141 |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
142 |
#endif |
#endif |
143 |
|
|
|
#ifdef SEAICE_ITD |
|
|
c The change of mean ice area due to out-of-bounds values following |
|
|
c sea ice dynamics |
|
|
_RL d_AREAbyNEG (1:sNx,1:sNy) |
|
|
#endif |
|
144 |
c The change of mean ice thickness due to out-of-bounds values following |
c The change of mean ice thickness due to out-of-bounds values following |
145 |
c sea ice dynamics |
c sea ice dynamics |
146 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
174 |
_RL d_HEFFbySublim (1:sNx,1:sNy) |
_RL d_HEFFbySublim (1:sNx,1:sNy) |
175 |
_RL d_HSNWbySublim (1:sNx,1:sNy) |
_RL d_HSNWbySublim (1:sNx,1:sNy) |
176 |
|
|
177 |
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
#ifdef SEAICE_CAP_SUBLIM |
178 |
C The latent heat flux which will sublimate all snow and ice |
C The latent heat flux which will sublimate all snow and ice |
179 |
C over one time step |
C over one time step |
180 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
#ifdef SEAICE_ITD |
181 |
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
182 |
|
#else |
183 |
|
_RL latentHeatFluxMax (1:sNx,1:sNy) |
184 |
|
#endif |
185 |
#endif |
#endif |
186 |
|
|
187 |
C actual ice thickness (with upper and lower limit) |
C actual ice thickness (with upper and lower limit) |
231 |
|
|
232 |
INTEGER ilockey |
INTEGER ilockey |
233 |
INTEGER it |
INTEGER it |
|
#ifdef SEAICE_ITD |
|
|
INTEGER K |
|
|
#endif |
|
234 |
_RL pFac |
_RL pFac |
235 |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
236 |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
362 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
363 |
#endif |
#endif |
364 |
|
|
|
#ifdef SEAICE_ITD |
|
|
d_AREAbyNEG(I,J) = 0.0 _d 0 |
|
|
#endif |
|
365 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
366 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
367 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
379 |
d_HEFFbySublim(I,J) = 0.0 _d 0 |
d_HEFFbySublim(I,J) = 0.0 _d 0 |
380 |
d_HSNWbySublim(I,J) = 0.0 _d 0 |
d_HSNWbySublim(I,J) = 0.0 _d 0 |
381 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
382 |
|
#ifdef SEAICE_ITD |
383 |
|
DO IT=1,SEAICE_multDim |
384 |
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
385 |
|
ENDDO |
386 |
|
#else |
387 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
388 |
#endif |
#endif |
389 |
|
#endif |
390 |
c |
c |
391 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
392 |
|
|
405 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
406 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
407 |
#endif |
#endif |
|
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
|
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
|
|
#endif |
|
408 |
ENDDO |
ENDDO |
409 |
ENDDO |
ENDDO |
410 |
ENDDO |
ENDDO |
439 |
ENDDO |
ENDDO |
440 |
ENDDO |
ENDDO |
441 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
442 |
DO K=1,nITD |
DO IT=1,nITD |
443 |
DO J=1,sNy |
DO J=1,sNy |
444 |
DO I=1,sNx |
DO I=1,sNx |
445 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
446 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
447 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
448 |
ENDDO |
ENDDO |
449 |
ENDDO |
ENDDO |
450 |
ENDDO |
ENDDO |
499 |
DO J=1,sNy |
DO J=1,sNy |
500 |
DO I=1,sNx |
DO I=1,sNx |
501 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
502 |
DO K=1,nITD |
DO IT=1,nITD |
|
tmpscal1=0. _d 0 |
|
503 |
tmpscal2=0. _d 0 |
tmpscal2=0. _d 0 |
504 |
tmpscal3=0. _d 0 |
tmpscal3=0. _d 0 |
505 |
tmpscal2=MAX(-HEFFITD(I,J,K,bi,bj),0. _d 0) |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
506 |
HEFFITD(I,J,K,bi,bj)=HEFFITD(I,J,K,bi,bj)+tmpscal2 |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
507 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
508 |
tmpscal3=MAX(-HSNOWITD(I,J,K,bi,bj),0. _d 0) |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
509 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
510 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
511 |
tmpscal1=MAX(-AREAITD(I,J,K,bi,bj),0. _d 0) |
AREAITD(I,J,IT,bi,bj)=MAX(-AREAITD(I,J,IT,bi,bj),0. _d 0) |
|
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj)+tmpscal1 |
|
|
d_AREAbyNEG(I,J)=d_AREAbyNEG(I,J)+tmpscal1 |
|
512 |
ENDDO |
ENDDO |
513 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
514 |
C by calling SEAICE_ITD_SUM |
C by calling SEAICE_ITD_SUM |
515 |
#else |
#else |
516 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
|
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
|
|
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
|
517 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
518 |
|
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
519 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
520 |
|
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
521 |
#endif |
#endif |
522 |
ENDDO |
ENDDO |
523 |
ENDDO |
ENDDO |
530 |
DO J=1,sNy |
DO J=1,sNy |
531 |
DO I=1,sNx |
DO I=1,sNx |
532 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
533 |
DO K=1,nITD |
DO IT=1,nITD |
534 |
#endif |
#endif |
535 |
tmpscal2=0. _d 0 |
tmpscal2=0. _d 0 |
536 |
tmpscal3=0. _d 0 |
tmpscal3=0. _d 0 |
537 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
538 |
IF (HEFFITD(I,J,K,bi,bj).LE.siEps) THEN |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
539 |
tmpscal2=-HEFFITD(I,J,K,bi,bj) |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
540 |
tmpscal3=-HSNOWITD(I,J,K,bi,bj) |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
541 |
TICES(I,J,K,bi,bj)=celsius2K |
TICES(I,J,IT,bi,bj)=celsius2K |
542 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
543 |
ENDIF |
ENDIF |
544 |
HEFFITD(I,J,K,bi,bj) =HEFFITD(I,J,K,bi,bj) +tmpscal2 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
545 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
546 |
#else |
#else |
547 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
548 |
tmpscal2=-HEFF(I,J,bi,bj) |
tmpscal2=-HEFF(I,J,bi,bj) |
572 |
DO J=1,sNy |
DO J=1,sNy |
573 |
DO I=1,sNx |
DO I=1,sNx |
574 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
575 |
DO K=1,nITD |
DO IT=1,nITD |
576 |
IF ((HEFFITD(i,j,k,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
577 |
& (HSNOWITD(i,j,k,bi,bj).EQ.0. _d 0)) |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
578 |
& AREAITD(I,J,K,bi,bj)=0. _d 0 |
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
579 |
ENDDO |
ENDDO |
580 |
#else |
#else |
581 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
593 |
DO J=1,sNy |
DO J=1,sNy |
594 |
DO I=1,sNx |
DO I=1,sNx |
595 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
596 |
DO K=1,nITD |
DO IT=1,nITD |
597 |
IF ((HEFFITD(i,j,k,bi,bj).GT.0).OR. |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
598 |
& (HSNOWITD(i,j,k,bi,bj).GT.0)) THEN |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
599 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
600 |
C hence use SEAICE_area_floor devided by nITD |
C hence use SEAICE_area_floor devided by nITD |
601 |
C (or install a warning in e.g. seaice_readparms.F) |
C (or install a warning in e.g. seaice_readparms.F) |
602 |
AREAITD(I,J,K,bi,bj)= |
AREAITD(I,J,IT,bi,bj)= |
603 |
& MAX(AREAITD(I,J,K,bi,bj),SEAICE_area_floor/float(nITD)) |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
604 |
ENDIF |
ENDIF |
605 |
ENDDO |
ENDDO |
606 |
#else |
#else |
631 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
632 |
ENDDO |
ENDDO |
633 |
ENDDO |
ENDDO |
634 |
#endif /* SEAICE_ITD */ |
#endif /* notSEAICE_ITD */ |
635 |
|
|
636 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
637 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
|
C first, update AREA and HEFF: |
|
|
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
|
|
C |
|
638 |
DO J=1,sNy |
DO J=1,sNy |
639 |
DO I=1,sNx |
DO I=1,sNx |
640 |
C TICES was changed above (item 1.25), now update TICE as ice volume |
C TICES was changed above (item 1.25), now update TICE as ice volume |
641 |
C weighted average of TICES |
C weighted average of TICES |
642 |
|
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
643 |
tmpscal1 = 0. _d 0 |
tmpscal1 = 0. _d 0 |
644 |
tmpscal2 = 0. _d 0 |
tmpscal2 = 0. _d 0 |
645 |
DO K=1,nITD |
tmpscal3 = 0. _d 0 |
646 |
tmpscal1=tmpscal1 + TICES(I,J,K,bi,bj)*HEFFITD(I,J,K,bi,bj) |
DO IT=1,nITD |
647 |
tmpscal2=tmpscal2 + HEFFITD(I,J,K,bi,bj) |
tmpscal1=tmpscal1 + TICES(I,J,IT,bi,bj)*HEFFITD(I,J,IT,bi,bj) |
648 |
|
tmpscal2=tmpscal2 + HEFFITD(I,J,IT,bi,bj) |
649 |
|
tmpscal3=tmpscal3 + AREAITD(I,J,IT,bi,bj) |
650 |
ENDDO |
ENDDO |
651 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
652 |
C lines of item 2.5 that were omitted: |
C lines of item 2.5 that were omitted: |
654 |
C hence we execute them here before SEAICE_ITD_REDIST is called |
C hence we execute them here before SEAICE_ITD_REDIST is called |
655 |
C although this means that AREA has not been completely regularized |
C although this means that AREA has not been completely regularized |
656 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
657 |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
DIAGarrayA(I,J) = tmpscal3 |
658 |
#endif |
#endif |
659 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
660 |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
SItrAREA(I,J,bi,bj,1)=tmpscal3 |
661 |
#endif |
#endif |
662 |
ENDDO |
ENDDO |
663 |
ENDDO |
ENDDO |
670 |
|
|
671 |
#endif |
#endif |
672 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
673 |
C ENDIF SEAICEadjMODE.EQ.0 |
C end SEAICEadjMODE.EQ.0 statement: |
674 |
ENDIF |
ENDIF |
675 |
#endif |
#endif |
676 |
|
|
692 |
ENDDO |
ENDDO |
693 |
ENDDO |
ENDDO |
694 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
695 |
DO K=1,nITD |
DO IT=1,nITD |
696 |
DO J=1,sNy |
DO J=1,sNy |
697 |
DO I=1,sNx |
DO I=1,sNx |
698 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
699 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
700 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
701 |
|
|
702 |
C memorize areal and volume fraction of each ITD category |
C memorize areal and volume fraction of each ITD category |
703 |
IF (AREA(I,J,bi,bj).GT.0) THEN |
IF (AREA(I,J,bi,bj).GT.0) THEN |
704 |
areaFracFactor(I,J,K)=AREAITD(I,J,K,bi,bj)/AREA(I,J,bi,bj) |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
705 |
ELSE |
ELSE |
706 |
areaFracFactor(I,J,K)=ZERO |
areaFracFactor(I,J,IT)=ZERO |
707 |
ENDIF |
ENDIF |
708 |
IF (HEFF(I,J,bi,bj).GT.0) THEN |
IF (HEFF(I,J,bi,bj).GT.0) THEN |
709 |
heffFracFactor(I,J,K)=HEFFITD(I,J,K,bi,bj)/HEFF(I,J,bi,bj) |
heffFracFactor(I,J,IT)=HEFFITD(I,J,IT,bi,bj)/HEFF(I,J,bi,bj) |
710 |
ELSE |
ELSE |
711 |
heffFracFactor(I,J,K)=ZERO |
heffFracFactor(I,J,IT)=ZERO |
712 |
ENDIF |
ENDIF |
713 |
ENDDO |
ENDDO |
714 |
ENDDO |
ENDDO |
715 |
ENDDO |
ENDDO |
716 |
C prepare SItrHEFF to be computed as cumulative sum |
C prepare SItrHEFF to be computed as cumulative sum |
717 |
DO K=2,5 |
DO iTr=2,5 |
718 |
DO J=1,sNy |
DO J=1,sNy |
719 |
DO I=1,sNx |
DO I=1,sNx |
720 |
SItrHEFF(I,J,bi,bj,K)=ZERO |
SItrHEFF(I,J,bi,bj,iTr)=ZERO |
721 |
ENDDO |
ENDDO |
722 |
ENDDO |
ENDDO |
723 |
ENDDO |
ENDDO |
783 |
ENDDO |
ENDDO |
784 |
ENDDO |
ENDDO |
785 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
786 |
DO K=1,nITD |
DO IT=1,nITD |
787 |
DO J=1,sNy |
DO J=1,sNy |
788 |
DO I=1,sNx |
DO I=1,sNx |
789 |
HEFFITDpreTH(I,J,K) = 0. _d 0 |
HEFFITDpreTH(I,J,IT) = 0. _d 0 |
790 |
HSNWITDpreTH(I,J,K) = 0. _d 0 |
HSNWITDpreTH(I,J,IT) = 0. _d 0 |
791 |
AREAITDpreTH(I,J,K) = 0. _d 0 |
AREAITDpreTH(I,J,IT) = 0. _d 0 |
792 |
ENDDO |
ENDDO |
793 |
ENDDO |
ENDDO |
794 |
ENDDO |
ENDDO |
813 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
814 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
815 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
816 |
DO K=1,nITD |
DO IT=1,nITD |
817 |
#endif |
#endif |
818 |
DO J=1,sNy |
DO J=1,sNy |
819 |
DO I=1,sNx |
DO I=1,sNx |
820 |
|
|
821 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
822 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
823 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
824 |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
825 |
& AREAITDpreTH(I,J,K)) |
& AREAITDpreTH(I,J,IT)) |
826 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K)/tmpscal1 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT)/tmpscal1 |
827 |
tmpscal2 = HEFFITDpreTH(I,J,K)/tmpscal1 |
tmpscal2 = HEFFITDpreTH(I,J,IT)/tmpscal1 |
828 |
heffActualMult(I,J,K) = MAX(tmpscal2,SEAICE_hice_reg) |
heffActualMult(I,J,IT) = MAX(tmpscal2,SEAICE_hice_reg) |
829 |
#else /* SEAICE_GROWTH_LEGACY */ |
#else /* SEAICE_GROWTH_LEGACY */ |
830 |
cif regularize AREA with SEAICE_area_reg |
cif regularize AREA with SEAICE_area_reg |
831 |
tmpscal1 = SQRT(AREAITDpreTH(I,J,K) * AREAITDpreTH(I,J,K) |
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
832 |
& + area_reg_sq) |
& + area_reg_sq) |
833 |
cif heffActual calculated with the regularized AREA |
cif heffActual calculated with the regularized AREA |
834 |
tmpscal2 = HEFFITDpreTH(I,J,K) / tmpscal1 |
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
835 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
836 |
heffActualMult(I,J,K) = SQRT(tmpscal2 * tmpscal2 |
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
837 |
& + hice_reg_sq) |
& + hice_reg_sq) |
838 |
cif hsnowActual calculated with the regularized AREA |
cif hsnowActual calculated with the regularized AREA |
839 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K) / tmpscal1 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
840 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
841 |
cif regularize the inverse of heffActual by hice_reg |
cif regularize the inverse of heffActual by hice_reg |
842 |
recip_heffActualMult(I,J,K) = AREAITDpreTH(I,J,K) / |
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
843 |
& sqrt(HEFFITDpreTH(I,J,K) * HEFFITDpreTH(I,J,K) |
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
844 |
& + hice_reg_sq) |
& + hice_reg_sq) |
845 |
cif Do not regularize when HEFFpreTH = 0 |
cif Do not regularize when HEFFpreTH = 0 |
846 |
ELSE |
ELSE |
847 |
heffActualMult(I,J,K) = ZERO |
heffActualMult(I,J,IT) = ZERO |
848 |
hsnowActualMult(I,J,K) = ZERO |
hsnowActualMult(I,J,IT) = ZERO |
849 |
recip_heffActualMult(I,J,K) = ZERO |
recip_heffActualMult(I,J,IT) = ZERO |
850 |
ENDIF |
ENDIF |
851 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
852 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
892 |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
893 |
C AND SNOW THICKNESS |
C AND SNOW THICKNESS |
894 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
895 |
DO K=1,nITD |
DO IT=1,nITD |
896 |
#endif |
#endif |
897 |
DO J=1,sNy |
DO J=1,sNy |
898 |
DO I=1,sNx |
DO I=1,sNx |
900 |
c will sublimate all of the snow and ice over one time |
c will sublimate all of the snow and ice over one time |
901 |
c step (W/m^2) |
c step (W/m^2) |
902 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
903 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
904 |
latentHeatFluxMaxMult(I,J,K) = lhSublim*recip_deltaTtherm * |
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
905 |
& (HEFFITDpreTH(I,J,K)*SEAICE_rhoIce + |
& (HEFFITDpreTH(I,J,IT)*SEAICE_rhoIce + |
906 |
& HSNWITDpreTH(I,J,K)*SEAICE_rhoSnow)/AREAITDpreTH(I,J,K) |
& HSNWITDpreTH(I,J,IT)*SEAICE_rhoSnow) |
907 |
|
& /AREAITDpreTH(I,J,IT) |
908 |
ELSE |
ELSE |
909 |
latentHeatFluxMaxMult(I,J,K) = ZERO |
latentHeatFluxMaxMult(I,J,IT) = ZERO |
910 |
ENDIF |
ENDIF |
911 |
#else |
#else |
912 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
1077 |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1078 |
C and hence is averaged area weighted [areaFracFactor]) |
C and hence is averaged area weighted [areaFracFactor]) |
1079 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1080 |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,K) |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
1081 |
#else |
#else |
1082 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1083 |
& + ticeOutMult(I,J,IT)*recip_multDim |
& + ticeOutMult(I,J,IT)*recip_multDim |
1088 |
C calculate area weighted mean |
C calculate area weighted mean |
1089 |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
1090 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1091 |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1092 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1093 |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1094 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1095 |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,K) |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,IT) |
1096 |
#else |
#else |
1097 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1098 |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1134 |
|
|
1135 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
C switch heat fluxes from W/m2 to 'effective' ice meters |
1136 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1137 |
DO K=1,nITD |
DO IT=1,nITD |
1138 |
DO J=1,sNy |
DO J=1,sNy |
1139 |
DO I=1,sNx |
DO I=1,sNx |
1140 |
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1141 |
& * convertQ2HI * AREAITDpreTH(I,J,K) |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1142 |
a_QSWbyATMmult_cover(I,J,K) = a_QSWbyATMmult_cover(I,J,K) |
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
1143 |
& * convertQ2HI * AREAITDpreTH(I,J,K) |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1144 |
C and initialize r_QbyATM_cover |
C and initialize r_QbyATM_cover |
1145 |
r_QbyATMmult_cover(I,J,K)=a_QbyATMmult_cover(I,J,K) |
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
1146 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1147 |
C Negative sublimation is resublimation and will be added as snow. |
C Negative sublimation is resublimation and will be added as snow. |
1148 |
#ifdef SEAICE_DISABLE_SUBLIM |
#ifdef SEAICE_DISABLE_SUBLIM |
1149 |
a_FWbySublimMult(I,J,K) = ZERO |
a_FWbySublimMult(I,J,IT) = ZERO |
1150 |
#endif |
#endif |
1151 |
a_FWbySublimMult(I,J,K) = SEAICE_deltaTtherm*recip_rhoIce |
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
1152 |
& * a_FWbySublimMult(I,J,K)*AREAITDpreTH(I,J,K) |
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
1153 |
r_FWbySublimMult(I,J,K)=a_FWbySublimMult(I,J,K) |
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
1154 |
ENDDO |
ENDDO |
1155 |
ENDDO |
ENDDO |
1156 |
ENDDO |
ENDDO |
1207 |
Cgf no additional dependency through ice cover |
Cgf no additional dependency through ice cover |
1208 |
IF ( SEAICEadjMODE.GE.3 ) THEN |
IF ( SEAICEadjMODE.GE.3 ) THEN |
1209 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1210 |
DO K=1,nITD |
DO IT=1,nITD |
1211 |
DO J=1,sNy |
DO J=1,sNy |
1212 |
DO I=1,sNx |
DO I=1,sNx |
1213 |
a_QbyATMmult_cover(I,J,K) = 0. _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1214 |
r_QbyATMmult_cover(I,J,K) = 0. _d 0 |
r_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1215 |
a_QSWbyATMmult_cover(I,J,K) = 0. _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
1216 |
ENDDO |
ENDDO |
1217 |
ENDDO |
ENDDO |
1218 |
ENDDO |
ENDDO |
1289 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1290 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1291 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1292 |
DO K=1,nITD |
DO IT=1,nITD |
1293 |
#endif |
#endif |
1294 |
DO J=1,sNy |
DO J=1,sNy |
1295 |
DO I=1,sNx |
DO I=1,sNx |
1296 |
C First sublimate/deposite snow |
C First sublimate/deposite snow |
1297 |
tmpscal2 = |
tmpscal2 = |
1298 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1299 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HSNOWITD(I,J,K,bi,bj) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1300 |
& *SNOW2ICE),ZERO) |
& *SNOW2ICE),ZERO) |
1301 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1302 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1303 |
& *ICE2SNOW |
& *ICE2SNOW |
1304 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal2 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
1305 |
& *ICE2SNOW |
& *ICE2SNOW |
1306 |
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
1307 |
C keep total up to date, too |
C keep total up to date, too |
1308 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1309 |
#else |
#else |
1310 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1311 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1323 |
C If anything is left, sublimate ice |
C If anything is left, sublimate ice |
1324 |
tmpscal2 = |
tmpscal2 = |
1325 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1326 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HEFFITD(I,J,K,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1327 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1328 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1329 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) - tmpscal2 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
1330 |
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
1331 |
C keep total up to date, too |
C keep total up to date, too |
1332 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1333 |
#else |
#else |
1344 |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1345 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1346 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1347 |
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1348 |
& - r_FWbySublimMult(I,J,K) |
& - r_FWbySublimMult(I,J,IT) |
1349 |
r_QbyATMmult_cover(I,J,K) = r_QbyATMmult_cover(I,J,K) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1350 |
& - r_FWbySublimMult(I,J,K) |
& - r_FWbySublimMult(I,J,IT) |
1351 |
ENDDO |
ENDDO |
1352 |
ENDDO |
ENDDO |
1353 |
C end K loop |
C end IT loop |
1354 |
ENDDO |
ENDDO |
1355 |
C then update totals |
C then update totals |
1356 |
DO J=1,sNy |
DO J=1,sNy |
1382 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1383 |
|
|
1384 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1385 |
DO K=1,nITD |
DO IT=1,nITD |
1386 |
DO J=1,sNy |
DO J=1,sNy |
1387 |
DO I=1,sNx |
DO I=1,sNx |
1388 |
C ice growth/melt due to ocean heat is equally distributed under the ice |
C ice growth/melt due to ocean heat is equally distributed under the ice |
1389 |
C and hence weighted by fractional area of each thickness category |
C and hence weighted by fractional area of each thickness category |
1390 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,K), |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1391 |
& -HEFFITD(I,J,K,bi,bj)) |
& -HEFFITD(I,J,IT,bi,bj)) |
1392 |
d_HEFFbyOCNonICE(I,J)= d_HEFFbyOCNonICE(I,J) + tmpscal1 |
d_HEFFbyOCNonICE(I,J)= d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1393 |
r_QbyOCN(I,J) = r_QbyOCN(I,J) - tmpscal1 |
r_QbyOCN(I,J) = r_QbyOCN(I,J) - tmpscal1 |
1394 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1395 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1396 |
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
1397 |
& + HEFFITD(I,J,K,bi,bj) |
& + HEFFITD(I,J,IT,bi,bj) |
1398 |
#endif |
#endif |
1399 |
ENDDO |
ENDDO |
1400 |
ENDDO |
ENDDO |
1433 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1434 |
|
|
1435 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1436 |
DO K=1,nITD |
DO IT=1,nITD |
1437 |
DO J=1,sNy |
DO J=1,sNy |
1438 |
DO I=1,sNx |
DO I=1,sNx |
1439 |
C Convert to standard units (meters of ice) rather than to meters |
C Convert to standard units (meters of ice) rather than to meters |
1440 |
C of snow. This appears to be more robust. |
C of snow. This appears to be more robust. |
1441 |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,K),-HSNOWITD(I,J,K,bi,bj) |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,IT), |
1442 |
& *SNOW2ICE) |
& -HSNOWITD(I,J,IT,bi,bj)*SNOW2ICE) |
1443 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1444 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1445 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1446 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1447 |
#endif |
#endif |
1448 |
d_HSNWbyATMonSNW(I,J)=d_HSNWbyATMonSNW(I,J)+tmpscal2*ICE2SNOW |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1449 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal2*ICE2SNOW |
& + tmpscal2*ICE2SNOW |
1450 |
r_QbyATMmult_cover(I,J,K)=r_QbyATMmult_cover(I,J,K) - tmpscal2 |
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) |
1451 |
C keep the total up to date, too |
& + tmpscal2*ICE2SNOW |
1452 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1453 |
|
& - tmpscal2 |
1454 |
|
C keep the total up to date, too |
1455 |
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1456 |
ENDDO |
ENDDO |
1457 |
ENDDO |
ENDDO |
1458 |
ENDDO |
ENDDO |
1500 |
Cgf warming conditions, the lab_sea results were not changed. |
Cgf warming conditions, the lab_sea results were not changed. |
1501 |
|
|
1502 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1503 |
DO K=1,nITD |
DO IT=1,nITD |
1504 |
DO J=1,sNy |
DO J=1,sNy |
1505 |
DO I=1,sNx |
DO I=1,sNx |
1506 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
1507 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K)) |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1508 |
|
& r_QbyATMmult_cover(I,J,IT)) |
1509 |
#else |
#else |
1510 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K) |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1511 |
|
& r_QbyATMmult_cover(I,J,IT) |
1512 |
c Limit ice growth by potential melt by ocean |
c Limit ice growth by potential melt by ocean |
1513 |
& + AREAITDpreTH(I,J,K) * r_QbyOCN(I,J)) |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1514 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1515 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1516 |
& + tmpscal2 |
& + tmpscal2 |
1518 |
& + tmpscal2 |
& + tmpscal2 |
1519 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
1520 |
& - tmpscal2 |
& - tmpscal2 |
1521 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal2 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
1522 |
|
|
1523 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1524 |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
1525 |
& + HEFFITD(I,J,K,bi,bj) |
& + HEFFITD(I,J,IT,bi,bj) |
1526 |
#endif |
#endif |
1527 |
ENDDO |
ENDDO |
1528 |
ENDDO |
ENDDO |
1591 |
ENDDO |
ENDDO |
1592 |
ENDDO |
ENDDO |
1593 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1594 |
DO K=1,nITD |
DO IT=1,nITD |
1595 |
DO J=1,sNy |
DO J=1,sNy |
1596 |
DO I=1,sNx |
DO I=1,sNx |
1597 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1598 |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,K) |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1599 |
ENDDO |
ENDDO |
1600 |
ENDDO |
ENDDO |
1601 |
ENDDO |
ENDDO |
1635 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1636 |
|
|
1637 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1638 |
DO K=1,nITD |
DO IT=1,nITD |
1639 |
DO J=1,sNy |
DO J=1,sNy |
1640 |
DO I=1,sNx |
DO I=1,sNx |
1641 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,K), |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1642 |
& -HSNOWITD(I,J,K,bi,bj)) |
& -HSNOWITD(I,J,IT,bi,bj)) |
1643 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1644 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1645 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1647 |
#endif |
#endif |
1648 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1649 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
1650 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) + tmpscal2 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) + tmpscal2 |
1651 |
ENDDO |
ENDDO |
1652 |
ENDDO |
ENDDO |
1653 |
ENDDO |
ENDDO |
1715 |
C considering the entire open water area to refreeze |
C considering the entire open water area to refreeze |
1716 |
tmpscal1 = tmpscal3/tmpscal0 |
tmpscal1 = tmpscal3/tmpscal0 |
1717 |
C then add new ice volume to appropriate thickness category |
C then add new ice volume to appropriate thickness category |
1718 |
DO K=1,nITD |
DO IT=1,nITD |
1719 |
IF (tmpscal1.LT.Hlimit(K)) THEN |
IF (tmpscal1.LT.Hlimit(IT)) THEN |
1720 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal3 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
1721 |
tmpscal3=ZERO |
tmpscal3=ZERO |
1722 |
C not sure if AREAITD should be changed here since AREA is incremented |
C not sure if AREAITD should be changed here since AREA is incremented |
1723 |
C in PART 4 below in non-itd code |
C in PART 4 below in non-itd code |
1724 |
C in this scenario all open water is covered by new ice instantaneously, |
C in this scenario all open water is covered by new ice instantaneously, |
1725 |
C i.e. no delayed lead closing is concidered such as is associated with |
C i.e. no delayed lead closing is concidered such as is associated with |
1726 |
C Hibler's h_0 parameter |
C Hibler's h_0 parameter |
1727 |
AREAITD(I,J,K,bi,bj) = AREAITD(I,J,K,bi,bj) |
AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
1728 |
& + tmpscal0 |
& + tmpscal0 |
1729 |
tmpscal0=ZERO |
tmpscal0=ZERO |
1730 |
ENDIF |
ENDIF |
1737 |
|
|
1738 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1739 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1740 |
DO K=1,nITD |
DO IT=1,nITD |
1741 |
DO J=1,sNy |
DO J=1,sNy |
1742 |
DO I=1,sNx |
DO I=1,sNx |
1743 |
c needs to be here to allow use also with LEGACY branch |
c needs to be here to allow use also with LEGACY branch |
1744 |
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
1745 |
& + HEFFITD(I,J,K,bi,bj) |
& + HEFFITD(I,J,IT,bi,bj) |
1746 |
ENDDO |
ENDDO |
1747 |
ENDDO |
ENDDO |
1748 |
ENDDO |
ENDDO |
1779 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1780 |
IF ( SEAICEuseFlooding ) THEN |
IF ( SEAICEuseFlooding ) THEN |
1781 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1782 |
DO K=1,nITD |
DO IT=1,nITD |
1783 |
DO J=1,sNy |
DO J=1,sNy |
1784 |
DO I=1,sNx |
DO I=1,sNx |
1785 |
tmpscal0 = (HSNOWITD(I,J,K,bi,bj)*SEAICE_rhoSnow |
tmpscal0 = (HSNOWITD(I,J,IT,bi,bj)*SEAICE_rhoSnow |
1786 |
& +HEFFITD(I,J,K,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
& + HEFFITD(I,J,IT,bi,bj) *SEAICE_rhoIce) |
1787 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,K,bi,bj)) |
& *recip_rhoConst |
1788 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,IT,bi,bj)) |
1789 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1790 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal1 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1791 |
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) - tmpscal1 |
1792 |
& * ICE2SNOW |
& * ICE2SNOW |
1793 |
ENDDO |
ENDDO |
1794 |
ENDDO |
ENDDO |
1858 |
C |
C |
1859 |
C AREAITD is incremented in section "gain of new ice over open water" above |
C AREAITD is incremented in section "gain of new ice over open water" above |
1860 |
C |
C |
1861 |
DO K=1,nITD |
DO IT=1,nITD |
1862 |
DO J=1,sNy |
DO J=1,sNy |
1863 |
DO I=1,sNx |
DO I=1,sNx |
1864 |
IF (HEFFITD(I,J,K,bi,bj).LE.ZERO) THEN |
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
1865 |
AREAITD(I,J,K,bi,bj)=ZERO |
AREAITD(I,J,IT,bi,bj)=ZERO |
1866 |
ENDIF |
ENDIF |
1867 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1868 |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
1869 |
& + AREAITD(I,J,K,bi,bj) |
& + AREAITD(I,J,IT,bi,bj) |
1870 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1871 |
ENDDO |
ENDDO |
1872 |
ENDDO |
ENDDO |
1947 |
Cgf 'bulk' linearization of area=f(HEFF) |
Cgf 'bulk' linearization of area=f(HEFF) |
1948 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
IF ( SEAICEadjMODE.GE.1 ) THEN |
1949 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1950 |
DO K=1,nITD |
DO IT=1,nITD |
1951 |
DO J=1,sNy |
DO J=1,sNy |
1952 |
DO I=1,sNx |
DO I=1,sNx |
1953 |
AREAITD(I,J,K,bi,bj) = AREAITDpreTH(I,J,K) + 0.1 _d 0 * |
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
1954 |
& ( HEFFITD(I,J,K,bi,bj) - HEFFITDpreTH(I,J,K) ) |
& ( HEFFITD(I,J,IT,bi,bj) - HEFFITDpreTH(I,J,IT) ) |
1955 |
ENDDO |
ENDDO |
1956 |
ENDDO |
ENDDO |
1957 |
ENDDO |
ENDDO |