 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1699 |
|
& ' SEAICE_GROWTH: Area increments 5, AREAITD = ', |
1700 |
|
& AREAITD(1,1,:,bi,bj) |
1701 |
#else |
#else |
1702 |
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
1703 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1704 |
#endif |
#endif |
1705 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1706 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1707 |
c ToM>>> |
c ToM>>> |
1708 |
|
#endif |
1709 |
|
|
1710 |
C compute snow melt due to heat available from ocean. |
C compute snow melt due to heat available from ocean. |
1711 |
C ================================================================= |
C ================================================================= |
1719 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1720 |
|
|
1721 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1722 |
DO K=1,nITD |
DO IT=1,nITD |
1723 |
DO J=1,sNy |
DO J=1,sNy |
1724 |
DO I=1,sNx |
DO I=1,sNx |
1725 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,K), |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1726 |
& -HSNOWITD(I,J,K,bi,bj)) |
& -HSNOWITD(I,J,IT,bi,bj)) |
1727 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1728 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1729 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1731 |
#endif |
#endif |
1732 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1733 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
1734 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) + tmpscal2 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) + tmpscal2 |
1735 |
ENDDO |
ENDDO |
1736 |
ENDDO |
ENDDO |
1737 |
ENDDO |
ENDDO |
1753 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1754 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1755 |
Cph) |
Cph) |
1756 |
|
#ifdef SEAICE_DEBUG |
1757 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1758 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1759 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1760 |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
1761 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1762 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1763 |
|
& SQUEEZE_RIGHT , myThid) |
1764 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1765 |
|
& ' SEAICE_GROWTH: Area increments 6, AREAITD = ', |
1766 |
|
& AREAITD(1,1,:,bi,bj) |
1767 |
#else |
#else |
1768 |
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
1769 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1770 |
#endif |
#endif |
1771 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1772 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1773 |
c ToM>>> |
c ToM>>> |
1774 |
|
#endif |
1775 |
|
|
1776 |
C gain of new ice over open water |
C gain of new ice over open water |
1777 |
C =============================== |
C =============================== |
1785 |
|
|
1786 |
DO J=1,sNy |
DO J=1,sNy |
1787 |
DO I=1,sNx |
DO I=1,sNx |
1788 |
c Initial ice growth is triggered by open water |
C Initial ice growth is triggered by open water |
1789 |
c heat flux overcoming potential melt by ocean |
C heat flux overcoming potential melt by ocean |
1790 |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
1791 |
& (1.0 _d 0 - AREApreTH(I,J)) |
& (1.0 _d 0 - AREApreTH(I,J)) |
1792 |
c Penetrative shortwave flux beyond first layer |
C Penetrative shortwave flux beyond first layer |
1793 |
c that is therefore not available to ice growth/melt |
C that is therefore not available to ice growth/melt |
1794 |
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
1795 |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
1796 |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1803 |
C open water area fraction |
C open water area fraction |
1804 |
tmpscal0 = ONE-AREApreTH(I,J) |
tmpscal0 = ONE-AREApreTH(I,J) |
1805 |
C determine thickness of new ice |
C determine thickness of new ice |
1806 |
C considering the entire open water area to refreeze |
ctomC considering the entire open water area to refreeze |
1807 |
tmpscal1 = tmpscal3/tmpscal0 |
ctom tmpscal1 = tmpscal3/tmpscal0 |
1808 |
|
C considering a minimum lead ice thickness of 10 cm |
1809 |
|
C WATCH that leadIceThickMin is smaller that Hlimit(1)! |
1810 |
|
leadIceThickMin = 0.1 |
1811 |
|
tmpscal1 = MAX(leadIceThickMin,tmpscal3/tmpscal0) |
1812 |
|
C adjust ice area fraction covered by new ice |
1813 |
|
tmpscal0 = tmpscal3/tmpscal1 |
1814 |
C then add new ice volume to appropriate thickness category |
C then add new ice volume to appropriate thickness category |
1815 |
DO K=1,nITD |
DO IT=1,nITD |
1816 |
IF (tmpscal1.LT.Hlimit(K)) THEN |
IF (tmpscal1.LT.Hlimit(IT)) THEN |
1817 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal3 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
1818 |
tmpscal3=ZERO |
tmpscal3=ZERO |
1819 |
C not sure if AREAITD should be changed here since AREA is incremented |
C not sure if AREAITD should be changed here since AREA is incremented |
1820 |
C in PART 4 below in non-itd code |
C in PART 4 below in non-itd code |
1821 |
C in this scenario all open water is covered by new ice instantaneously, |
C in this scenario all open water is covered by new ice instantaneously, |
1822 |
C i.e. no delayed lead closing is concidered such as is associated with |
C i.e. no delayed lead closing is concidered such as is associated with |
1823 |
C Hibler's h_0 parameter |
C Hibler's h_0 parameter |
1824 |
AREAITD(I,J,K,bi,bj) = AREAITD(I,J,K,bi,bj) |
AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
1825 |
& + tmpscal0 |
& + tmpscal0 |
1826 |
tmpscal0=ZERO |
tmpscal0=ZERO |
1827 |
ENDIF |
ENDIF |
1834 |
|
|
1835 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1836 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1837 |
DO K=1,nITD |
DO IT=1,nITD |
1838 |
DO J=1,sNy |
DO J=1,sNy |
1839 |
DO I=1,sNx |
DO I=1,sNx |
1840 |
c needs to be here to allow use also with LEGACY branch |
c needs to be here to allow use also with LEGACY branch |
1841 |
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
1842 |
& + HEFFITD(I,J,K,bi,bj) |
& + HEFFITD(I,J,IT,bi,bj) |
1843 |
ENDDO |
ENDDO |
1844 |
ENDDO |
ENDDO |
1845 |
ENDDO |
ENDDO |
1846 |
#else |
#else |
1847 |
DO J=1,sNy |
DO J=1,sNy |
1848 |
DO I=1,sNx |
DO I=1,sNx |
1849 |
c needs to be here to allow use also with LEGACY branch |
C needs to be here to allow use also with LEGACY branch |
1850 |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1851 |
ENDDO |
ENDDO |
1852 |
ENDDO |
ENDDO |
1853 |
#endif |
#endif |
1854 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1855 |
|
#ifdef SEAICE_DEBUG |
1856 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1857 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1858 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1859 |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
1860 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1861 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1862 |
|
& SQUEEZE_RIGHT , myThid) |
1863 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1864 |
|
& ' SEAICE_GROWTH: Area increments 7, AREAITD = ', |
1865 |
|
& AREAITD(1,1,:,bi,bj) |
1866 |
#else |
#else |
1867 |
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
1868 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1869 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1870 |
|
& SQUEEZE_RIGHT , myThid) |
1871 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1872 |
|
& ' SEAICE_GROWTH: Area increments 7, AREA = ', |
1873 |
|
& AREA(1,1,bi,bj) |
1874 |
#endif |
#endif |
1875 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1876 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1877 |
c ToM>>> |
c ToM>>> |
1878 |
|
#endif |
1879 |
|
|
1880 |
C convert snow to ice if submerged. |
C convert snow to ice if submerged. |
1881 |
C ================================= |
C ================================= |
1888 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1889 |
IF ( SEAICEuseFlooding ) THEN |
IF ( SEAICEuseFlooding ) THEN |
1890 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1891 |
DO K=1,nITD |
DO IT=1,nITD |
1892 |
DO J=1,sNy |
DO J=1,sNy |
1893 |
DO I=1,sNx |
DO I=1,sNx |
1894 |
tmpscal0 = (HSNOWITD(I,J,K,bi,bj)*SEAICE_rhoSnow |
tmpscal0 = (HSNOWITD(I,J,IT,bi,bj)*SEAICE_rhoSnow |
1895 |
& +HEFFITD(I,J,K,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
& + HEFFITD(I,J,IT,bi,bj) *SEAICE_rhoIce) |
1896 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,K,bi,bj)) |
& *recip_rhoConst |
1897 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,IT,bi,bj)) |
1898 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1899 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal1 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1900 |
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) - tmpscal1 |
1901 |
& * ICE2SNOW |
& * ICE2SNOW |
1902 |
ENDDO |
ENDDO |
1903 |
ENDDO |
ENDDO |
1912 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1913 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1914 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1915 |
ENDDO |
ENDDO |
1916 |
ENDDO |
ENDDO |
1917 |
#endif |
#endif |
1918 |
ENDIF |
ENDIF |
1919 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1920 |
|
#ifdef SEAICE_DEBUG |
1921 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1922 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1923 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1924 |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
1925 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1926 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1927 |
|
& SQUEEZE_RIGHT , myThid) |
1928 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1929 |
|
& ' SEAICE_GROWTH: Area increments 8, AREAITD = ', |
1930 |
|
& AREAITD(1,1,:,bi,bj) |
1931 |
#else |
#else |
1932 |
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
1933 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1934 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1935 |
|
& SQUEEZE_RIGHT , myThid) |
1936 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1937 |
|
& ' SEAICE_GROWTH: Area increments 8, AREA = ', |
1938 |
|
& AREA(1,1,bi,bj) |
1939 |
#endif |
#endif |
1940 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1941 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1942 |
c ToM>>> |
c ToM>>> |
1943 |
|
#endif |
1944 |
|
|
1945 |
C =================================================================== |
C =================================================================== |
1946 |
C ==========PART 4: determine ice cover fraction increments=========- |
C ==========PART 4: determine ice cover fraction increments=========- |
1971 |
C because ITD accounts explicitly for lead openings and |
C because ITD accounts explicitly for lead openings and |
1972 |
C different melt rates due to varying ice thickness |
C different melt rates due to varying ice thickness |
1973 |
C |
C |
1974 |
C only consider ice area loss due to total ice thickness loss |
C only consider ice area loss due to total ice thickness loss; |
1975 |
C ice area gain due to freezing of open water as handled above |
C ice area gain due to freezing of open water is handled above |
1976 |
C under "gain of new ice over open water" |
C under "gain of new ice over open water" |
1977 |
C |
C |
1978 |
C does not account for lateral melt of ice floes |
C does not account for lateral melt of ice floes |
1979 |
C |
C |
1980 |
C AREAITD is incremented in section "gain of new ice over open water" above |
C AREAITD is incremented in section "gain of new ice over open water" above |
1981 |
C |
C |
1982 |
DO K=1,nITD |
DO IT=1,nITD |
1983 |
DO J=1,sNy |
DO J=1,sNy |
1984 |
DO I=1,sNx |
DO I=1,sNx |
1985 |
IF (HEFFITD(I,J,K,bi,bj).LE.ZERO) THEN |
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
1986 |
AREAITD(I,J,K,bi,bj)=ZERO |
AREAITD(I,J,IT,bi,bj)=ZERO |
1987 |
ENDIF |
ENDIF |
1988 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1989 |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
1990 |
& + AREAITD(I,J,K,bi,bj) |
& + AREAITD(I,J,IT,bi,bj) |
1991 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1992 |
ENDDO |
ENDDO |
1993 |
ENDDO |
ENDDO |
2068 |
Cgf 'bulk' linearization of area=f(HEFF) |
Cgf 'bulk' linearization of area=f(HEFF) |
2069 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
IF ( SEAICEadjMODE.GE.1 ) THEN |
2070 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
2071 |
DO K=1,nITD |
DO IT=1,nITD |
2072 |
DO J=1,sNy |
DO J=1,sNy |
2073 |
DO I=1,sNx |
DO I=1,sNx |
2074 |
AREAITD(I,J,K,bi,bj) = AREAITDpreTH(I,J,K) + 0.1 _d 0 * |
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
2075 |
& ( HEFFITD(I,J,K,bi,bj) - HEFFITDpreTH(I,J,K) ) |
& ( HEFFITD(I,J,IT,bi,bj) - HEFFITDpreTH(I,J,IT) ) |
2076 |
ENDDO |
ENDDO |
2077 |
ENDDO |
ENDDO |
2078 |
ENDDO |
ENDDO |
2115 |
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
2116 |
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
2117 |
& + d_HEFFbySublim(I,J) |
& + d_HEFFbySublim(I,J) |
2118 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2119 |
+ d_HEFFbyRLX(I,J) |
& + d_HEFFbyRLX(I,J) |
2120 |
#endif |
#endif |
2121 |
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
2122 |
& * recip_deltaTtherm * SEAICE_rhoIce |
& * recip_deltaTtherm * SEAICE_rhoIce |
2210 |
ENDDO |
ENDDO |
2211 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
#endif /* SEAICE_VARIABLE_SALINITY */ |
2212 |
|
|
|
|
|
2213 |
C ======================================================================= |
C ======================================================================= |
2214 |
C ==LEGACY PART 6 (LEGACY) treat pathological cases, then do flooding === |
C ==LEGACY PART 6 (LEGACY) treat pathological cases, then do flooding === |
2215 |
C ======================================================================= |
C ======================================================================= |
2292 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
2293 |
DO J=1,sNy |
DO J=1,sNy |
2294 |
DO I=1,sNx |
DO I=1,sNx |
2295 |
c needs to be here to allow use also with LEGACY branch |
C needs to be here to allow use also with LEGACY branch |
2296 |
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
2297 |
ENDDO |
ENDDO |
2298 |
ENDDO |
ENDDO |
2306 |
C accounting for the part used in melt/freeze processes |
C accounting for the part used in melt/freeze processes |
2307 |
C ===================================================== |
C ===================================================== |
2308 |
|
|
2309 |
|
#ifdef SEAICE_ITD |
2310 |
|
C compute total of "mult" fluxes for ocean forcing |
2311 |
|
DO J=1,sNy |
2312 |
|
DO I=1,sNx |
2313 |
|
a_QbyATM_cover(I,J) = 0.0 _d 0 |
2314 |
|
r_QbyATM_cover(I,J) = 0.0 _d 0 |
2315 |
|
a_QSWbyATM_cover(I,J) = 0.0 _d 0 |
2316 |
|
r_FWbySublim(I,J) = 0.0 _d 0 |
2317 |
|
ENDDO |
2318 |
|
ENDDO |
2319 |
|
DO IT=1,nITD |
2320 |
|
DO J=1,sNy |
2321 |
|
DO I=1,sNx |
2322 |
|
cToM if fluxes in W/m^2 then |
2323 |
|
c a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2324 |
|
c & + a_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2325 |
|
c r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2326 |
|
c & + r_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2327 |
|
c a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2328 |
|
c & + a_QSWbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2329 |
|
c r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2330 |
|
c & + r_FWbySublimMult(I,J,IT) * areaFracFactor(I,J,IT) |
2331 |
|
cToM if fluxes in effective ice meters, i.e. ice volume per area, then |
2332 |
|
a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2333 |
|
& + a_QbyATMmult_cover(I,J,IT) |
2334 |
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2335 |
|
& + r_QbyATMmult_cover(I,J,IT) |
2336 |
|
a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2337 |
|
& + a_QSWbyATMmult_cover(I,J,IT) |
2338 |
|
r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2339 |
|
& + r_FWbySublimMult(I,J,IT) |
2340 |
|
ENDDO |
2341 |
|
ENDDO |
2342 |
|
ENDDO |
2343 |
|
#endif |
2344 |
|
|
2345 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
2346 |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
2347 |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
2355 |
C for backward compatibility it is left out of the LEGACY branch |
C for backward compatibility it is left out of the LEGACY branch |
2356 |
& + a_QSWbyATM_cover(I,J) |
& + a_QSWbyATM_cover(I,J) |
2357 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
2358 |
& - ( d_HEFFbyOCNonICE(I,J) + |
& - ( d_HEFFbyOCNonICE(I,J) |
2359 |
& d_HSNWbyOCNonSNW(I,J)*SNOW2ICE + |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2360 |
& d_HEFFbyNEG(I,J) + |
& + d_HEFFbyNEG(I,J) |
2361 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2362 |
& d_HEFFbyRLX(I,J) + |
& + d_HEFFbyRLX(I,J) |
2363 |
#endif |
#endif |
2364 |
& d_HSNWbyNEG(I,J)*SNOW2ICE ) |
& + d_HSNWbyNEG(I,J)*SNOW2ICE |
2365 |
& * maskC(I,J,kSurface,bi,bj) |
& - convertPRECIP2HI * |
2366 |
|
& snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) |
2367 |
|
& ) * maskC(I,J,kSurface,bi,bj) |
2368 |
|
ENDDO |
2369 |
|
ENDDO |
2370 |
|
DO J=1,sNy |
2371 |
|
DO I=1,sNx |
2372 |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
2373 |
ENDDO |
ENDDO |
2374 |
ENDDO |
ENDDO |
2396 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
2397 |
CADJ & key = iicekey, byte = isbyte |
CADJ & key = iicekey, byte = isbyte |
2398 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2399 |
IF ( SEAICEheatConsFix ) THEN |
cgf Unlike for evap and precip, the temperature of gained/lost |
2400 |
c Unlike for evap and precip, the temperature of gained/lost |
C ocean liquid water due to melt/freeze of solid water cannot be chosen |
2401 |
c ocean liquid water due to melt/freeze of solid water cannot be chosen |
C arbitrarily to be e.g. the ocean SST. Indeed the present seaice model |
2402 |
c to be e.g. the ocean SST. It must be done at 0degC. The fix below anticipates |
C implies a constant ice temperature of 0degC. If melt/freeze water is exchanged |
2403 |
c on external_forcing_surf.F and applies the correction to QNET. |
C at a different temperature, it leads to a loss of conservation in the |
2404 |
IF ((convertFW2Salt.EQ.-1.).OR.(temp_EvPrRn.EQ.UNSET_RL)) THEN |
C ocean+ice system. While this is mostly a serious issue in the |
2405 |
c I leave alone the exotic case when onvertFW2Salt.NE.-1 and temp_EvPrRn.NE.UNSET_RL and |
C real fresh water + non linear free surface framework, a mismatch |
2406 |
c the small error of the synchronous time stepping case (see external_forcing_surf.F). |
C between ice and ocean boundary condition can result in all cases. |
2407 |
|
C Below we therefore anticipate on external_forcing_surf.F |
2408 |
|
C to diagnoze and/or apply the correction to QNET. |
2409 |
DO J=1,sNy |
DO J=1,sNy |
2410 |
DO I=1,sNx |
DO I=1,sNx |
2411 |
#ifdef ALLOW_DIAGNOSTICS |
C ocean water going to ice/snow, in precip units |
2412 |
c store unaltered QNET for diagnostic purposes |
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)*( |
|
DIAGarrayA(I,J)=QNET(I,J,bi,bj) |
|
|
#endif |
|
|
c compute the ocean water going to ice/snow, in precip units |
|
|
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
|
2413 |
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2414 |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2415 |
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
2416 |
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
2417 |
& * convertHI2PRECIP |
& * convertHI2PRECIP |
2418 |
c factor in the heat content that external_forcing_surf.F |
& - snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) ) |
2419 |
c will associate with EMPMR, and remove it from QNET, so that |
C factor in the heat content as done in external_forcing_surf.F |
2420 |
c melt/freez water is in effect consistently gained/lost at 0degC |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND.useRealFreshWaterFlux |
2421 |
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2422 |
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
tmpscal1 = - tmpscal3* |
2423 |
& HeatCapacity_Cp * temp_EvPrRn |
& HeatCapacity_Cp * temp_EvPrRn |
2424 |
ELSE |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND.useRealFreshWaterFlux |
2425 |
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2426 |
|
tmpscal1 = - tmpscal3* |
2427 |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2428 |
ENDIF |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2429 |
|
tmpscal1 = - tmpscal3*HeatCapacity_Cp* |
2430 |
|
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2431 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2432 |
|
tmpscal1 = ZERO |
2433 |
|
ENDIF |
2434 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
2435 |
c back out the eventual TFLUX adjustement and fill diag |
C in all cases, diagnoze the boundary condition mismatch to SIaaflux |
2436 |
DIAGarrayA(I,J)=QNET(I,J,bi,bj)-DIAGarrayA(I,J) |
DIAGarrayA(I,J)=tmpscal1 |
2437 |
#endif |
#endif |
2438 |
|
C remove the mismatch when real fresh water is exchanged (at 0degC here) |
2439 |
|
IF ( useRealFreshWaterFlux.AND.(nonlinFreeSurf.GT.0).AND. |
2440 |
|
& SEAICEheatConsFix ) QNET(I,J,bi,bj)=QNET(I,J,bi,bj)+tmpscal1 |
2441 |
ENDDO |
ENDDO |
2442 |
ENDDO |
ENDDO |
|
ENDIF |
|
2443 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
2444 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2445 |
& 'SIaaflux',0,1,3,bi,bj,myThid) |
& 'SIaaflux',0,1,3,bi,bj,myThid) |
2446 |
#endif |
#endif |
|
ENDIF |
|
2447 |
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
2448 |
|
|
2449 |
|
C compute the net heat flux, incl. adv. by water, entering ocean+ice |
2450 |
|
C =================================================================== |
2451 |
|
DO J=1,sNy |
2452 |
|
DO I=1,sNx |
2453 |
|
cgf 1) SIatmQnt (analogous to qnet; excl. adv. by water exch.) |
2454 |
|
CML If I consider the atmosphere above the ice, the surface flux |
2455 |
|
CML which is relevant for the air temperature dT/dt Eq |
2456 |
|
CML accounts for sensible and radiation (with different treatment |
2457 |
|
CML according to wave-length) fluxes but not for "latent heat flux", |
2458 |
|
CML since it does not contribute to heating the air. |
2459 |
|
CML So this diagnostic is only good for heat budget calculations within |
2460 |
|
CML the ice-ocean system. |
2461 |
|
SIatmQnt(I,J,bi,bj) = |
2462 |
|
& maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
2463 |
|
#ifndef SEAICE_GROWTH_LEGACY |
2464 |
|
& a_QSWbyATM_cover(I,J) + |
2465 |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
2466 |
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
2467 |
|
cgf 2) SItflux (analogous to tflux; includes advection by water |
2468 |
|
C exchanged between atmosphere and ocean+ice) |
2469 |
|
C solid water going to atm, in precip units |
2470 |
|
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
2471 |
|
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
2472 |
|
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
2473 |
|
C liquid water going to atm, in precip units |
2474 |
|
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
2475 |
|
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2476 |
|
& * ( ONE - AREApreTH(I,J) ) |
2477 |
|
#ifdef ALLOW_RUNOFF |
2478 |
|
& - RUNOFF(I,J,bi,bj) |
2479 |
|
#endif /* ALLOW_RUNOFF */ |
2480 |
|
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
2481 |
|
& *convertHI2PRECIP ) |
2482 |
|
C In real fresh water flux + nonlinFS, we factor in the advected specific |
2483 |
|
C energy (referenced to 0 for 0deC liquid water). In virtual salt flux or |
2484 |
|
C linFS, rain/evap get a special treatment (see external_forcing_surf.F). |
2485 |
|
tmpscal1= - tmpscal1* |
2486 |
|
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
2487 |
|
IF ( (temp_EvPrRn.NE.UNSET_RL).AND.useRealFreshWaterFlux |
2488 |
|
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2489 |
|
tmpscal2= - tmpscal2* |
2490 |
|
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2491 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND.useRealFreshWaterFlux |
2492 |
|
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2493 |
|
tmpscal2= - tmpscal2* |
2494 |
|
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2495 |
|
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2496 |
|
tmpscal2= - tmpscal2*HeatCapacity_Cp* |
2497 |
|
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2498 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2499 |
|
tmpscal2= ZERO |
2500 |
|
ENDIF |
2501 |
|
SItflux(I,J,bi,bj)= |
2502 |
|
& SIatmQnt(I,J,bi,bj)-tmpscal1-tmpscal2 |
2503 |
|
ENDDO |
2504 |
|
ENDDO |
2505 |
|
|
2506 |
C compute net fresh water flux leaving/entering |
C compute net fresh water flux leaving/entering |
2507 |
C the ocean, accounting for fresh/salt water stocks. |
C the ocean, accounting for fresh/salt water stocks. |
2508 |
C ================================================== |
C ================================================== |
2516 |
& +d_HEFFbyOCNonICE(I,J) |
& +d_HEFFbyOCNonICE(I,J) |
2517 |
& +d_HEFFbyATMonOCN(I,J) |
& +d_HEFFbyATMonOCN(I,J) |
2518 |
& +d_HEFFbyNEG(I,J) |
& +d_HEFFbyNEG(I,J) |
2519 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2520 |
& +d_HEFFbyRLX(I,J) |
& +d_HEFFbyRLX(I,J) |
2521 |
#endif |
#endif |
2522 |
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
2530 |
#endif /* ALLOW_RUNOFF */ |
#endif /* ALLOW_RUNOFF */ |
2531 |
& + tmpscal1*convertHI2PRECIP |
& + tmpscal1*convertHI2PRECIP |
2532 |
& )*rhoConstFresh |
& )*rhoConstFresh |
2533 |
|
c and the flux leaving/entering the ocean+ice |
2534 |
|
SIatmFW(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2535 |
|
& EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2536 |
|
& - PRECIP(I,J,bi,bj) |
2537 |
|
#ifdef ALLOW_RUNOFF |
2538 |
|
& - RUNOFF(I,J,bi,bj) |
2539 |
|
#endif /* ALLOW_RUNOFF */ |
2540 |
|
& )*rhoConstFresh |
2541 |
|
& + a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2542 |
|
|
2543 |
ENDDO |
ENDDO |
2544 |
ENDDO |
ENDDO |
2545 |
|
|
2546 |
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
2547 |
C-- |
C-- |
2612 |
ENDDO |
ENDDO |
2613 |
ENDIF |
ENDIF |
2614 |
|
|
2615 |
|
#ifdef ALLOW_BALANCE_FLUXES |
2616 |
|
C Compute tile integrals of heat/fresh water fluxes to/from atm. |
2617 |
|
C ============================================================== |
2618 |
|
FWFsiTile(bi,bj) = 0. _d 0 |
2619 |
|
IF ( balanceEmPmR ) THEN |
2620 |
|
DO j=1,sNy |
2621 |
|
DO i=1,sNx |
2622 |
|
FWFsiTile(bi,bj) = |
2623 |
|
& FWFsiTile(bi,bj) + SIatmFW(i,j,bi,bj) |
2624 |
|
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2625 |
|
ENDDO |
2626 |
|
ENDDO |
2627 |
|
ENDIF |
2628 |
|
c to translate global mean FWF adjustements (see below) we may need : |
2629 |
|
FWF2HFsiTile(bi,bj) = 0. _d 0 |
2630 |
|
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2631 |
|
DO j=1,sNy |
2632 |
|
DO i=1,sNx |
2633 |
|
FWF2HFsiTile(bi,bj) = FWF2HFsiTile(bi,bj) + |
2634 |
|
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2635 |
|
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2636 |
|
ENDDO |
2637 |
|
ENDDO |
2638 |
|
ENDIF |
2639 |
|
HFsiTile(bi,bj) = 0. _d 0 |
2640 |
|
IF ( balanceQnet ) THEN |
2641 |
|
DO j=1,sNy |
2642 |
|
DO i=1,sNx |
2643 |
|
HFsiTile(bi,bj) = |
2644 |
|
& HFsiTile(bi,bj) + SItflux(i,j,bi,bj) |
2645 |
|
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2646 |
|
ENDDO |
2647 |
|
ENDDO |
2648 |
|
ENDIF |
2649 |
|
#endif |
2650 |
|
|
2651 |
C =================================================================== |
C =================================================================== |
2652 |
C ======================PART 8: diagnostics========================== |
C ======================PART 8: diagnostics========================== |
2653 |
C =================================================================== |
C =================================================================== |
2698 |
#ifdef ALLOW_ATM_TEMP |
#ifdef ALLOW_ATM_TEMP |
2699 |
DO J=1,sNy |
DO J=1,sNy |
2700 |
DO I=1,sNx |
DO I=1,sNx |
|
CML If I consider the atmosphere above the ice, the surface flux |
|
|
CML which is relevant for the air temperature dT/dt Eq |
|
|
CML accounts for sensible and radiation (with different treatment |
|
|
CML according to wave-length) fluxes but not for "latent heat flux", |
|
|
CML since it does not contribute to heating the air. |
|
|
CML So this diagnostic is only good for heat budget calculations within |
|
|
CML the ice-ocean system. |
|
|
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
|
|
& a_QSWbyATM_cover(I,J) + |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
|
|
C |
|
2701 |
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
2702 |
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
|
C |
|
|
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj)*( |
|
|
& PRECIP(I,J,bi,bj) |
|
|
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
|
|
#ifdef ALLOW_RUNOFF |
|
|
& + RUNOFF(I,J,bi,bj) |
|
|
#endif /* ALLOW_RUNOFF */ |
|
|
& )*rhoConstFresh |
|
|
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
|
2703 |
ENDDO |
ENDDO |
2704 |
ENDDO |
ENDDO |
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
|
|
& 'SIatmQnt',0,1,3,bi,bj,myThid) |
|
2705 |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
2706 |
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
|
CALL DIAGNOSTICS_FILL(DIAGarrayC, |
|
|
& 'SIatmFW ',0,1,3,bi,bj,myThid) |
|
2707 |
C |
C |
2708 |
DO J=1,sNy |
DO J=1,sNy |
2709 |
DO I=1,sNx |
DO I=1,sNx |
2711 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2712 |
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
2713 |
& * SEAICE_rhoIce * recip_deltaTtherm |
& * SEAICE_rhoIce * recip_deltaTtherm |
2714 |
c the residual Freshwater flux of sublimated ice |
C the residual Freshwater flux of sublimated ice |
2715 |
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
2716 |
& * r_FWbySublim(I,J) |
& * r_FWbySublim(I,J) |
2717 |
& * SEAICE_rhoIce * recip_deltaTtherm |
& * SEAICE_rhoIce * recip_deltaTtherm |
2728 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
2729 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
2730 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
|
|
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
c compute ice/snow water going to atm, in precip units |
|
|
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
|
|
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
|
|
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
|
|
c compute ocean water going to atm, in precip units |
|
|
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
|
|
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
|
|
& * ( ONE - AREApreTH(I,J) ) |
|
|
#ifdef ALLOW_RUNOFF |
|
|
& - RUNOFF(I,J,bi,bj) |
|
|
#endif /* ALLOW_RUNOFF */ |
|
|
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
|
|
& *convertHI2PRECIP ) |
|
|
c factor in the advected specific energy (referenced to 0 for 0deC liquid water) |
|
|
tmpscal1= - tmpscal1* |
|
|
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
|
|
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
|
|
tmpscal2= - tmpscal2* |
|
|
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
|
|
ELSE |
|
|
tmpscal2= - tmpscal2* |
|
|
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
|
|
ENDIF |
|
|
c add to SIatmQnt, leading to SItflux, which is analogous to TFLUX |
|
|
DIAGarrayA(I,J)=maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
|
|
& a_QSWbyATM_cover(I,J) + |
|
|
#endif |
|
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
|
|
& -tmpscal1-tmpscal2 |
|
|
ENDDO |
|
|
ENDDO |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
|
|
& 'SItflux ',0,1,3,bi,bj,myThid) |
|
2731 |
#endif /* ALLOW_ATM_TEMP */ |
#endif /* ALLOW_ATM_TEMP */ |
2732 |
|
|
2733 |
ENDIF |
ENDIF |
2737 |
ENDDO |
ENDDO |
2738 |
ENDDO |
ENDDO |
2739 |
|
|
2740 |
|
|
2741 |
|
C =================================================================== |
2742 |
|
C =========PART 9: HF/FWF global integrals and balancing============= |
2743 |
|
C =================================================================== |
2744 |
|
|
2745 |
|
#ifdef ALLOW_BALANCE_FLUXES |
2746 |
|
|
2747 |
|
c 1) global sums |
2748 |
|
# ifdef ALLOW_AUTODIFF_TAMC |
2749 |
|
CADJ STORE FWFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2750 |
|
CADJ STORE HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2751 |
|
CADJ STORE FWF2HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2752 |
|
# endif /* ALLOW_AUTODIFF_TAMC */ |
2753 |
|
FWFsiGlob=0. _d 0 |
2754 |
|
IF ( balanceEmPmR ) |
2755 |
|
& CALL GLOBAL_SUM_TILE_RL( FWFsiTile, FWFsiGlob, myThid ) |
2756 |
|
FWF2HFsiGlob=0. _d 0 |
2757 |
|
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2758 |
|
CALL GLOBAL_SUM_TILE_RL(FWF2HFsiTile, FWF2HFsiGlob, myThid) |
2759 |
|
ELSEIF ( balanceEmPmR ) THEN |
2760 |
|
FWF2HFsiGlob=HeatCapacity_Cp * temp_EvPrRn * globalArea |
2761 |
|
ENDIF |
2762 |
|
HFsiGlob=0. _d 0 |
2763 |
|
IF ( balanceQnet ) |
2764 |
|
& CALL GLOBAL_SUM_TILE_RL( HFsiTile, HFsiGlob, myThid ) |
2765 |
|
|
2766 |
|
c 2) global means |
2767 |
|
c mean SIatmFW |
2768 |
|
tmpscal0=FWFsiGlob / globalArea |
2769 |
|
c corresponding mean advection by atm to ocean+ice water exchange |
2770 |
|
c (if mean SIatmFW was removed uniformely from ocean) |
2771 |
|
tmpscal1=FWFsiGlob / globalArea * FWF2HFsiGlob / globalArea |
2772 |
|
c mean SItflux (before potential adjustement due to SIatmFW) |
2773 |
|
tmpscal2=HFsiGlob / globalArea |
2774 |
|
c mean SItflux (after potential adjustement due to SIatmFW) |
2775 |
|
IF ( balanceEmPmR ) tmpscal2=tmpscal2-tmpscal1 |
2776 |
|
|
2777 |
|
c 3) balancing adjustments |
2778 |
|
IF ( balanceEmPmR ) THEN |
2779 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
2780 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
2781 |
|
DO j=1-OLy,sNy+OLy |
2782 |
|
DO i=1-OLx,sNx+OLx |
2783 |
|
empmr(i,j,bi,bj) = empmr(i,j,bi,bj) - tmpscal0 |
2784 |
|
SIatmFW(i,j,bi,bj) = SIatmFW(i,j,bi,bj) - tmpscal0 |
2785 |
|
c adjust SItflux consistently |
2786 |
|
IF ( (temp_EvPrRn.NE.UNSET_RL).AND. |
2787 |
|
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2788 |
|
tmpscal1= |
2789 |
|
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2790 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND. |
2791 |
|
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2792 |
|
tmpscal1= |
2793 |
|
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2794 |
|
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2795 |
|
tmpscal1= |
2796 |
|
& HeatCapacity_Cp*(temp_EvPrRn - theta(I,J,kSurface,bi,bj)) |
2797 |
|
ELSE |
2798 |
|
tmpscal1=ZERO |
2799 |
|
ENDIF |
2800 |
|
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal0*tmpscal1 |
2801 |
|
c no qnet or tflux adjustement is needed |
2802 |
|
ENDDO |
2803 |
|
ENDDO |
2804 |
|
ENDDO |
2805 |
|
ENDDO |
2806 |
|
IF ( balancePrintMean ) THEN |
2807 |
|
_BEGIN_MASTER( myThid ) |
2808 |
|
WRITE(msgbuf,'(a,a,e24.17)') 'rm Global mean of ', |
2809 |
|
& 'SIatmFW = ', tmpscal0 |
2810 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2811 |
|
& SQUEEZE_RIGHT , myThid) |
2812 |
|
_END_MASTER( myThid ) |
2813 |
|
ENDIF |
2814 |
|
ENDIF |
2815 |
|
IF ( balanceQnet ) THEN |
2816 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
2817 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
2818 |
|
DO j=1-OLy,sNy+OLy |
2819 |
|
DO i=1-OLx,sNx+OLx |
2820 |
|
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal2 |
2821 |
|
qnet(i,j,bi,bj) = qnet(i,j,bi,bj) - tmpscal2 |
2822 |
|
SIatmQnt(i,j,bi,bj) = SIatmQnt(i,j,bi,bj) - tmpscal2 |
2823 |
|
ENDDO |
2824 |
|
ENDDO |
2825 |
|
ENDDO |
2826 |
|
ENDDO |
2827 |
|
IF ( balancePrintMean ) THEN |
2828 |
|
_BEGIN_MASTER( myThid ) |
2829 |
|
WRITE(msgbuf,'(a,a,e24.17)') 'rm Global mean of ', |
2830 |
|
& 'SItflux = ', tmpscal2 |
2831 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2832 |
|
& SQUEEZE_RIGHT , myThid) |
2833 |
|
_END_MASTER( myThid ) |
2834 |
|
ENDIF |
2835 |
|
ENDIF |
2836 |
|
#endif /* */ |
2837 |
|
|
2838 |
|
#ifdef ALLOW_DIAGNOSTICS |
2839 |
|
c these diags need to be done outside of the bi,bj loop so that |
2840 |
|
c we may do potential global mean adjustement to them consistently. |
2841 |
|
CALL DIAGNOSTICS_FILL(SItflux, |
2842 |
|
& 'SItflux ',0,1,0,1,1,myThid) |
2843 |
|
CALL DIAGNOSTICS_FILL(SIatmQnt, |
2844 |
|
& 'SIatmQnt',0,1,0,1,1,myThid) |
2845 |
|
c SIatmFW follows the same convention as empmr -- SIatmFW diag does not |
2846 |
|
tmpscal1= - 1. _d 0 |
2847 |
|
CALL DIAGNOSTICS_SCALE_FILL(SIatmFW, |
2848 |
|
& tmpscal1,1,'SIatmFW ',0,1,0,1,1,myThid) |
2849 |
|
#endif /* ALLOW_DIAGNOSTICS */ |
2850 |
|
|
2851 |
RETURN |
RETURN |
2852 |
END |
END |