58 |
|
|
59 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
60 |
C === Local variables === |
C === Local variables === |
61 |
|
c ToM<<< debug seaice_growth |
62 |
|
C msgBuf :: Informational/error message buffer |
63 |
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
64 |
|
c ToM>>> |
65 |
C |
C |
66 |
C unit/sign convention: |
C unit/sign convention: |
67 |
C Within the thermodynamic computation all stocks, except HSNOW, |
C Within the thermodynamic computation all stocks, except HSNOW, |
142 |
#endif |
#endif |
143 |
|
|
144 |
c The change of mean ice thickness due to out-of-bounds values following |
c The change of mean ice thickness due to out-of-bounds values following |
145 |
c sea ice dyhnamics |
c sea ice dynamics |
146 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
147 |
|
|
148 |
c The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
c The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
177 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
178 |
C The latent heat flux which will sublimate all snow and ice |
C The latent heat flux which will sublimate all snow and ice |
179 |
C over one time step |
C over one time step |
180 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
#ifdef SEAICE_ITD |
181 |
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
182 |
|
#else |
183 |
|
_RL latentHeatFluxMax (1:sNx,1:sNy) |
184 |
|
#endif |
185 |
#endif |
#endif |
186 |
|
|
187 |
C actual ice thickness (with upper and lower limit) |
C actual ice thickness (with upper and lower limit) |
199 |
_RL AREApreTH (1:sNx,1:sNy) |
_RL AREApreTH (1:sNx,1:sNy) |
200 |
_RL HEFFpreTH (1:sNx,1:sNy) |
_RL HEFFpreTH (1:sNx,1:sNy) |
201 |
_RL HSNWpreTH (1:sNx,1:sNy) |
_RL HSNWpreTH (1:sNx,1:sNy) |
202 |
|
#ifdef SEAICE_ITD |
203 |
|
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
204 |
|
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
205 |
|
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
206 |
|
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
207 |
|
_RL heffFracFactor (1:sNx,1:sNy,1:nITD) |
208 |
|
#endif |
209 |
|
|
210 |
C wind speed |
C wind speed |
211 |
_RL UG (1:sNx,1:sNy) |
_RL UG (1:sNx,1:sNy) |
235 |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
236 |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
237 |
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
238 |
|
#ifdef SEAICE_ITD |
239 |
|
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
240 |
|
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
241 |
|
#endif |
242 |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
243 |
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
244 |
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
245 |
|
#ifdef SEAICE_ITD |
246 |
|
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
247 |
|
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
248 |
|
#endif |
249 |
C Helper variables: reciprocal of some constants |
C Helper variables: reciprocal of some constants |
250 |
_RL recip_multDim |
_RL recip_multDim |
251 |
_RL recip_deltaTtherm |
_RL recip_deltaTtherm |
281 |
ENDIF |
ENDIF |
282 |
|
|
283 |
C avoid unnecessary divisions in loops |
C avoid unnecessary divisions in loops |
284 |
|
#ifdef SEAICE_ITD |
285 |
|
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
286 |
|
#endif |
287 |
recip_multDim = SEAICE_multDim |
recip_multDim = SEAICE_multDim |
288 |
recip_multDim = ONE / recip_multDim |
recip_multDim = ONE / recip_multDim |
289 |
C above/below: double/single precision calculation of recip_multDim |
C above/below: double/single precision calculation of recip_multDim |
379 |
d_HEFFbySublim(I,J) = 0.0 _d 0 |
d_HEFFbySublim(I,J) = 0.0 _d 0 |
380 |
d_HSNWbySublim(I,J) = 0.0 _d 0 |
d_HSNWbySublim(I,J) = 0.0 _d 0 |
381 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
382 |
|
#ifdef SEAICE_ITD |
383 |
|
DO IT=1,SEAICE_multDim |
384 |
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
385 |
|
ENDDO |
386 |
|
#else |
387 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
388 |
#endif |
#endif |
389 |
|
#endif |
390 |
c |
c |
391 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
392 |
|
|
401 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
402 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
403 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
404 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_ITD |
405 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
406 |
|
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
407 |
#endif |
#endif |
408 |
ENDDO |
ENDDO |
409 |
ENDDO |
ENDDO |
438 |
#endif |
#endif |
439 |
ENDDO |
ENDDO |
440 |
ENDDO |
ENDDO |
441 |
|
#ifdef SEAICE_ITD |
442 |
|
DO IT=1,nITD |
443 |
|
DO J=1,sNy |
444 |
|
DO I=1,sNx |
445 |
|
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
446 |
|
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
447 |
|
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
448 |
|
ENDDO |
449 |
|
ENDDO |
450 |
|
ENDDO |
451 |
|
#endif |
452 |
|
|
453 |
#else /* SEAICE_GROWTH_LEGACY */ |
#else /* SEAICE_GROWTH_LEGACY */ |
454 |
|
|
476 |
C d_HEFFbyRLX(i,j) = 1. _d 1 * siEps * d_AREAbyRLX(i,j) |
C d_HEFFbyRLX(i,j) = 1. _d 1 * siEps * d_AREAbyRLX(i,j) |
477 |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
478 |
ENDIF |
ENDIF |
479 |
|
#ifdef SEAICE_ITD |
480 |
|
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
481 |
|
& + d_AREAbyRLX(i,j) |
482 |
|
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
483 |
|
& + d_HEFFbyRLX(i,j) |
484 |
|
#endif |
485 |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj) + d_AREAbyRLX(i,j) |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj) + d_AREAbyRLX(i,j) |
486 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + d_HEFFbyRLX(i,j) |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + d_HEFFbyRLX(i,j) |
487 |
ENDDO |
ENDDO |
498 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
499 |
DO J=1,sNy |
DO J=1,sNy |
500 |
DO I=1,sNx |
DO I=1,sNx |
501 |
|
#ifdef SEAICE_ITD |
502 |
|
DO IT=1,nITD |
503 |
|
tmpscal2=0. _d 0 |
504 |
|
tmpscal3=0. _d 0 |
505 |
|
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
506 |
|
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
507 |
|
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
508 |
|
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
509 |
|
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
510 |
|
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
511 |
|
AREAITD(I,J,IT,bi,bj)=MAX(-AREAITD(I,J,IT,bi,bj),0. _d 0) |
512 |
|
ENDDO |
513 |
|
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
514 |
|
C by calling SEAICE_ITD_SUM |
515 |
|
#else |
516 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
517 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
518 |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
519 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
520 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
521 |
|
#endif |
522 |
ENDDO |
ENDDO |
523 |
ENDDO |
ENDDO |
524 |
|
|
529 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
530 |
DO J=1,sNy |
DO J=1,sNy |
531 |
DO I=1,sNx |
DO I=1,sNx |
532 |
tmpscal2=0. _d 0 |
#ifdef SEAICE_ITD |
533 |
tmpscal3=0. _d 0 |
DO IT=1,nITD |
534 |
|
#endif |
535 |
|
tmpscal2=0. _d 0 |
536 |
|
tmpscal3=0. _d 0 |
537 |
|
#ifdef SEAICE_ITD |
538 |
|
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
539 |
|
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
540 |
|
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
541 |
|
TICES(I,J,IT,bi,bj)=celsius2K |
542 |
|
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
543 |
|
ENDIF |
544 |
|
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
545 |
|
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
546 |
|
#else |
547 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
548 |
tmpscal2=-HEFF(I,J,bi,bj) |
tmpscal2=-HEFF(I,J,bi,bj) |
549 |
tmpscal3=-HSNOW(I,J,bi,bj) |
tmpscal3=-HSNOW(I,J,bi,bj) |
550 |
TICE(I,J,bi,bj)=celsius2K |
TICE(I,J,bi,bj)=celsius2K |
551 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
552 |
TICES(I,J,IT,bi,bj)=celsius2K |
TICES(I,J,IT,bi,bj)=celsius2K |
553 |
ENDDO |
ENDDO |
554 |
ENDIF |
ENDIF |
555 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+tmpscal2 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+tmpscal2 |
|
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
|
556 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
557 |
|
#endif |
558 |
|
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
559 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
560 |
|
#ifdef SEAICE_ITD |
561 |
|
ENDDO |
562 |
|
#endif |
563 |
ENDDO |
ENDDO |
564 |
ENDDO |
ENDDO |
565 |
|
|
571 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
572 |
DO J=1,sNy |
DO J=1,sNy |
573 |
DO I=1,sNx |
DO I=1,sNx |
574 |
|
#ifdef SEAICE_ITD |
575 |
|
DO IT=1,nITD |
576 |
|
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
577 |
|
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
578 |
|
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
579 |
|
ENDDO |
580 |
|
#else |
581 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
582 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
583 |
|
#endif |
584 |
ENDDO |
ENDDO |
585 |
ENDDO |
ENDDO |
586 |
|
|
592 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
593 |
DO J=1,sNy |
DO J=1,sNy |
594 |
DO I=1,sNx |
DO I=1,sNx |
595 |
|
#ifdef SEAICE_ITD |
596 |
|
DO IT=1,nITD |
597 |
|
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
598 |
|
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
599 |
|
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
600 |
|
C hence use SEAICE_area_floor devided by nITD |
601 |
|
C (or install a warning in e.g. seaice_readparms.F) |
602 |
|
AREAITD(I,J,IT,bi,bj)= |
603 |
|
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
604 |
|
ENDIF |
605 |
|
ENDDO |
606 |
|
#else |
607 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
608 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
609 |
ENDIF |
ENDIF |
610 |
|
#endif |
611 |
ENDDO |
ENDDO |
612 |
ENDDO |
ENDDO |
613 |
#endif /* DISABLE_AREA_FLOOR */ |
#endif /* DISABLE_AREA_FLOOR */ |
614 |
|
|
615 |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
616 |
|
|
617 |
|
CToM for SEAICE_ITD this case is treated in SEAICE_ITD_REDIST, |
618 |
|
C which is called at end of PART 1 below |
619 |
|
#ifndef SEAICE_ITD |
620 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
621 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
622 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
631 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
632 |
ENDDO |
ENDDO |
633 |
ENDDO |
ENDDO |
634 |
|
#endif /* notSEAICE_ITD */ |
635 |
|
|
636 |
|
#ifdef SEAICE_ITD |
637 |
|
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
638 |
|
DO J=1,sNy |
639 |
|
DO I=1,sNx |
640 |
|
C TICES was changed above (item 1.25), now update TICE as ice volume |
641 |
|
C weighted average of TICES |
642 |
|
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
643 |
|
tmpscal1 = 0. _d 0 |
644 |
|
tmpscal2 = 0. _d 0 |
645 |
|
tmpscal3 = 0. _d 0 |
646 |
|
DO IT=1,nITD |
647 |
|
tmpscal1=tmpscal1 + TICES(I,J,IT,bi,bj)*HEFFITD(I,J,IT,bi,bj) |
648 |
|
tmpscal2=tmpscal2 + HEFFITD(I,J,IT,bi,bj) |
649 |
|
tmpscal3=tmpscal3 + AREAITD(I,J,IT,bi,bj) |
650 |
|
ENDDO |
651 |
|
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
652 |
|
C lines of item 2.5 that were omitted: |
653 |
|
C in 2.5 these lines are executed before "ridging" is applied to AREA |
654 |
|
C hence we execute them here before SEAICE_ITD_REDIST is called |
655 |
|
C although this means that AREA has not been completely regularized |
656 |
|
#ifdef ALLOW_DIAGNOSTICS |
657 |
|
DIAGarrayA(I,J) = tmpscal3 |
658 |
|
#endif |
659 |
|
#ifdef ALLOW_SITRACER |
660 |
|
SItrAREA(I,J,bi,bj,1)=tmpscal3 |
661 |
|
#endif |
662 |
|
ENDDO |
663 |
|
ENDDO |
664 |
|
|
665 |
|
CToM finally make sure that all categories meet their thickness limits |
666 |
|
C which includes ridging as in item 2.5 |
667 |
|
C and update AREA, HEFF, and HSNOW |
668 |
|
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
669 |
|
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
670 |
|
|
671 |
|
#endif |
672 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
673 |
|
C end SEAICEadjMODE.EQ.0 statement: |
674 |
ENDIF |
ENDIF |
675 |
#endif |
#endif |
676 |
|
|
691 |
#endif |
#endif |
692 |
ENDDO |
ENDDO |
693 |
ENDDO |
ENDDO |
694 |
|
#ifdef SEAICE_ITD |
695 |
|
DO IT=1,nITD |
696 |
|
DO J=1,sNy |
697 |
|
DO I=1,sNx |
698 |
|
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
699 |
|
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
700 |
|
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
701 |
|
|
702 |
|
C memorize areal and volume fraction of each ITD category |
703 |
|
IF (AREA(I,J,bi,bj).GT.0) THEN |
704 |
|
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
705 |
|
ELSE |
706 |
|
areaFracFactor(I,J,IT)=ZERO |
707 |
|
ENDIF |
708 |
|
IF (HEFF(I,J,bi,bj).GT.0) THEN |
709 |
|
heffFracFactor(I,J,IT)=HEFFITD(I,J,IT,bi,bj)/HEFF(I,J,bi,bj) |
710 |
|
ELSE |
711 |
|
heffFracFactor(I,J,IT)=ZERO |
712 |
|
ENDIF |
713 |
|
ENDDO |
714 |
|
ENDDO |
715 |
|
ENDDO |
716 |
|
C prepare SItrHEFF to be computed as cumulative sum |
717 |
|
DO iTr=2,5 |
718 |
|
DO J=1,sNy |
719 |
|
DO I=1,sNx |
720 |
|
SItrHEFF(I,J,bi,bj,iTr)=ZERO |
721 |
|
ENDDO |
722 |
|
ENDDO |
723 |
|
ENDDO |
724 |
|
C prepare SItrAREA to be computed as cumulative sum |
725 |
|
DO J=1,sNy |
726 |
|
DO I=1,sNx |
727 |
|
SItrAREA(I,J,bi,bj,3)=ZERO |
728 |
|
ENDDO |
729 |
|
ENDDO |
730 |
|
#endif |
731 |
|
|
732 |
C 4) treat sea ice salinity pathological cases |
C 4) treat sea ice salinity pathological cases |
733 |
#ifdef SEAICE_VARIABLE_SALINITY |
#ifdef SEAICE_VARIABLE_SALINITY |
782 |
AREApreTH(I,J) = 0. _d 0 |
AREApreTH(I,J) = 0. _d 0 |
783 |
ENDDO |
ENDDO |
784 |
ENDDO |
ENDDO |
785 |
|
#ifdef SEAICE_ITD |
786 |
|
DO IT=1,nITD |
787 |
|
DO J=1,sNy |
788 |
|
DO I=1,sNx |
789 |
|
HEFFITDpreTH(I,J,IT) = 0. _d 0 |
790 |
|
HSNWITDpreTH(I,J,IT) = 0. _d 0 |
791 |
|
AREAITDpreTH(I,J,IT) = 0. _d 0 |
792 |
|
ENDDO |
793 |
|
ENDDO |
794 |
|
ENDDO |
795 |
|
#endif |
796 |
ENDIF |
ENDIF |
797 |
#endif |
#endif |
798 |
|
|
812 |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
813 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
814 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
815 |
|
#ifdef SEAICE_ITD |
816 |
|
DO IT=1,nITD |
817 |
|
#endif |
818 |
DO J=1,sNy |
DO J=1,sNy |
819 |
DO I=1,sNx |
DO I=1,sNx |
820 |
|
|
821 |
|
#ifdef SEAICE_ITD |
822 |
|
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
823 |
|
#ifdef SEAICE_GROWTH_LEGACY |
824 |
|
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
825 |
|
& AREAITDpreTH(I,J,IT)) |
826 |
|
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT)/tmpscal1 |
827 |
|
tmpscal2 = HEFFITDpreTH(I,J,IT)/tmpscal1 |
828 |
|
heffActualMult(I,J,IT) = MAX(tmpscal2,SEAICE_hice_reg) |
829 |
|
#else /* SEAICE_GROWTH_LEGACY */ |
830 |
|
cif regularize AREA with SEAICE_area_reg |
831 |
|
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
832 |
|
& + area_reg_sq) |
833 |
|
cif heffActual calculated with the regularized AREA |
834 |
|
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
835 |
|
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
836 |
|
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
837 |
|
& + hice_reg_sq) |
838 |
|
cif hsnowActual calculated with the regularized AREA |
839 |
|
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
840 |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
841 |
|
cif regularize the inverse of heffActual by hice_reg |
842 |
|
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
843 |
|
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
844 |
|
& + hice_reg_sq) |
845 |
|
cif Do not regularize when HEFFpreTH = 0 |
846 |
|
ELSE |
847 |
|
heffActualMult(I,J,IT) = ZERO |
848 |
|
hsnowActualMult(I,J,IT) = ZERO |
849 |
|
recip_heffActualMult(I,J,IT) = ZERO |
850 |
|
ENDIF |
851 |
|
#else /* SEAICE_ITD */ |
852 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
853 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
854 |
tmpscal1 = MAX(SEAICE_area_reg,AREApreTH(I,J)) |
tmpscal1 = MAX(SEAICE_area_reg,AREApreTH(I,J)) |
874 |
hsnowActual(I,J) = ZERO |
hsnowActual(I,J) = ZERO |
875 |
recip_heffActual(I,J) = ZERO |
recip_heffActual(I,J) = ZERO |
876 |
ENDIF |
ENDIF |
877 |
|
#endif /* SEAICE_ITD */ |
878 |
|
|
879 |
ENDDO |
ENDDO |
880 |
ENDDO |
ENDDO |
881 |
|
#ifdef SEAICE_ITD |
882 |
|
ENDDO |
883 |
|
#endif |
884 |
|
|
885 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
886 |
CALL ZERO_ADJ_1D( sNx*sNy, heffActual, myThid) |
CALL ZERO_ADJ_1D( sNx*sNy, heffActual, myThid) |
891 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
892 |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
893 |
C AND SNOW THICKNESS |
C AND SNOW THICKNESS |
894 |
|
#ifdef SEAICE_ITD |
895 |
|
DO IT=1,nITD |
896 |
|
#endif |
897 |
DO J=1,sNy |
DO J=1,sNy |
898 |
DO I=1,sNx |
DO I=1,sNx |
899 |
c The latent heat flux over the sea ice which |
c The latent heat flux over the sea ice which |
900 |
c will sublimate all of the snow and ice over one time |
c will sublimate all of the snow and ice over one time |
901 |
c step (W/m^2) |
c step (W/m^2) |
902 |
|
#ifdef SEAICE_ITD |
903 |
|
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
904 |
|
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
905 |
|
& (HEFFITDpreTH(I,J,IT)*SEAICE_rhoIce + |
906 |
|
& HSNWITDpreTH(I,J,IT)*SEAICE_rhoSnow) |
907 |
|
& /AREAITDpreTH(I,J,IT) |
908 |
|
ELSE |
909 |
|
latentHeatFluxMaxMult(I,J,IT) = ZERO |
910 |
|
ENDIF |
911 |
|
#else |
912 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
913 |
latentHeatFluxMax(I,J) = lhSublim * recip_deltaTtherm * |
latentHeatFluxMax(I,J) = lhSublim * recip_deltaTtherm * |
914 |
& (HEFFpreTH(I,J) * SEAICE_rhoIce + |
& (HEFFpreTH(I,J) * SEAICE_rhoIce + |
916 |
ELSE |
ELSE |
917 |
latentHeatFluxMax(I,J) = ZERO |
latentHeatFluxMax(I,J) = ZERO |
918 |
ENDIF |
ENDIF |
919 |
|
#endif |
920 |
ENDDO |
ENDDO |
921 |
ENDDO |
ENDDO |
922 |
|
#ifdef SEAICE_ITD |
923 |
|
ENDDO |
924 |
|
#endif |
925 |
#endif /* SEAICE_CAP_SUBLIM */ |
#endif /* SEAICE_CAP_SUBLIM */ |
926 |
|
|
927 |
C =================================================================== |
C =================================================================== |
993 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
994 |
|
|
995 |
C-- Start loop over multi-categories |
C-- Start loop over multi-categories |
996 |
|
#ifdef SEAICE_ITD |
997 |
|
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
998 |
|
#endif |
999 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
1000 |
c homogeneous distribution between 0 and 2 x heffActual |
c homogeneous distribution between 0 and 2 x heffActual |
1001 |
|
#ifndef SEAICE_ITD |
1002 |
pFac = (2.0 _d 0*real(IT)-1.0 _d 0)*recip_multDim |
pFac = (2.0 _d 0*real(IT)-1.0 _d 0)*recip_multDim |
1003 |
|
#endif |
1004 |
DO J=1,sNy |
DO J=1,sNy |
1005 |
DO I=1,sNx |
DO I=1,sNx |
1006 |
|
#ifndef SEAICE_ITD |
1007 |
|
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
1008 |
|
C (instead of heffActual and latentHeatFluxMax) |
1009 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
1010 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1011 |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
1012 |
#endif |
#endif |
1013 |
|
#endif |
1014 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1015 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1016 |
TICE(I,J,bi,bj) = ZERO |
TICE(I,J,bi,bj) = ZERO |
1036 |
|
|
1037 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
1038 |
CALL SEAICE_SOLVE4TEMP( |
CALL SEAICE_SOLVE4TEMP( |
1039 |
|
#ifdef SEAICE_ITD |
1040 |
|
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
1041 |
|
#else |
1042 |
I UG, heffActualMult(1,1,IT), hsnowActual, |
I UG, heffActualMult(1,1,IT), hsnowActual, |
1043 |
|
#endif |
1044 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1045 |
I latentHeatFluxMaxMult(1,1,IT), |
I latentHeatFluxMaxMult(1,1,IT), |
1046 |
#endif |
#endif |
1069 |
DO J=1,sNy |
DO J=1,sNy |
1070 |
DO I=1,sNx |
DO I=1,sNx |
1071 |
C update TICE & TICES |
C update TICE & TICES |
1072 |
|
#ifdef SEAICE_ITD |
1073 |
|
C calculate area weighted mean |
1074 |
|
C (although the ice's temperature relates to its energy content |
1075 |
|
C and hence should be averaged weighted by ice volume [heffFracFactor], |
1076 |
|
C the temperature here is a result of the fluxes through the ice surface |
1077 |
|
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1078 |
|
C and hence is averaged area weighted [areaFracFactor]) |
1079 |
|
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1080 |
|
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
1081 |
|
#else |
1082 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1083 |
& + ticeOutMult(I,J,IT)*recip_multDim |
& + ticeOutMult(I,J,IT)*recip_multDim |
1084 |
|
#endif |
1085 |
TICES(I,J,IT,bi,bj) = ticeOutMult(I,J,IT) |
TICES(I,J,IT,bi,bj) = ticeOutMult(I,J,IT) |
1086 |
C average over categories |
C average over categories |
1087 |
|
#ifdef SEAICE_ITD |
1088 |
|
C calculate area weighted mean |
1089 |
|
C (fluxes are per unit (ice surface) area and are thus area weighted) |
1090 |
|
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1091 |
|
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1092 |
|
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1093 |
|
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1094 |
|
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1095 |
|
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,IT) |
1096 |
|
#else |
1097 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1098 |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1099 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1100 |
& + a_QSWbyATMmult_cover(I,J,IT)*recip_multDim |
& + a_QSWbyATMmult_cover(I,J,IT)*recip_multDim |
1101 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1102 |
& + a_FWbySublimMult(I,J,IT)*recip_multDim |
& + a_FWbySublimMult(I,J,IT)*recip_multDim |
1103 |
|
#endif |
1104 |
ENDDO |
ENDDO |
1105 |
ENDDO |
ENDDO |
1106 |
ENDDO |
ENDDO |
1133 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1134 |
|
|
1135 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
C switch heat fluxes from W/m2 to 'effective' ice meters |
1136 |
|
#ifdef SEAICE_ITD |
1137 |
|
DO IT=1,nITD |
1138 |
|
DO J=1,sNy |
1139 |
|
DO I=1,sNx |
1140 |
|
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1141 |
|
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1142 |
|
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
1143 |
|
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1144 |
|
C and initialize r_QbyATM_cover |
1145 |
|
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
1146 |
|
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1147 |
|
C Negative sublimation is resublimation and will be added as snow. |
1148 |
|
#ifdef SEAICE_DISABLE_SUBLIM |
1149 |
|
a_FWbySublimMult(I,J,IT) = ZERO |
1150 |
|
#endif |
1151 |
|
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
1152 |
|
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
1153 |
|
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
1154 |
|
ENDDO |
1155 |
|
ENDDO |
1156 |
|
ENDDO |
1157 |
|
DO J=1,sNy |
1158 |
|
DO I=1,sNx |
1159 |
|
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1160 |
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1161 |
|
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1162 |
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1163 |
|
C and initialize r_QbyATM_open |
1164 |
|
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1165 |
|
ENDDO |
1166 |
|
ENDDO |
1167 |
|
#else /* SEAICE_ITD */ |
1168 |
DO J=1,sNy |
DO J=1,sNy |
1169 |
DO I=1,sNx |
DO I=1,sNx |
1170 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J) |
1183 |
#ifdef SEAICE_DISABLE_SUBLIM |
#ifdef SEAICE_DISABLE_SUBLIM |
1184 |
cgf just for those who may need to omit this term to reproduce old results |
cgf just for those who may need to omit this term to reproduce old results |
1185 |
a_FWbySublim(I,J) = ZERO |
a_FWbySublim(I,J) = ZERO |
1186 |
#endif /* SEAICE_CAP_SUBLIM */ |
#endif |
1187 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
1188 |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
1189 |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
1190 |
ENDDO |
ENDDO |
1191 |
ENDDO |
ENDDO |
1192 |
|
#endif /* SEAICE_ITD */ |
1193 |
|
|
1194 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1195 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1206 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1207 |
Cgf no additional dependency through ice cover |
Cgf no additional dependency through ice cover |
1208 |
IF ( SEAICEadjMODE.GE.3 ) THEN |
IF ( SEAICEadjMODE.GE.3 ) THEN |
1209 |
|
#ifdef SEAICE_ITD |
1210 |
|
DO IT=1,nITD |
1211 |
|
DO J=1,sNy |
1212 |
|
DO I=1,sNx |
1213 |
|
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1214 |
|
r_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1215 |
|
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
1216 |
|
ENDDO |
1217 |
|
ENDDO |
1218 |
|
ENDDO |
1219 |
|
#else |
1220 |
DO J=1,sNy |
DO J=1,sNy |
1221 |
DO I=1,sNx |
DO I=1,sNx |
1222 |
a_QbyATM_cover(I,J) = 0. _d 0 |
a_QbyATM_cover(I,J) = 0. _d 0 |
1224 |
a_QSWbyATM_cover(I,J) = 0. _d 0 |
a_QSWbyATM_cover(I,J) = 0. _d 0 |
1225 |
ENDDO |
ENDDO |
1226 |
ENDDO |
ENDDO |
1227 |
|
#endif |
1228 |
ENDIF |
ENDIF |
1229 |
#endif |
#endif |
1230 |
|
|
1288 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1289 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1290 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1291 |
|
#ifdef SEAICE_ITD |
1292 |
|
DO IT=1,nITD |
1293 |
|
#endif |
1294 |
DO J=1,sNy |
DO J=1,sNy |
1295 |
DO I=1,sNx |
DO I=1,sNx |
1296 |
C First sublimate/deposite snow |
C First sublimate/deposite snow |
1297 |
tmpscal2 = |
tmpscal2 = |
1298 |
|
#ifdef SEAICE_ITD |
1299 |
|
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1300 |
|
& *SNOW2ICE),ZERO) |
1301 |
|
C accumulate change over ITD categories |
1302 |
|
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1303 |
|
& *ICE2SNOW |
1304 |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
1305 |
|
& *ICE2SNOW |
1306 |
|
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
1307 |
|
C keep total up to date, too |
1308 |
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1309 |
|
#else |
1310 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1311 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1312 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) - tmpscal2*ICE2SNOW |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) - tmpscal2*ICE2SNOW |
1313 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1314 |
|
#endif |
1315 |
ENDDO |
ENDDO |
1316 |
ENDDO |
ENDDO |
1317 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1322 |
DO I=1,sNx |
DO I=1,sNx |
1323 |
C If anything is left, sublimate ice |
C If anything is left, sublimate ice |
1324 |
tmpscal2 = |
tmpscal2 = |
1325 |
|
#ifdef SEAICE_ITD |
1326 |
|
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1327 |
|
C accumulate change over ITD categories |
1328 |
|
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1329 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
1330 |
|
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
1331 |
|
C keep total up to date, too |
1332 |
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1333 |
|
#else |
1334 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1335 |
d_HEFFbySublim(I,J) = - tmpscal2 |
d_HEFFbySublim(I,J) = - tmpscal2 |
1336 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) - tmpscal2 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) - tmpscal2 |
1337 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1338 |
|
#endif |
1339 |
ENDDO |
ENDDO |
1340 |
ENDDO |
ENDDO |
1341 |
DO J=1,sNy |
DO J=1,sNy |
1342 |
DO I=1,sNx |
DO I=1,sNx |
1343 |
C If anything is left, it will be evaporated from the ocean rather than sublimated. |
C If anything is left, it will be evaporated from the ocean rather than sublimated. |
1344 |
C Since a_QbyATM_cover was computed for sublimation, not simple evapation, we need to |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1345 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1346 |
|
#ifdef SEAICE_ITD |
1347 |
|
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1348 |
|
& - r_FWbySublimMult(I,J,IT) |
1349 |
|
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1350 |
|
& - r_FWbySublimMult(I,J,IT) |
1351 |
|
ENDDO |
1352 |
|
ENDDO |
1353 |
|
C end IT loop |
1354 |
|
ENDDO |
1355 |
|
C then update totals |
1356 |
|
DO J=1,sNy |
1357 |
|
DO I=1,sNx |
1358 |
|
#endif |
1359 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1360 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1361 |
ENDDO |
ENDDO |
1362 |
ENDDO |
ENDDO |
1363 |
|
c ToM<<< debug seaice_growth |
1364 |
|
WRITE(msgBuf,'(A,7F6.2)') |
1365 |
|
#ifdef SEAICE_ITD |
1366 |
|
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
1367 |
|
& HEFFITD(20,20,:,bi,bj) |
1368 |
|
#else |
1369 |
|
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
1370 |
|
& HEFF(20,20,bi,bj) |
1371 |
|
#endif |
1372 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1373 |
|
& SQUEEZE_RIGHT , myThid) |
1374 |
|
c ToM>>> |
1375 |
|
|
1376 |
C compute ice thickness tendency due to ice-ocean interaction |
C compute ice thickness tendency due to ice-ocean interaction |
1377 |
C =========================================================== |
C =========================================================== |
1381 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1382 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1383 |
|
|
1384 |
|
#ifdef SEAICE_ITD |
1385 |
|
DO IT=1,nITD |
1386 |
|
DO J=1,sNy |
1387 |
|
DO I=1,sNx |
1388 |
|
C ice growth/melt due to ocean heat is equally distributed under the ice |
1389 |
|
C and hence weighted by fractional area of each thickness category |
1390 |
|
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1391 |
|
& -HEFFITD(I,J,IT,bi,bj)) |
1392 |
|
d_HEFFbyOCNonICE(I,J)= d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1393 |
|
r_QbyOCN(I,J) = r_QbyOCN(I,J) - tmpscal1 |
1394 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1395 |
|
#ifdef ALLOW_SITRACER |
1396 |
|
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
1397 |
|
& + HEFFITD(I,J,IT,bi,bj) |
1398 |
|
#endif |
1399 |
|
ENDDO |
1400 |
|
ENDDO |
1401 |
|
ENDDO |
1402 |
|
#else /* SEAICE_ITD */ |
1403 |
DO J=1,sNy |
DO J=1,sNy |
1404 |
DO I=1,sNx |
DO I=1,sNx |
1405 |
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
1410 |
#endif |
#endif |
1411 |
ENDDO |
ENDDO |
1412 |
ENDDO |
ENDDO |
1413 |
|
#endif /* SEAICE_ITD */ |
1414 |
|
c ToM<<< debug seaice_growth |
1415 |
|
WRITE(msgBuf,'(A,7F6.2)') |
1416 |
|
#ifdef SEAICE_ITD |
1417 |
|
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
1418 |
|
& HEFFITD(20,20,:,bi,bj) |
1419 |
|
#else |
1420 |
|
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
1421 |
|
& HEFF(20,20,bi,bj) |
1422 |
|
#endif |
1423 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1424 |
|
& SQUEEZE_RIGHT , myThid) |
1425 |
|
c ToM>>> |
1426 |
|
|
1427 |
C compute snow melt tendency due to snow-atmosphere interaction |
C compute snow melt tendency due to snow-atmosphere interaction |
1428 |
C ================================================================== |
C ================================================================== |
1432 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1433 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1434 |
|
|
1435 |
|
#ifdef SEAICE_ITD |
1436 |
|
DO IT=1,nITD |
1437 |
|
DO J=1,sNy |
1438 |
|
DO I=1,sNx |
1439 |
|
C Convert to standard units (meters of ice) rather than to meters |
1440 |
|
C of snow. This appears to be more robust. |
1441 |
|
tmpscal1=MAX(r_QbyATMmult_cover(I,J,IT), |
1442 |
|
& -HSNOWITD(I,J,IT,bi,bj)*SNOW2ICE) |
1443 |
|
tmpscal2=MIN(tmpscal1,0. _d 0) |
1444 |
|
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1445 |
|
Cgf no additional dependency through snow |
1446 |
|
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1447 |
|
#endif |
1448 |
|
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1449 |
|
& + tmpscal2*ICE2SNOW |
1450 |
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) |
1451 |
|
& + tmpscal2*ICE2SNOW |
1452 |
|
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1453 |
|
& - tmpscal2 |
1454 |
|
C keep the total up to date, too |
1455 |
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1456 |
|
ENDDO |
1457 |
|
ENDDO |
1458 |
|
ENDDO |
1459 |
|
#else /* SEAICE_ITD */ |
1460 |
DO J=1,sNy |
DO J=1,sNy |
1461 |
DO I=1,sNx |
DO I=1,sNx |
1462 |
C Convert to standard units (meters of ice) rather than to meters |
C Convert to standard units (meters of ice) rather than to meters |
1472 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1473 |
ENDDO |
ENDDO |
1474 |
ENDDO |
ENDDO |
1475 |
|
#endif /* SEAICE_ITD */ |
1476 |
|
c ToM<<< debug seaice_growth |
1477 |
|
WRITE(msgBuf,'(A,7F6.2)') |
1478 |
|
#ifdef SEAICE_ITD |
1479 |
|
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
1480 |
|
& HEFFITD(20,20,:,bi,bj) |
1481 |
|
#else |
1482 |
|
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
1483 |
|
& HEFF(20,20,bi,bj) |
1484 |
|
#endif |
1485 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1486 |
|
& SQUEEZE_RIGHT , myThid) |
1487 |
|
c ToM>>> |
1488 |
|
|
1489 |
C compute ice thickness tendency due to the atmosphere |
C compute ice thickness tendency due to the atmosphere |
1490 |
C ==================================================== |
C ==================================================== |
1499 |
Cgf the v1.81=>v1.82 revision would change results in |
Cgf the v1.81=>v1.82 revision would change results in |
1500 |
Cgf warming conditions, the lab_sea results were not changed. |
Cgf warming conditions, the lab_sea results were not changed. |
1501 |
|
|
1502 |
|
#ifdef SEAICE_ITD |
1503 |
|
DO IT=1,nITD |
1504 |
|
DO J=1,sNy |
1505 |
|
DO I=1,sNx |
1506 |
|
#ifdef SEAICE_GROWTH_LEGACY |
1507 |
|
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1508 |
|
& r_QbyATMmult_cover(I,J,IT)) |
1509 |
|
#else |
1510 |
|
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1511 |
|
& r_QbyATMmult_cover(I,J,IT) |
1512 |
|
c Limit ice growth by potential melt by ocean |
1513 |
|
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1514 |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
1515 |
|
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1516 |
|
& + tmpscal2 |
1517 |
|
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1518 |
|
& + tmpscal2 |
1519 |
|
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
1520 |
|
& - tmpscal2 |
1521 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
1522 |
|
|
1523 |
|
#ifdef ALLOW_SITRACER |
1524 |
|
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
1525 |
|
& + HEFFITD(I,J,IT,bi,bj) |
1526 |
|
#endif |
1527 |
|
ENDDO |
1528 |
|
ENDDO |
1529 |
|
ENDDO |
1530 |
|
#else /* SEAICE_ITD */ |
1531 |
DO J=1,sNy |
DO J=1,sNy |
1532 |
DO I=1,sNx |
DO I=1,sNx |
1533 |
|
|
1547 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1548 |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
1549 |
#endif |
#endif |
1550 |
ENDDO |
ENDDO |
1551 |
ENDDO |
ENDDO |
1552 |
|
#endif /* SEAICE_ITD */ |
1553 |
|
c ToM<<< debug seaice_growth |
1554 |
|
WRITE(msgBuf,'(A,7F6.2)') |
1555 |
|
#ifdef SEAICE_ITD |
1556 |
|
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
1557 |
|
& HEFFITD(20,20,:,bi,bj) |
1558 |
|
#else |
1559 |
|
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
1560 |
|
& HEFF(20,20,bi,bj) |
1561 |
|
#endif |
1562 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1563 |
|
& SQUEEZE_RIGHT , myThid) |
1564 |
|
c ToM>>> |
1565 |
|
|
1566 |
C attribute precip to fresh water or snow stock, |
C attribute precip to fresh water or snow stock, |
1567 |
C depending on atmospheric conditions. |
C depending on atmospheric conditions. |
1588 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1589 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
1590 |
ENDIF |
ENDIF |
1591 |
|
ENDDO |
1592 |
|
ENDDO |
1593 |
|
#ifdef SEAICE_ITD |
1594 |
|
DO IT=1,nITD |
1595 |
|
DO J=1,sNy |
1596 |
|
DO I=1,sNx |
1597 |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1598 |
|
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1599 |
|
ENDDO |
1600 |
|
ENDDO |
1601 |
|
ENDDO |
1602 |
|
#else |
1603 |
|
DO J=1,sNy |
1604 |
|
DO I=1,sNx |
1605 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1606 |
ENDDO |
ENDDO |
1607 |
ENDDO |
ENDDO |
1608 |
|
#endif |
1609 |
Cgf note: this does not affect air-sea heat flux, |
Cgf note: this does not affect air-sea heat flux, |
1610 |
Cgf since the implied air heat gain to turn |
Cgf since the implied air heat gain to turn |
1611 |
Cgf rain to snow is not a surface process. |
Cgf rain to snow is not a surface process. |
1612 |
#endif /* ALLOW_ATM_TEMP */ |
#endif /* ALLOW_ATM_TEMP */ |
1613 |
|
c ToM<<< debug seaice_growth |
1614 |
|
WRITE(msgBuf,'(A,7F6.2)') |
1615 |
|
#ifdef SEAICE_ITD |
1616 |
|
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
1617 |
|
& HEFFITD(20,20,:,bi,bj) |
1618 |
|
#else |
1619 |
|
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
1620 |
|
& HEFF(20,20,bi,bj) |
1621 |
|
#endif |
1622 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1623 |
|
& SQUEEZE_RIGHT , myThid) |
1624 |
|
c ToM>>> |
1625 |
|
|
1626 |
C compute snow melt due to heat available from ocean. |
C compute snow melt due to heat available from ocean. |
1627 |
C ================================================================= |
C ================================================================= |
1633 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1634 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1635 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1636 |
|
|
1637 |
|
#ifdef SEAICE_ITD |
1638 |
|
DO IT=1,nITD |
1639 |
|
DO J=1,sNy |
1640 |
|
DO I=1,sNx |
1641 |
|
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1642 |
|
& -HSNOWITD(I,J,IT,bi,bj)) |
1643 |
|
tmpscal2=MIN(tmpscal1,0. _d 0) |
1644 |
|
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1645 |
|
Cgf no additional dependency through snow |
1646 |
|
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1647 |
|
#endif |
1648 |
|
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1649 |
|
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
1650 |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) + tmpscal2 |
1651 |
|
ENDDO |
1652 |
|
ENDDO |
1653 |
|
ENDDO |
1654 |
|
#else /* SEAICE_ITD */ |
1655 |
DO J=1,sNy |
DO J=1,sNy |
1656 |
DO I=1,sNx |
DO I=1,sNx |
1657 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
1666 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
1667 |
ENDDO |
ENDDO |
1668 |
ENDDO |
ENDDO |
1669 |
|
#endif /* SEAICE_ITD */ |
1670 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1671 |
Cph) |
Cph) |
1672 |
|
c ToM<<< debug seaice_growth |
1673 |
|
WRITE(msgBuf,'(A,7F6.2)') |
1674 |
|
#ifdef SEAICE_ITD |
1675 |
|
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
1676 |
|
& HEFFITD(20,20,:,bi,bj) |
1677 |
|
#else |
1678 |
|
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
1679 |
|
& HEFF(20,20,bi,bj) |
1680 |
|
#endif |
1681 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1682 |
|
& SQUEEZE_RIGHT , myThid) |
1683 |
|
c ToM>>> |
1684 |
|
|
1685 |
C gain of new ice over open water |
C gain of new ice over open water |
1686 |
C =============================== |
C =============================== |
1708 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1709 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1710 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
1711 |
|
#ifdef SEAICE_ITD |
1712 |
|
C open water area fraction |
1713 |
|
tmpscal0 = ONE-AREApreTH(I,J) |
1714 |
|
C determine thickness of new ice |
1715 |
|
C considering the entire open water area to refreeze |
1716 |
|
tmpscal1 = tmpscal3/tmpscal0 |
1717 |
|
C then add new ice volume to appropriate thickness category |
1718 |
|
DO IT=1,nITD |
1719 |
|
IF (tmpscal1.LT.Hlimit(IT)) THEN |
1720 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
1721 |
|
tmpscal3=ZERO |
1722 |
|
C not sure if AREAITD should be changed here since AREA is incremented |
1723 |
|
C in PART 4 below in non-itd code |
1724 |
|
C in this scenario all open water is covered by new ice instantaneously, |
1725 |
|
C i.e. no delayed lead closing is concidered such as is associated with |
1726 |
|
C Hibler's h_0 parameter |
1727 |
|
AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
1728 |
|
& + tmpscal0 |
1729 |
|
tmpscal0=ZERO |
1730 |
|
ENDIF |
1731 |
|
ENDDO |
1732 |
|
#else |
1733 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
1734 |
|
#endif |
1735 |
ENDDO |
ENDDO |
1736 |
ENDDO |
ENDDO |
1737 |
|
|
1738 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1739 |
|
#ifdef SEAICE_ITD |
1740 |
|
DO IT=1,nITD |
1741 |
|
DO J=1,sNy |
1742 |
|
DO I=1,sNx |
1743 |
|
c needs to be here to allow use also with LEGACY branch |
1744 |
|
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
1745 |
|
& + HEFFITD(I,J,IT,bi,bj) |
1746 |
|
ENDDO |
1747 |
|
ENDDO |
1748 |
|
ENDDO |
1749 |
|
#else |
1750 |
DO J=1,sNy |
DO J=1,sNy |
1751 |
DO I=1,sNx |
DO I=1,sNx |
1752 |
c needs to be here to allow use also with LEGACY branch |
c needs to be here to allow use also with LEGACY branch |
1753 |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1754 |
ENDDO |
ENDDO |
1755 |
ENDDO |
ENDDO |
1756 |
|
#endif |
1757 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1758 |
|
c ToM<<< debug seaice_growth |
1759 |
|
WRITE(msgBuf,'(A,7F6.2)') |
1760 |
|
#ifdef SEAICE_ITD |
1761 |
|
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
1762 |
|
& HEFFITD(20,20,:,bi,bj) |
1763 |
|
#else |
1764 |
|
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
1765 |
|
& HEFF(20,20,bi,bj) |
1766 |
|
#endif |
1767 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1768 |
|
& SQUEEZE_RIGHT , myThid) |
1769 |
|
c ToM>>> |
1770 |
|
|
1771 |
C convert snow to ice if submerged. |
C convert snow to ice if submerged. |
1772 |
C ================================= |
C ================================= |
1778 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1779 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1780 |
IF ( SEAICEuseFlooding ) THEN |
IF ( SEAICEuseFlooding ) THEN |
1781 |
|
#ifdef SEAICE_ITD |
1782 |
|
DO IT=1,nITD |
1783 |
|
DO J=1,sNy |
1784 |
|
DO I=1,sNx |
1785 |
|
tmpscal0 = (HSNOWITD(I,J,IT,bi,bj)*SEAICE_rhoSnow |
1786 |
|
& + HEFFITD(I,J,IT,bi,bj) *SEAICE_rhoIce) |
1787 |
|
& *recip_rhoConst |
1788 |
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,IT,bi,bj)) |
1789 |
|
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1790 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1791 |
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) - tmpscal1 |
1792 |
|
& * ICE2SNOW |
1793 |
|
ENDDO |
1794 |
|
ENDDO |
1795 |
|
ENDDO |
1796 |
|
#else |
1797 |
DO J=1,sNy |
DO J=1,sNy |
1798 |
DO I=1,sNx |
DO I=1,sNx |
1799 |
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1803 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1804 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1805 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1806 |
ENDDO |
ENDDO |
1807 |
ENDDO |
ENDDO |
1808 |
|
#endif |
1809 |
ENDIF |
ENDIF |
1810 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1811 |
|
c ToM<<< debug seaice_growth |
1812 |
|
WRITE(msgBuf,'(A,7F6.2)') |
1813 |
|
#ifdef SEAICE_ITD |
1814 |
|
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
1815 |
|
& HEFFITD(20,20,:,bi,bj) |
1816 |
|
#else |
1817 |
|
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
1818 |
|
& HEFF(20,20,bi,bj) |
1819 |
|
#endif |
1820 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1821 |
|
& SQUEEZE_RIGHT , myThid) |
1822 |
|
c ToM>>> |
1823 |
|
|
1824 |
C =================================================================== |
C =================================================================== |
1825 |
C ==========PART 4: determine ice cover fraction increments=========- |
C ==========PART 4: determine ice cover fraction increments=========- |
1845 |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1846 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1847 |
|
|
1848 |
|
#ifdef SEAICE_ITD |
1849 |
|
C replaces Hibler '79 scheme and lead closing parameter |
1850 |
|
C because ITD accounts explicitly for lead openings and |
1851 |
|
C different melt rates due to varying ice thickness |
1852 |
|
C |
1853 |
|
C only consider ice area loss due to total ice thickness loss |
1854 |
|
C ice area gain due to freezing of open water as handled above |
1855 |
|
C under "gain of new ice over open water" |
1856 |
|
C |
1857 |
|
C does not account for lateral melt of ice floes |
1858 |
|
C |
1859 |
|
C AREAITD is incremented in section "gain of new ice over open water" above |
1860 |
|
C |
1861 |
|
DO IT=1,nITD |
1862 |
|
DO J=1,sNy |
1863 |
|
DO I=1,sNx |
1864 |
|
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
1865 |
|
AREAITD(I,J,IT,bi,bj)=ZERO |
1866 |
|
ENDIF |
1867 |
|
#ifdef ALLOW_SITRACER |
1868 |
|
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
1869 |
|
& + AREAITD(I,J,IT,bi,bj) |
1870 |
|
#endif /* ALLOW_SITRACER */ |
1871 |
|
ENDDO |
1872 |
|
ENDDO |
1873 |
|
ENDDO |
1874 |
|
#else /* SEAICE_ITD */ |
1875 |
DO J=1,sNy |
DO J=1,sNy |
1876 |
DO I=1,sNx |
DO I=1,sNx |
1877 |
|
|
1941 |
#endif /* ALLOW_DIAGNOSTICS */ |
#endif /* ALLOW_DIAGNOSTICS */ |
1942 |
ENDDO |
ENDDO |
1943 |
ENDDO |
ENDDO |
1944 |
|
#endif /* SEAICE_ITD */ |
1945 |
|
|
1946 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1947 |
Cgf 'bulk' linearization of area=f(HEFF) |
Cgf 'bulk' linearization of area=f(HEFF) |
1948 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
IF ( SEAICEadjMODE.GE.1 ) THEN |
1949 |
|
#ifdef SEAICE_ITD |
1950 |
|
DO IT=1,nITD |
1951 |
|
DO J=1,sNy |
1952 |
|
DO I=1,sNx |
1953 |
|
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
1954 |
|
& ( HEFFITD(I,J,IT,bi,bj) - HEFFITDpreTH(I,J,IT) ) |
1955 |
|
ENDDO |
1956 |
|
ENDDO |
1957 |
|
ENDDO |
1958 |
|
#else |
1959 |
DO J=1,sNy |
DO J=1,sNy |
1960 |
DO I=1,sNx |
DO I=1,sNx |
1961 |
C AREA(I,J,bi,bj) = 0.1 _d 0 * HEFF(I,J,bi,bj) |
C AREA(I,J,bi,bj) = 0.1 _d 0 * HEFF(I,J,bi,bj) |
1963 |
& ( HEFF(I,J,bi,bj) - HEFFpreTH(I,J) ) |
& ( HEFF(I,J,bi,bj) - HEFFpreTH(I,J) ) |
1964 |
ENDDO |
ENDDO |
1965 |
ENDDO |
ENDDO |
1966 |
|
#endif |
1967 |
ENDIF |
ENDIF |
1968 |
#endif |
#endif |
1969 |
|
#ifdef SEAICE_ITD |
1970 |
|
C check categories for consistency with limits after growth/melt |
1971 |
|
CALL SEAICE_ITD_REDIST(bi, bj, myTime,myIter,myThid) |
1972 |
|
C finally update total AREA, HEFF, HSNOW |
1973 |
|
CALL SEAICE_ITD_SUM(bi, bj, myTime,myIter,myThid) |
1974 |
|
#endif |
1975 |
|
|
1976 |
C =================================================================== |
C =================================================================== |
1977 |
C =============PART 5: determine ice salinity increments============= |
C =============PART 5: determine ice salinity increments============= |