58 |
|
|
59 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
60 |
C === Local variables === |
C === Local variables === |
61 |
|
#ifdef SEAICE_DEBUG |
62 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
63 |
C msgBuf :: Informational/error message buffer |
C msgBuf :: Informational/error message buffer |
64 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
65 |
|
CHARACTER*12 msgBufForm |
66 |
c ToM>>> |
c ToM>>> |
67 |
|
#endif |
68 |
C |
C |
69 |
C unit/sign convention: |
C unit/sign convention: |
70 |
C Within the thermodynamic computation all stocks, except HSNOW, |
C Within the thermodynamic computation all stocks, except HSNOW, |
98 |
INTEGER i, j, bi, bj |
INTEGER i, j, bi, bj |
99 |
C number of surface interface layer |
C number of surface interface layer |
100 |
INTEGER kSurface |
INTEGER kSurface |
101 |
|
C IT :: ice thickness category index (MULTICATEGORIES and ITD code) |
102 |
|
INTEGER IT |
103 |
|
_RL pFac |
104 |
C constants |
C constants |
105 |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
106 |
_RL QI, QS, recip_QI |
_RL QI, QS, recip_QI |
107 |
|
_RL lhSublim |
108 |
|
|
109 |
|
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
110 |
|
_RL convertQ2HI, convertHI2Q |
111 |
|
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
112 |
|
_RL convertPRECIP2HI, convertHI2PRECIP |
113 |
|
C Factor by which we increase the upper ocean friction velocity (u*) when |
114 |
|
C ice is absent in a grid cell (dimensionless) |
115 |
|
_RL MixedLayerTurbulenceFactor |
116 |
|
|
117 |
|
C wind speed square |
118 |
|
_RL SPEED_SQ |
119 |
|
|
120 |
|
C Regularization values squared |
121 |
|
_RL area_reg_sq, hice_reg_sq |
122 |
|
C pathological cases thresholds |
123 |
|
_RL heffTooHeavy |
124 |
|
|
125 |
|
C Helper variables: reciprocal of some constants |
126 |
|
_RL recip_multDim |
127 |
|
_RL recip_deltaTtherm |
128 |
|
_RL recip_rhoIce |
129 |
|
C local value (=1/HO or 1/HO_south) |
130 |
|
_RL recip_HO |
131 |
|
C local value (=1/ice thickness) |
132 |
|
_RL recip_HH |
133 |
|
C facilitate multi-category snow implementation |
134 |
|
_RL pFacSnow |
135 |
|
|
136 |
|
C temporary variables available for the various computations |
137 |
|
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
138 |
|
#ifdef SEAICE_ITD |
139 |
|
_RL tmpscal1itd(1:sNx,1:sNy), tmpscal2itd(1:sNx,1:sNy) |
140 |
|
_RL tmpscal3itd(1:sNx,1:sNy) |
141 |
|
#endif |
142 |
|
|
143 |
|
#ifdef ALLOW_SITRACER |
144 |
|
INTEGER iTr |
145 |
|
#ifdef ALLOW_DIAGNOSTICS |
146 |
|
CHARACTER*8 diagName |
147 |
|
#endif |
148 |
|
#endif /* ALLOW_SITRACER */ |
149 |
|
#ifdef ALLOW_AUTODIFF_TAMC |
150 |
|
INTEGER ilockey |
151 |
|
#endif |
152 |
|
|
153 |
|
C== local arrays == |
154 |
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
155 |
_RL TmixLoc (1:sNx,1:sNy) |
_RL TmixLoc (1:sNx,1:sNy) |
156 |
|
|
157 |
|
C actual ice thickness (with upper and lower limit) |
158 |
|
_RL heffActual (1:sNx,1:sNy) |
159 |
|
C actual snow thickness |
160 |
|
_RL hsnowActual (1:sNx,1:sNy) |
161 |
|
C actual ice thickness (with lower limit only) Reciprocal |
162 |
|
_RL recip_heffActual (1:sNx,1:sNy) |
163 |
|
|
164 |
|
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
165 |
|
_RL AREApreTH (1:sNx,1:sNy) |
166 |
|
_RL HEFFpreTH (1:sNx,1:sNy) |
167 |
|
_RL HSNWpreTH (1:sNx,1:sNy) |
168 |
|
#ifdef SEAICE_ITD |
169 |
|
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
170 |
|
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
171 |
|
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
172 |
|
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
173 |
|
_RL leadIceThickMin |
174 |
|
#endif |
175 |
|
|
176 |
|
C wind speed |
177 |
|
_RL UG (1:sNx,1:sNy) |
178 |
|
|
179 |
|
C temporary variables available for the various computations |
180 |
|
_RL tmparr1 (1:sNx,1:sNy) |
181 |
|
#ifdef SEAICE_VARIABLE_SALINITY |
182 |
|
_RL saltFluxAdjust (1:sNx,1:sNy) |
183 |
|
#endif |
184 |
|
|
185 |
|
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
186 |
|
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
187 |
|
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
188 |
|
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
189 |
|
#ifdef SEAICE_ITD |
190 |
|
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
191 |
|
#endif |
192 |
|
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
193 |
|
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
194 |
|
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
195 |
|
#ifdef SEAICE_ITD |
196 |
|
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
197 |
|
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
198 |
|
#endif |
199 |
|
|
200 |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
201 |
C the atmosphere and the ocean surface - for ice covered water |
C the atmosphere and the ocean surface - for ice covered water |
202 |
C a_QbyATM_open :: same but for open water |
C a_QbyATM_open :: same but for open water |
217 |
_RL a_QbyOCN (1:sNx,1:sNy) |
_RL a_QbyOCN (1:sNx,1:sNy) |
218 |
_RL r_QbyOCN (1:sNx,1:sNy) |
_RL r_QbyOCN (1:sNx,1:sNy) |
219 |
|
|
220 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
C The change of mean ice thickness due to out-of-bounds values following |
221 |
_RL convertQ2HI, convertHI2Q |
C sea ice dyhnamics |
|
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
|
|
_RL convertPRECIP2HI, convertHI2PRECIP |
|
|
|
|
|
#ifdef ALLOW_DIAGNOSTICS |
|
|
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
|
|
_RL d_AREAbyATM (1:sNx,1:sNy) |
|
|
_RL d_AREAbyOCN (1:sNx,1:sNy) |
|
|
_RL d_AREAbyICE (1:sNx,1:sNy) |
|
|
#endif |
|
|
|
|
|
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
|
|
C ICE/SNOW stocks tendency associated with relaxation towards observation |
|
|
_RL d_AREAbyRLX (1:sNx,1:sNy) |
|
|
c The change of mean ice thickness due to relaxation |
|
|
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
|
|
#endif |
|
|
|
|
|
c The change of mean ice thickness due to out-of-bounds values following |
|
|
c sea ice dynamics |
|
222 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
223 |
|
|
224 |
c The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
C The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
225 |
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
226 |
|
|
227 |
c The sum of mean ice thickness increments due to atmospheric fluxes over the open water |
C The sum of mean ice thickness increments due to atmospheric fluxes over |
228 |
c fraction and ice-covered fractions of the grid cell |
C the open water fraction and ice-covered fractions of the grid cell |
229 |
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
230 |
c The change of mean ice thickness due to flooding by snow |
C The change of mean ice thickness due to flooding by snow |
231 |
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
232 |
|
|
233 |
c The mean ice thickness increments due to atmospheric fluxes over the open water |
C The mean ice thickness increments due to atmospheric fluxes over the open |
234 |
c fraction and ice-covered fractions of the grid cell, respectively |
C water fraction and ice-covered fractions of the grid cell, respectively |
235 |
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
236 |
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
237 |
|
|
241 |
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
242 |
|
|
243 |
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
244 |
C |
|
245 |
C a_FWbySublim :: fresh water flux implied by latent heat of |
C a_FWbySublim :: fresh water flux implied by latent heat of |
246 |
C sublimation to atmosphere, same sign convention |
C sublimation to atmosphere, same sign convention |
247 |
C as EVAP (positive upward) |
C as EVAP (positive upward) |
254 |
C The latent heat flux which will sublimate all snow and ice |
C The latent heat flux which will sublimate all snow and ice |
255 |
C over one time step |
C over one time step |
256 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
257 |
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
_RL latentHeatFluxMaxMult(1:sNx,1:sNy,MULTDIM) |
258 |
#endif |
#endif |
259 |
|
|
260 |
C actual ice thickness (with upper and lower limit) |
#ifdef EXF_ALLOW_SEAICE_RELAX |
261 |
_RL heffActual (1:sNx,1:sNy) |
C ICE/SNOW stocks tendency associated with relaxation towards observation |
262 |
C actual snow thickness |
_RL d_AREAbyRLX (1:sNx,1:sNy) |
263 |
_RL hsnowActual (1:sNx,1:sNy) |
C The change of mean ice thickness due to relaxation |
264 |
C actual ice thickness (with lower limit only) Reciprocal |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
|
_RL recip_heffActual (1:sNx,1:sNy) |
|
|
C local value (=1/HO or 1/HO_south) |
|
|
_RL recip_HO |
|
|
C local value (=1/ice thickness) |
|
|
_RL recip_HH |
|
|
|
|
|
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
|
|
_RL AREApreTH (1:sNx,1:sNy) |
|
|
_RL HEFFpreTH (1:sNx,1:sNy) |
|
|
_RL HSNWpreTH (1:sNx,1:sNy) |
|
|
#ifdef SEAICE_ITD |
|
|
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
|
|
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
|
|
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
|
|
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
|
|
_RL leadIceThickMin |
|
|
#endif |
|
|
|
|
|
C wind speed |
|
|
_RL UG (1:sNx,1:sNy) |
|
|
#ifdef ALLOW_ATM_WIND |
|
|
_RL SPEED_SQ |
|
|
#endif |
|
|
|
|
|
C Regularization values squared |
|
|
_RL area_reg_sq, hice_reg_sq |
|
|
|
|
|
C pathological cases thresholds |
|
|
_RL heffTooHeavy |
|
|
|
|
|
_RL lhSublim |
|
|
|
|
|
C temporary variables available for the various computations |
|
|
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
|
|
_RL tmparr1 (1:sNx,1:sNy) |
|
|
|
|
|
#ifdef SEAICE_VARIABLE_SALINITY |
|
|
_RL saltFluxAdjust (1:sNx,1:sNy) |
|
265 |
#endif |
#endif |
266 |
|
|
|
INTEGER ilockey |
|
|
INTEGER it |
|
|
_RL pFac |
|
|
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
|
|
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
|
|
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
|
|
#ifdef SEAICE_ITD |
|
|
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
|
|
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
|
|
#endif |
|
|
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
|
|
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
|
|
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
|
267 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
268 |
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
_RL d_HEFFbySublim_ITD (1:sNx,1:sNy,1:nITD) |
269 |
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
_RL d_HSNWbySublim_ITD (1:sNx,1:sNy,1:nITD) |
270 |
|
_RL d_HEFFbyOCNonICE_ITD (1:sNx,1:sNy,1:nITD) |
271 |
|
_RL d_HSNWbyATMonSNW_ITD (1:sNx,1:sNy,1:nITD) |
272 |
|
_RL d_HEFFbyATMonOCN_ITD (1:sNx,1:sNy,1:nITD) |
273 |
|
_RL d_HEFFbyATMonOCN_cover_ITD (1:sNx,1:sNy,1:nITD) |
274 |
|
_RL d_HEFFbyATMonOCN_open_ITD (1:sNx,1:sNy,1:nITD) |
275 |
|
_RL d_HSNWbyRAIN_ITD (1:sNx,1:sNy,1:nITD) |
276 |
|
_RL d_HSNWbyOCNonSNW_ITD (1:sNx,1:sNy,1:nITD) |
277 |
|
_RL d_HEFFbyFLOODING_ITD (1:sNx,1:sNy,1:nITD) |
278 |
#endif |
#endif |
|
C Helper variables: reciprocal of some constants |
|
|
_RL recip_multDim |
|
|
_RL recip_deltaTtherm |
|
|
_RL recip_rhoIce |
|
|
|
|
|
C Factor by which we increase the upper ocean friction velocity (u*) when |
|
|
C ice is absent in a grid cell (dimensionless) |
|
|
_RL MixedLayerTurbulenceFactor |
|
279 |
|
|
|
#ifdef ALLOW_SITRACER |
|
|
INTEGER iTr |
|
|
CHARACTER*8 diagName |
|
|
#endif |
|
280 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
281 |
c Helper variables for diagnostics |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
282 |
|
_RL d_AREAbyATM (1:sNx,1:sNy) |
283 |
|
_RL d_AREAbyOCN (1:sNx,1:sNy) |
284 |
|
_RL d_AREAbyICE (1:sNx,1:sNy) |
285 |
|
C Helper variables for diagnostics |
286 |
_RL DIAGarrayA (1:sNx,1:sNy) |
_RL DIAGarrayA (1:sNx,1:sNy) |
287 |
_RL DIAGarrayB (1:sNx,1:sNy) |
_RL DIAGarrayB (1:sNx,1:sNy) |
288 |
_RL DIAGarrayC (1:sNx,1:sNy) |
_RL DIAGarrayC (1:sNx,1:sNy) |
289 |
_RL DIAGarrayD (1:sNx,1:sNy) |
_RL DIAGarrayD (1:sNx,1:sNy) |
290 |
#endif |
#endif /* ALLOW_DIAGNOSTICS */ |
291 |
|
|
292 |
|
_RL SItflux (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
293 |
|
_RL SIatmQnt (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
294 |
|
_RL SIatmFW (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
295 |
|
#ifdef ALLOW_BALANCE_FLUXES |
296 |
|
_RL FWFsiTile(nSx,nSy) |
297 |
|
_RL FWFsiGlob |
298 |
|
_RL HFsiTile(nSx,nSy) |
299 |
|
_RL HFsiGlob |
300 |
|
_RL FWF2HFsiTile(nSx,nSy) |
301 |
|
_RL FWF2HFsiGlob |
302 |
|
CHARACTER*(max_len_mbuf) msgbuf |
303 |
|
#endif |
304 |
|
|
305 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
306 |
|
|
370 |
& + act4*max1*max2*max3 |
& + act4*max1*max2*max3 |
371 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
372 |
|
|
|
|
|
373 |
C array initializations |
C array initializations |
374 |
C ===================== |
C ===================== |
375 |
|
|
392 |
d_AREAbyOCN(I,J) = 0.0 _d 0 |
d_AREAbyOCN(I,J) = 0.0 _d 0 |
393 |
#endif |
#endif |
394 |
|
|
395 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
396 |
d_AREAbyRLX(I,J) = 0.0 _d 0 |
d_AREAbyRLX(I,J) = 0.0 _d 0 |
397 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
398 |
#endif |
#endif |
416 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
417 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
418 |
#endif |
#endif |
|
c |
|
419 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
|
|
|
420 |
tmparr1(I,J) = 0.0 _d 0 |
tmparr1(I,J) = 0.0 _d 0 |
|
|
|
421 |
#ifdef SEAICE_VARIABLE_SALINITY |
#ifdef SEAICE_VARIABLE_SALINITY |
422 |
saltFluxAdjust(I,J) = 0.0 _d 0 |
saltFluxAdjust(I,J) = 0.0 _d 0 |
423 |
#endif |
#endif |
431 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
432 |
#endif |
#endif |
433 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
434 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
d_HEFFbySublim_ITD(I,J,IT) = 0.0 _d 0 |
435 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
d_HSNWbySublim_ITD(I,J,IT) = 0.0 _d 0 |
436 |
|
d_HEFFbyOCNonICE_ITD(I,J,IT) = 0.0 _d 0 |
437 |
|
d_HSNWbyATMonSNW_ITD(I,J,IT) = 0.0 _d 0 |
438 |
|
d_HEFFbyATMonOCN_ITD(I,J,IT) = 0.0 _d 0 |
439 |
|
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = 0.0 _d 0 |
440 |
|
d_HEFFbyATMonOCN_open_ITD(I,J,IT) = 0.0 _d 0 |
441 |
|
d_HSNWbyRAIN_ITD(I,J,IT) = 0.0 _d 0 |
442 |
|
d_HSNWbyOCNonSNW_ITD(I,J,IT) = 0.0 _d 0 |
443 |
|
d_HEFFbyFLOODING_ITD(I,J,IT) = 0.0 _d 0 |
444 |
|
r_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
445 |
|
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
446 |
#endif |
#endif |
447 |
ENDDO |
ENDDO |
448 |
ENDDO |
ENDDO |
455 |
ENDDO |
ENDDO |
456 |
#endif |
#endif |
457 |
|
|
|
|
|
458 |
C ===================================================================== |
C ===================================================================== |
459 |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
460 |
C ===================================================================== |
C ===================================================================== |
495 |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
496 |
#endif |
#endif |
497 |
|
|
498 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
499 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
500 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
501 |
C 0) relax sea ice concentration towards observation |
C 0) relax sea ice concentration towards observation |
525 |
ENDDO |
ENDDO |
526 |
ENDDO |
ENDDO |
527 |
ENDIF |
ENDIF |
528 |
#endif /* SEAICE_ALLOW_AREA_RELAXATION */ |
#endif /* EXF_ALLOW_SEAICE_RELAX */ |
529 |
|
|
530 |
C 1) treat the case of negative values: |
C 1) treat the case of negative values: |
531 |
|
|
534 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
535 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
536 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
537 |
|
#ifdef SEAICE_ITD |
538 |
|
DO IT=1,nITD |
539 |
|
#endif |
540 |
DO J=1,sNy |
DO J=1,sNy |
541 |
DO I=1,sNx |
DO I=1,sNx |
542 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
543 |
DO IT=1,nITD |
tmpscal2=0. _d 0 |
544 |
tmpscal2=0. _d 0 |
tmpscal3=0. _d 0 |
545 |
tmpscal3=0. _d 0 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
546 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
547 |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
548 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
549 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
550 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
551 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
|
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
|
|
ENDDO |
|
552 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
553 |
C by calling SEAICE_ITD_SUM |
C by calling SEAICE_ITD_SUM |
554 |
#else |
#else |
560 |
#endif |
#endif |
561 |
ENDDO |
ENDDO |
562 |
ENDDO |
ENDDO |
563 |
|
#ifdef SEAICE_ITD |
564 |
|
ENDDO |
565 |
|
#endif |
566 |
|
|
567 |
C 1.25) treat the case of very thin ice: |
C 1.25) treat the case of very thin ice: |
568 |
|
|
569 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
570 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
571 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
572 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
573 |
DO IT=1,nITD |
DO IT=1,nITD |
574 |
#endif |
#endif |
575 |
|
DO J=1,sNy |
576 |
|
DO I=1,sNx |
577 |
tmpscal2=0. _d 0 |
tmpscal2=0. _d 0 |
578 |
tmpscal3=0. _d 0 |
tmpscal3=0. _d 0 |
579 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
580 |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
581 |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
582 |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
583 |
TICES(I,J,IT,bi,bj)=celsius2K |
TICES(I,J,IT,bi,bj)=celsius2K |
584 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
585 |
ENDIF |
ENDIF |
586 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
587 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
588 |
#else |
#else |
589 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
590 |
tmpscal2=-HEFF(I,J,bi,bj) |
tmpscal2=-HEFF(I,J,bi,bj) |
599 |
#endif |
#endif |
600 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
601 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
|
#ifdef SEAICE_ITD |
|
|
ENDDO |
|
|
#endif |
|
602 |
ENDDO |
ENDDO |
603 |
ENDDO |
ENDDO |
604 |
|
#ifdef SEAICE_ITD |
605 |
|
ENDDO |
606 |
|
#endif |
607 |
|
|
608 |
C 1.5) treat the case of area but no ice/snow: |
C 1.5) treat the case of area but no ice/snow: |
609 |
|
|
611 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
612 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
613 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
614 |
|
#ifdef SEAICE_ITD |
615 |
|
DO IT=1,nITD |
616 |
|
#endif |
617 |
DO J=1,sNy |
DO J=1,sNy |
618 |
DO I=1,sNx |
DO I=1,sNx |
619 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
620 |
DO IT=1,nITD |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
621 |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
622 |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
|
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
|
|
ENDDO |
|
623 |
#else |
#else |
624 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
625 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
626 |
#endif |
#endif |
627 |
ENDDO |
ENDDO |
628 |
ENDDO |
ENDDO |
629 |
|
#ifdef SEAICE_ITD |
630 |
|
ENDDO |
631 |
|
#endif |
632 |
|
|
633 |
C 2) treat the case of very small area: |
C 2) treat the case of very small area: |
634 |
|
|
636 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
637 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
638 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
639 |
|
#ifdef SEAICE_ITD |
640 |
|
DO IT=1,nITD |
641 |
|
#endif |
642 |
DO J=1,sNy |
DO J=1,sNy |
643 |
DO I=1,sNx |
DO I=1,sNx |
644 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
645 |
DO IT=1,nITD |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
646 |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
647 |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
648 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
C hence use SEAICE_area_floor devided by nITD |
649 |
C hence use SEAICE_area_floor devided by nITD |
C (or install a warning in e.g. seaice_readparms.F) |
650 |
C (or install a warning in e.g. seaice_readparms.F) |
AREAITD(I,J,IT,bi,bj)= |
651 |
AREAITD(I,J,IT,bi,bj)= |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
652 |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
ENDIF |
|
ENDIF |
|
|
ENDDO |
|
653 |
#else |
#else |
654 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
655 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
657 |
#endif |
#endif |
658 |
ENDDO |
ENDDO |
659 |
ENDDO |
ENDDO |
660 |
|
#ifdef SEAICE_ITD |
661 |
|
ENDDO |
662 |
|
#endif |
663 |
#endif /* DISABLE_AREA_FLOOR */ |
#endif /* DISABLE_AREA_FLOOR */ |
664 |
|
|
665 |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
685 |
|
|
686 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
687 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
688 |
DO J=1,sNy |
DO IT=1,nITD |
689 |
DO I=1,sNx |
DO J=1,sNy |
690 |
|
DO I=1,sNx |
691 |
C TICES was changed above (item 1.25), now update TICE as ice volume |
C TICES was changed above (item 1.25), now update TICE as ice volume |
692 |
C weighted average of TICES |
C weighted average of TICES |
693 |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
694 |
tmpscal1 = 0. _d 0 |
IF (IT .eq. 1) THEN |
695 |
tmpscal2 = 0. _d 0 |
tmpscal1itd(i,j) = 0. _d 0 |
696 |
tmpscal3 = 0. _d 0 |
tmpscal2itd(i,j) = 0. _d 0 |
697 |
DO IT=1,nITD |
tmpscal3itd(i,j) = 0. _d 0 |
698 |
tmpscal1=tmpscal1 + TICES(I,J,IT,bi,bj)*HEFFITD(I,J,IT,bi,bj) |
ENDIF |
699 |
tmpscal2=tmpscal2 + HEFFITD(I,J,IT,bi,bj) |
tmpscal1itd(i,j)=tmpscal1itd(i,j) + TICES(I,J,IT,bi,bj) |
700 |
tmpscal3=tmpscal3 + AREAITD(I,J,IT,bi,bj) |
& * HEFFITD(I,J,IT,bi,bj) |
701 |
ENDDO |
tmpscal2itd(i,j)=tmpscal2itd(i,j) + HEFFITD(I,J,IT,bi,bj) |
702 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
tmpscal3itd(i,j)=tmpscal3itd(i,j) + AREAITD(I,J,IT,bi,bj) |
703 |
|
IF (IT .eq. nITD) THEN |
704 |
|
TICE(I,J,bi,bj)=tmpscal1itd(i,j)/tmpscal2itd(i,j) |
705 |
C lines of item 2.5 that were omitted: |
C lines of item 2.5 that were omitted: |
706 |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
707 |
C hence we execute them here before SEAICE_ITD_REDIST is called |
C hence we execute them here before SEAICE_ITD_REDIST is called |
708 |
C although this means that AREA has not been completely regularized |
C although this means that AREA has not been completely regularized |
709 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
710 |
DIAGarrayA(I,J) = tmpscal3 |
DIAGarrayA(I,J) = tmpscal3itd(i,j) |
711 |
#endif |
#endif |
712 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
713 |
SItrAREA(I,J,bi,bj,1)=tmpscal3 |
SItrAREA(I,J,bi,bj,1)=tmpscal3itd(i,j) |
714 |
#endif |
#endif |
715 |
|
ENDIF |
716 |
|
ENDDO |
717 |
ENDDO |
ENDDO |
718 |
ENDDO |
ENDDO |
719 |
|
|
722 |
C and update AREA, HEFF, and HSNOW |
C and update AREA, HEFF, and HSNOW |
723 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
724 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
725 |
|
#endif /* SEAICE_ITD */ |
726 |
|
|
727 |
c ToM<<< debug seaice_growth |
#ifdef SEAICE_DEBUG |
728 |
WRITE(msgBuf,'(A,7F8.4)') |
#ifdef SEAICE_ITD |
729 |
& ' SEAICE_GROWTH: Heff increments 0, HEFFITD = ', |
WRITE(msgBufForm,'(A,I2,A)') '(A,',nITD,'F14.10)' |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 0, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
730 |
#else |
#else |
731 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBufForm,'(A,I2,A)') '(A, F14.10)' |
732 |
|
#endif |
733 |
|
WRITE(msgBuf,msgBufForm) |
734 |
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
735 |
|
#ifdef SEAICE_ITD |
736 |
|
& HEFFITD(1,1,:,bi,bj) |
737 |
|
#else |
738 |
& HEFF(1,1,bi,bj) |
& HEFF(1,1,bi,bj) |
739 |
|
#endif |
740 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
741 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
742 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
743 |
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
744 |
|
#ifdef SEAICE_ITD |
745 |
|
& AREAITD(1,1,:,bi,bj) |
746 |
|
#else |
747 |
& AREA(1,1,bi,bj) |
& AREA(1,1,bi,bj) |
748 |
|
#endif |
749 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
750 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
751 |
c ToM>>> |
#endif |
752 |
#endif /* SEAICE_ITD */ |
|
753 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
754 |
C end SEAICEadjMODE.EQ.0 statement: |
C end SEAICEadjMODE.EQ.0 statement: |
755 |
ENDIF |
ENDIF |
794 |
ENDDO |
ENDDO |
795 |
ENDDO |
ENDDO |
796 |
ENDDO |
ENDDO |
797 |
|
#ifdef ALLOW_SITRACER |
798 |
C prepare SItrHEFF to be computed as cumulative sum |
C prepare SItrHEFF to be computed as cumulative sum |
799 |
DO iTr=2,5 |
DO iTr=2,5 |
800 |
DO J=1,sNy |
DO J=1,sNy |
810 |
ENDDO |
ENDDO |
811 |
ENDDO |
ENDDO |
812 |
#endif |
#endif |
813 |
|
#endif /* SEAICE_ITD */ |
814 |
|
|
815 |
C 4) treat sea ice salinity pathological cases |
C 4) treat sea ice salinity pathological cases |
816 |
#ifdef SEAICE_VARIABLE_SALINITY |
#ifdef SEAICE_VARIABLE_SALINITY |
939 |
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
940 |
heffActual(I,J) = MAX(tmpscal2,SEAICE_hice_reg) |
heffActual(I,J) = MAX(tmpscal2,SEAICE_hice_reg) |
941 |
#else /* SEAICE_GROWTH_LEGACY */ |
#else /* SEAICE_GROWTH_LEGACY */ |
942 |
cif regularize AREA with SEAICE_area_reg |
Cif regularize AREA with SEAICE_area_reg |
943 |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
944 |
cif heffActual calculated with the regularized AREA |
Cif heffActual calculated with the regularized AREA |
945 |
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
946 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
Cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
947 |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
948 |
cif hsnowActual calculated with the regularized AREA |
Cif hsnowActual calculated with the regularized AREA |
949 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
950 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
951 |
cif regularize the inverse of heffActual by hice_reg |
Cif regularize the inverse of heffActual by hice_reg |
952 |
recip_heffActual(I,J) = AREApreTH(I,J) / |
recip_heffActual(I,J) = AREApreTH(I,J) / |
953 |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
954 |
cif Do not regularize when HEFFpreTH = 0 |
Cif Do not regularize when HEFFpreTH = 0 |
955 |
ELSE |
ELSE |
956 |
heffActual(I,J) = ZERO |
heffActual(I,J) = ZERO |
957 |
hsnowActual(I,J) = ZERO |
hsnowActual(I,J) = ZERO |
979 |
#endif |
#endif |
980 |
DO J=1,sNy |
DO J=1,sNy |
981 |
DO I=1,sNx |
DO I=1,sNx |
982 |
c The latent heat flux over the sea ice which |
C The latent heat flux over the sea ice which |
983 |
c will sublimate all of the snow and ice over one time |
C will sublimate all of the snow and ice over one time |
984 |
c step (W/m^2) |
C step (W/m^2) |
985 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
986 |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
987 |
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
1035 |
I TmixLoc, |
I TmixLoc, |
1036 |
O a_QbyATM_open, a_QSWbyATM_open, |
O a_QbyATM_open, a_QSWbyATM_open, |
1037 |
I bi, bj, myTime, myIter, myThid ) |
I bi, bj, myTime, myIter, myThid ) |
|
c ToM<<< debugging |
|
|
print*,' ' |
|
|
print*,'UG = ',UG(1,1) |
|
|
print*,'Tsurf = ',TmixLoc(1,1) |
|
|
print*,'a_QbyATM_open = ',a_QbyATM_open(1,1) |
|
|
print*,' ' |
|
|
c ToM>>> |
|
1038 |
|
|
1039 |
C determine available heat due to the atmosphere -- for ice covered water |
C determine available heat due to the atmosphere -- for ice covered water |
1040 |
C ======================================================================= |
C ======================================================================= |
1041 |
|
|
1042 |
#ifdef ALLOW_ATM_WIND |
IF (useRelativeWind.AND.useAtmWind) THEN |
|
IF (useRelativeWind) THEN |
|
1043 |
C Compute relative wind speed over sea ice. |
C Compute relative wind speed over sea ice. |
1044 |
DO J=1,sNy |
DO J=1,sNy |
1045 |
DO I=1,sNx |
DO I=1,sNx |
1060 |
ENDDO |
ENDDO |
1061 |
ENDDO |
ENDDO |
1062 |
ENDIF |
ENDIF |
|
#endif /* ALLOW_ATM_WIND */ |
|
1063 |
|
|
1064 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1065 |
CADJ STORE tice(:,:,bi,bj) |
CADJ STORE tice(:,:,bi,bj) |
1075 |
|
|
1076 |
C-- Start loop over multi-categories |
C-- Start loop over multi-categories |
1077 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1078 |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
DO IT=1,nITD |
|
#endif |
|
|
DO IT=1,SEAICE_multDim |
|
|
c homogeneous distribution between 0 and 2 x heffActual |
|
|
#ifndef SEAICE_ITD |
|
|
pFac = (2.0 _d 0*real(IT)-1.0 _d 0)*recip_multDim |
|
|
#endif |
|
1079 |
DO J=1,sNy |
DO J=1,sNy |
1080 |
DO I=1,sNx |
DO I=1,sNx |
|
#ifndef SEAICE_ITD |
|
1081 |
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
1082 |
C (instead of heffActual and latentHeatFluxMax) |
C (instead of heffActual and latentHeatFluxMax) |
1083 |
|
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1084 |
|
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1085 |
|
TICE(I,J,bi,bj) = ZERO |
1086 |
|
TICES(I,J,IT,bi,bj) = ZERO |
1087 |
|
ENDDO |
1088 |
|
ENDDO |
1089 |
|
ENDDO |
1090 |
|
#else |
1091 |
|
DO IT=1,SEAICE_multDim |
1092 |
|
C homogeneous distribution between 0 and 2 x heffActual |
1093 |
|
pFac = (2.0 _d 0*IT - 1.0 _d 0)*recip_multDim |
1094 |
|
pFacSnow = 1. _d 0 |
1095 |
|
IF ( SEAICE_useMultDimSnow ) pFacSnow=pFac |
1096 |
|
DO J=1,sNy |
1097 |
|
DO I=1,sNx |
1098 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
1099 |
|
hsnowActualMult(I,J,IT)=hsnowActual(I,J)*pFacSnow |
1100 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1101 |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
1102 |
#endif |
#endif |
|
#endif |
|
1103 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1104 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1105 |
TICE(I,J,bi,bj) = ZERO |
TICE(I,J,bi,bj) = ZERO |
1107 |
ENDDO |
ENDDO |
1108 |
ENDDO |
ENDDO |
1109 |
ENDDO |
ENDDO |
1110 |
|
#endif |
1111 |
|
|
1112 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1113 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1114 |
|
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1115 |
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
1116 |
# ifdef SEAICE_CAP_SUBLIM |
# ifdef SEAICE_CAP_SUBLIM |
1117 |
CADJ STORE latentHeatFluxMaxMult |
CADJ STORE latentHeatFluxMaxMult |
1127 |
|
|
1128 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
1129 |
CALL SEAICE_SOLVE4TEMP( |
CALL SEAICE_SOLVE4TEMP( |
|
#ifdef SEAICE_ITD |
|
1130 |
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
|
#else |
|
|
I UG, heffActualMult(1,1,IT), hsnowActual, |
|
|
#endif |
|
1131 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1132 |
I latentHeatFluxMaxMult(1,1,IT), |
I latentHeatFluxMaxMult(1,1,IT), |
1133 |
#endif |
#endif |
1134 |
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
1135 |
O a_QbyATMmult_cover(1,1,IT), a_QSWbyATMmult_cover(1,1,IT), |
O a_QbyATMmult_cover(1,1,IT), |
1136 |
|
O a_QSWbyATMmult_cover(1,1,IT), |
1137 |
O a_FWbySublimMult(1,1,IT), |
O a_FWbySublimMult(1,1,IT), |
1138 |
I bi, bj, myTime, myIter, myThid ) |
I bi, bj, myTime, myIter, myThid ) |
1139 |
ENDDO |
ENDDO |
1140 |
|
|
1141 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1142 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1143 |
|
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1144 |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
1145 |
# ifdef SEAICE_CAP_SUBLIM |
# ifdef SEAICE_CAP_SUBLIM |
1146 |
CADJ STORE latentHeatFluxMaxMult |
CADJ STORE latentHeatFluxMaxMult |
1193 |
ENDDO |
ENDDO |
1194 |
ENDDO |
ENDDO |
1195 |
ENDDO |
ENDDO |
|
c ToM<<< debugging |
|
|
print*,' ' |
|
|
print*,'after SOLVE4TEMP: ' |
|
|
print*,'TICE = ',TICE(1,1,bi,bj) |
|
|
print*,'TICES = ',TICES(1,1,:,bi,bj) |
|
|
print*,'a_QSWbyATM_cover = ',a_QSWbyATM_cover(1,1) |
|
|
print*,'a_QSWbyATMmult_cover = ',a_QSWbyATMmult_cover(1,1,:) |
|
|
print*,' ' |
|
|
c ToM>>> |
|
1196 |
|
|
1197 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1198 |
# ifdef ALLOW_DIAGNOSTICS |
# ifdef ALLOW_DIAGNOSTICS |
1199 |
DO J=1,sNy |
DO J=1,sNy |
1200 |
DO I=1,sNx |
DO I=1,sNx |
1201 |
c The actual latent heat flux realized by SOLVE4TEMP |
C The actual latent heat flux realized by SOLVE4TEMP |
1202 |
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
1203 |
ENDDO |
ENDDO |
1204 |
ENDDO |
ENDDO |
1205 |
cif The actual vs. maximum latent heat flux |
Cif The actual vs. maximum latent heat flux |
1206 |
IF ( useDiagnostics ) THEN |
IF ( useDiagnostics ) THEN |
1207 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
1208 |
& 'SIactLHF',0,1,3,bi,bj,myThid) |
& 'SIactLHF',0,1,3,bi,bj,myThid) |
1270 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1271 |
C Negative sublimation is resublimation and will be added as snow. |
C Negative sublimation is resublimation and will be added as snow. |
1272 |
#ifdef SEAICE_DISABLE_SUBLIM |
#ifdef SEAICE_DISABLE_SUBLIM |
1273 |
cgf just for those who may need to omit this term to reproduce old results |
Cgf just for those who may need to omit this term to reproduce old results |
1274 |
a_FWbySublim(I,J) = ZERO |
a_FWbySublim(I,J) = ZERO |
1275 |
#endif |
#endif /* SEAICE_DISABLE_SUBLIM */ |
1276 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
1277 |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
1278 |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
1330 |
|
|
1331 |
DO J=1,sNy |
DO J=1,sNy |
1332 |
DO I=1,sNx |
DO I=1,sNx |
1333 |
c FREEZING TEMP. OF SEA WATER (deg C) |
C FREEZING TEMP. OF SEA WATER (deg C) |
1334 |
tempFrz = SEAICE_tempFrz0 + |
tempFrz = SEAICE_tempFrz0 + |
1335 |
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
1336 |
c efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
C efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
1337 |
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
1338 |
tmpscal1 = SEAICE_mcPheePiston |
tmpscal1 = SEAICE_mcPheePiston |
1339 |
ELSE |
ELSE |
1340 |
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
1341 |
ENDIF |
ENDIF |
1342 |
c efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
C efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
1343 |
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1344 |
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
1345 |
MixedLayerTurbulenceFactor = ONE - |
MixedLayerTurbulenceFactor = ONE - |
1350 |
ELSE |
ELSE |
1351 |
MixedLayerTurbulenceFactor = ONE |
MixedLayerTurbulenceFactor = ONE |
1352 |
ENDIF |
ENDIF |
1353 |
c maximum turbulent flux, in ice meters |
C maximum turbulent flux, in ice meters |
1354 |
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
1355 |
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
1356 |
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
1357 |
c available turbulent flux |
C available turbulent flux |
1358 |
a_QbyOCN(i,j) = |
a_QbyOCN(i,j) = |
1359 |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
1360 |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
|
c ToM<<< debugging |
|
|
if (i.eq.1 .and. j.eq.1) then |
|
|
print *, 'salt [psu] = ',salt(i,j,kSurface,bi,bj) |
|
|
print *, 'theta [degC] = ',theta(i,j,kSurface,bi,bj) |
|
|
print *, 'tempFrz [degC] = ',tempFrz |
|
|
print *, 'max turb flx [m] = ',tmpscal2 |
|
|
print *, 'avail trub flx [m] = ',a_QbyOCN(i,j) |
|
|
endif |
|
|
c ToM>>> |
|
1361 |
ENDDO |
ENDDO |
1362 |
ENDDO |
ENDDO |
1363 |
|
|
1365 |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
1366 |
#endif |
#endif |
1367 |
|
|
|
|
|
1368 |
C =================================================================== |
C =================================================================== |
1369 |
C =========PART 3: determine effective thicknesses increments======== |
C =========PART 3: determine effective thicknesses increments======== |
1370 |
C =================================================================== |
C =================================================================== |
1386 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1387 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1388 |
& *SNOW2ICE),ZERO) |
& *SNOW2ICE),ZERO) |
1389 |
|
d_HSNWbySublim_ITD(I,J,IT) = - tmpscal2 * ICE2SNOW |
1390 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1391 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1392 |
& *ICE2SNOW |
& *ICE2SNOW |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
|
|
& *ICE2SNOW |
|
1393 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
1394 |
#else |
#else |
1395 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1409 |
tmpscal2 = |
tmpscal2 = |
1410 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1411 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1412 |
|
d_HEFFbySublim_ITD(I,J,IT) = - tmpscal2 |
1413 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1414 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HEFFbySublim(I,J) = d_HEFFbySublim(I,J) - tmpscal2 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
|
1415 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
1416 |
#else |
#else |
1417 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1441 |
C end IT loop |
C end IT loop |
1442 |
ENDDO |
ENDDO |
1443 |
#endif |
#endif |
1444 |
|
#ifdef SEAICE_DEBUG |
1445 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1446 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1447 |
|
& ' SEAICE_GROWTH: Hsnow increments 1, d_HSNWySublim = ', |
1448 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1449 |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
& d_HSNWbySublim_ITD(1,1,:) |
1450 |
& HEFFITD(1,1,:,bi,bj) |
#else |
1451 |
|
& d_HSNWbySublim(1,1) |
1452 |
|
#endif |
1453 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1454 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1455 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1456 |
& ' SEAICE_GROWTH: Area increments 1, AREAITD = ', |
& ' SEAICE_GROWTH: Heff increments 1, d_HEFFbySublim = ', |
1457 |
& AREAITD(1,1,:,bi,bj) |
#ifdef SEAICE_ITD |
1458 |
|
& d_HEFFbySublim_ITD(1,1,:) |
1459 |
#else |
#else |
1460 |
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
& d_HEFFbySublim(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1461 |
#endif |
#endif |
1462 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1463 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1464 |
c ToM>>> |
c ToM>>> |
1465 |
|
#endif |
1466 |
|
|
1467 |
C compute ice thickness tendency due to ice-ocean interaction |
C compute ice thickness tendency due to ice-ocean interaction |
1468 |
C =========================================================== |
C =========================================================== |
1481 |
C fractional area of each thickness category |
C fractional area of each thickness category |
1482 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1483 |
& -HEFFITD(I,J,IT,bi,bj)) |
& -HEFFITD(I,J,IT,bi,bj)) |
1484 |
|
d_HEFFbyOCNonICE_ITD(I,J,IT)=tmpscal1 |
1485 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
|
|
#ifdef ALLOW_SITRACER |
|
|
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
|
|
& + HEFFITD(I,J,IT,bi,bj) |
|
|
#endif |
|
1486 |
ENDDO |
ENDDO |
1487 |
ENDDO |
ENDDO |
1488 |
ENDDO |
ENDDO |
1489 |
|
#ifdef ALLOW_SITRACER |
1490 |
|
DO J=1,sNy |
1491 |
|
DO I=1,sNx |
1492 |
|
SItrHEFF(I,J,bi,bj,2) = HEFFpreTH(I,J) |
1493 |
|
& + d_HEFFbySublim(I,J) |
1494 |
|
& + d_HEFFbyOCNonICE(I,J) |
1495 |
|
ENDDO |
1496 |
|
ENDDO |
1497 |
|
#endif |
1498 |
DO J=1,sNy |
DO J=1,sNy |
1499 |
DO I=1,sNx |
DO I=1,sNx |
1500 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1512 |
ENDDO |
ENDDO |
1513 |
ENDDO |
ENDDO |
1514 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1515 |
|
#ifdef SEAICE_DEBUG |
1516 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1517 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1518 |
|
& ' SEAICE_GROWTH: Heff increments 2, d_HEFFbyOCNonICE = ', |
1519 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1520 |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
& d_HEFFbyOCNonICE_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 2, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1521 |
#else |
#else |
1522 |
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
& d_HEFFbyOCNonICE(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1523 |
#endif |
#endif |
1524 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1525 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1526 |
c ToM>>> |
c ToM>>> |
1527 |
|
#endif |
1528 |
|
|
1529 |
C compute snow melt tendency due to snow-atmosphere interaction |
C compute snow melt tendency due to snow-atmosphere interaction |
1530 |
C ================================================================== |
C ================================================================== |
1547 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1548 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1549 |
#endif |
#endif |
1550 |
|
d_HSNWbyATMonSNW_ITD(I,J,IT) = tmpscal2*ICE2SNOW |
1551 |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1552 |
& + tmpscal2*ICE2SNOW |
& + tmpscal2*ICE2SNOW |
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) |
|
|
& + tmpscal2*ICE2SNOW |
|
1553 |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1554 |
& - tmpscal2 |
& - tmpscal2 |
1555 |
ENDDO |
ENDDO |
1572 |
ENDDO |
ENDDO |
1573 |
ENDDO |
ENDDO |
1574 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1575 |
|
#ifdef SEAICE_DEBUG |
1576 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1577 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1578 |
|
& ' SEAICE_GROWTH: Hsnow increments 3, d_HSNWbyATMonSNW = ', |
1579 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1580 |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
& d_HSNWbyATMonSNW_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 3, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1581 |
#else |
#else |
1582 |
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
& d_HSNWbyATMonSNW(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1583 |
#endif |
#endif |
1584 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1585 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1586 |
c ToM>>> |
c ToM>>> |
1587 |
|
#endif |
1588 |
|
|
1589 |
C compute ice thickness tendency due to the atmosphere |
C compute ice thickness tendency due to the atmosphere |
1590 |
C ==================================================== |
C ==================================================== |
1603 |
DO IT=1,nITD |
DO IT=1,nITD |
1604 |
DO J=1,sNy |
DO J=1,sNy |
1605 |
DO I=1,sNx |
DO I=1,sNx |
1606 |
|
tmpscal1 = HEFFITDpreTH(I,J,IT) |
1607 |
|
& + d_HEFFbySublim_ITD(I,J,IT) |
1608 |
|
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1609 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
1610 |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
tmpscal2 = MAX(-tmpscal1, |
1611 |
& r_QbyATMmult_cover(I,J,IT)) |
& r_QbyATMmult_cover(I,J,IT)) |
1612 |
#else |
#else |
1613 |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
tmpscal2 = MAX(-tmpscal1, |
1614 |
& r_QbyATMmult_cover(I,J,IT) |
& r_QbyATMmult_cover(I,J,IT) |
1615 |
c Limit ice growth by potential melt by ocean |
c Limit ice growth by potential melt by ocean |
1616 |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1617 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1618 |
|
d_HEFFbyATMonOCN_cover_ITD(I,J,IT) = tmpscal2 |
1619 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1620 |
& + tmpscal2 |
& + tmpscal2 |
1621 |
|
d_HEFFbyATMonOCN_ITD(I,J,IT) = d_HEFFbyATMonOCN_ITD(I,J,IT) |
1622 |
|
& + tmpscal2 |
1623 |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1624 |
& + tmpscal2 |
& + tmpscal2 |
1625 |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1626 |
& - tmpscal2 |
& - tmpscal2 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
|
|
|
|
|
#ifdef ALLOW_SITRACER |
|
|
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
|
|
& + HEFFITD(I,J,IT,bi,bj) |
|
|
#endif |
|
1627 |
ENDDO |
ENDDO |
1628 |
ENDDO |
ENDDO |
1629 |
ENDDO |
ENDDO |
1630 |
|
#ifdef ALLOW_SITRACER |
1631 |
|
DO J=1,sNy |
1632 |
|
DO I=1,sNx |
1633 |
|
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,2) |
1634 |
|
& + d_HEFFbyATMonOCN_cover(I,J) |
1635 |
|
ENDDO |
1636 |
|
ENDDO |
1637 |
|
#endif |
1638 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
1639 |
DO J=1,sNy |
DO J=1,sNy |
1640 |
DO I=1,sNx |
DO I=1,sNx |
1643 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
1644 |
#else |
#else |
1645 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
1646 |
c Limit ice growth by potential melt by ocean |
C Limit ice growth by potential melt by ocean |
1647 |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
1648 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1649 |
|
|
1655 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1656 |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
1657 |
#endif |
#endif |
1658 |
ENDDO |
ENDDO |
1659 |
ENDDO |
ENDDO |
1660 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1661 |
|
#ifdef SEAICE_DEBUG |
1662 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1663 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1664 |
|
& ' SEAICE_GROWTH: Heff increments 4, d_HEFFbyATMonOCN_cover = ', |
1665 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1666 |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
& d_HEFFbyATMonOCN_cover_ITD(1,1,:) |
1667 |
& HEFFITD(1,1,:,bi,bj) |
#else |
1668 |
|
& d_HEFFbyATMonOCN_cover(1,1) |
1669 |
|
#endif |
1670 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1671 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1672 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1673 |
& ' SEAICE_GROWTH: Area increments 4, AREAITD = ', |
& ' SEAICE_GROWTH: Heff increments 4, d_HEFFbyATMonOCN = ', |
1674 |
& AREAITD(1,1,:,bi,bj) |
#ifdef SEAICE_ITD |
1675 |
|
& d_HEFFbyATMonOCN_ITD(1,1,:) |
1676 |
#else |
#else |
1677 |
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
& d_HEFFbyATMonOCN(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1678 |
#endif |
#endif |
1679 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1680 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1681 |
c ToM>>> |
c ToM>>> |
1682 |
|
#endif |
1683 |
|
|
1684 |
C attribute precip to fresh water or snow stock, |
C add snow precipitation to HSNOW. |
|
C depending on atmospheric conditions. |
|
1685 |
C ================================================= |
C ================================================= |
1686 |
#ifdef ALLOW_ATM_TEMP |
#ifdef ALLOW_ATM_TEMP |
1687 |
#ifdef ALLOW_AUTODIFF_TAMC |
# ifdef ALLOW_AUTODIFF_TAMC |
1688 |
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1689 |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1690 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1691 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
# endif /* ALLOW_AUTODIFF_TAMC */ |
1692 |
DO J=1,sNy |
IF ( snowPrecipFile .NE. ' ' ) THEN |
1693 |
DO I=1,sNx |
C add snowPrecip to HSNOW |
1694 |
|
DO J=1,sNy |
1695 |
|
DO I=1,sNx |
1696 |
|
d_HSNWbyRAIN(I,J) = convertPRECIP2HI * ICE2SNOW * |
1697 |
|
& snowPrecip(i,j,bi,bj) * AREApreTH(I,J) |
1698 |
|
d_HFRWbyRAIN(I,J) = -convertPRECIP2HI * |
1699 |
|
& ( PRECIP(I,J,bi,bj) - snowPrecip(I,J,bi,bj) ) * |
1700 |
|
& AREApreTH(I,J) |
1701 |
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1702 |
|
ENDDO |
1703 |
|
ENDDO |
1704 |
|
ELSE |
1705 |
|
C attribute precip to fresh water or snow stock, |
1706 |
|
C depending on atmospheric conditions. |
1707 |
|
DO J=1,sNy |
1708 |
|
DO I=1,sNx |
1709 |
C possible alternatives to the a_QbyATM_cover criterium |
C possible alternatives to the a_QbyATM_cover criterium |
1710 |
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
1711 |
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
1712 |
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
1713 |
C add precip as snow |
C add precip as snow |
1714 |
d_HFRWbyRAIN(I,J)=0. _d 0 |
d_HFRWbyRAIN(I,J)=0. _d 0 |
1715 |
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
1716 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1717 |
ELSE |
ELSE |
1718 |
C add precip to the fresh water bucket |
C add precip to the fresh water bucket |
1719 |
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
1720 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1721 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
1722 |
ENDIF |
ENDIF |
1723 |
ENDDO |
ENDDO |
1724 |
ENDDO |
ENDDO |
1725 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1726 |
DO IT=1,nITD |
DO IT=1,nITD |
1727 |
DO J=1,sNy |
DO J=1,sNy |
1728 |
DO I=1,sNx |
DO I=1,sNx |
1729 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
d_HSNWbyRAIN_ITD(I,J,IT) |
1730 |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
& = d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1731 |
ENDDO |
ENDDO |
1732 |
ENDDO |
ENDDO |
1733 |
ENDDO |
ENDDO |
1741 |
Cgf note: this does not affect air-sea heat flux, |
Cgf note: this does not affect air-sea heat flux, |
1742 |
Cgf since the implied air heat gain to turn |
Cgf since the implied air heat gain to turn |
1743 |
Cgf rain to snow is not a surface process. |
Cgf rain to snow is not a surface process. |
1744 |
|
C end of IF statement snowPrecipFile: |
1745 |
|
ENDIF |
1746 |
#endif /* ALLOW_ATM_TEMP */ |
#endif /* ALLOW_ATM_TEMP */ |
1747 |
|
#ifdef SEAICE_DEBUG |
1748 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1749 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1750 |
|
& ' SEAICE_GROWTH: Hsnow increments 5, d_HSNWbyRAIN = ', |
1751 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1752 |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
& d_HSNWbyRAIN_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 5, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1753 |
#else |
#else |
1754 |
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
& d_HSNWbyRAIN(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1755 |
#endif |
#endif |
1756 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1757 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1758 |
c ToM>>> |
c ToM>>> |
1759 |
|
#endif |
1760 |
|
|
1761 |
C compute snow melt due to heat available from ocean. |
C compute snow melt due to heat available from ocean. |
1762 |
C ================================================================= |
C ================================================================= |
1773 |
DO IT=1,nITD |
DO IT=1,nITD |
1774 |
DO J=1,sNy |
DO J=1,sNy |
1775 |
DO I=1,sNx |
DO I=1,sNx |
1776 |
|
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1777 |
|
& + d_HSNWbySublim_ITD(I,J,IT) |
1778 |
|
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1779 |
|
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1780 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1781 |
& -HSNOWITD(I,J,IT,bi,bj)) |
& -tmpscal4) |
1782 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1783 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1784 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1785 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1786 |
#endif |
#endif |
1787 |
|
d_HSNWbyOCNonSNW_ITD(I,J,IT) = tmpscal2 |
1788 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1789 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) + tmpscal2 |
|
1790 |
ENDDO |
ENDDO |
1791 |
ENDDO |
ENDDO |
1792 |
ENDDO |
ENDDO |
1808 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1809 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1810 |
Cph) |
Cph) |
1811 |
|
#ifdef SEAICE_DEBUG |
1812 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1813 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1814 |
|
& ' SEAICE_GROWTH: Hsnow increments 6, d_HSNWbyOCNonSNW = ', |
1815 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1816 |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
& d_HSNWbyOCNonSNW_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 6, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1817 |
#else |
#else |
1818 |
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
& d_HSNWbyOCNonSNW(1,1) |
|
& HEFF(1,1,bi,bj) |
|
1819 |
#endif |
#endif |
1820 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1821 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1822 |
c ToM>>> |
c ToM>>> |
1823 |
|
#endif |
1824 |
|
|
1825 |
C gain of new ice over open water |
C gain of new ice over open water |
1826 |
C =============================== |
C =============================== |
1834 |
|
|
1835 |
DO J=1,sNy |
DO J=1,sNy |
1836 |
DO I=1,sNx |
DO I=1,sNx |
1837 |
c Initial ice growth is triggered by open water |
#ifdef SEAICE_ITD |
1838 |
c heat flux overcoming potential melt by ocean |
C HEFF will be updated at the end of PART 3, |
1839 |
|
C hence sum of tendencies so far is needed |
1840 |
|
tmpscal4 = HEFFpreTH(I,J) |
1841 |
|
& + d_HEFFbySublim(I,J) |
1842 |
|
& + d_HEFFbyOCNonICE(I,J) |
1843 |
|
& + d_HEFFbyATMonOCN(I,J) |
1844 |
|
#else |
1845 |
|
C HEFF is updated step by step throughout seaice_growth |
1846 |
|
tmpscal4 = HEFF(I,J,bi,bj) |
1847 |
|
#endif |
1848 |
|
C Initial ice growth is triggered by open water |
1849 |
|
C heat flux overcoming potential melt by ocean |
1850 |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
1851 |
& (1.0 _d 0 - AREApreTH(I,J)) |
& (1.0 _d 0 - AREApreTH(I,J)) |
1852 |
c Penetrative shortwave flux beyond first layer |
C Penetrative shortwave flux beyond first layer |
1853 |
c that is therefore not available to ice growth/melt |
C that is therefore not available to ice growth/melt |
1854 |
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
1855 |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
1856 |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1857 |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
1858 |
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
& -tmpscal4*facOpenMelt)*HEFFM(I,J,bi,bj) |
1859 |
c ToM<<< debugging |
#ifdef SEAICE_ITD |
1860 |
if (I.eq.1 .and. J.eq.1) then |
C ice growth in open water adds to first category |
1861 |
print*,'r_QbyATM_open(I,J) = ', r_QbyATM_open(I,J) |
d_HEFFbyATMonOCN_open_ITD(I,J,1)=tmpscal3 |
1862 |
print*,'r_QbyOCN(i,j) = ', r_QbyOCN(i,j) |
d_HEFFbyATMonOCN_ITD(I,J,1) =d_HEFFbyATMonOCN_ITD(I,J,1) |
1863 |
print*,'1 - AREApreTH = ', (1.0 _d 0 - AREApreTH(I,J)) |
& +tmpscal3 |
1864 |
print*,'tmpscal1 = ', tmpscal1 |
#endif |
|
print*,' ' |
|
|
print*,'SWFracB = ', SWFracB |
|
|
print*,'a_QSWbyATM_open(I,J) = ', a_QSWbyATM_open(I,J) |
|
|
print*,'tmpscal2 = ', tmpscal2 |
|
|
print*,' ' |
|
|
print*,'facOpenGrow = ', facOpenGrow |
|
|
print*,'HEFF(I,J,bi,bj) = ', HEFF(I,J,bi,bj) |
|
|
print*,'facOpenMelt = ', facOpenMelt |
|
|
print*,'MAX = ', MAX(tmpscal1-tmpscal2, |
|
|
& -HEFF(I,J,bi,bj)*facOpenMelt) |
|
|
print*,'HEFFM(I,J,bi,bj) = ', HEFFM(I,J,bi,bj) |
|
|
print*,'tmpscal3 = ', tmpscal3 |
|
|
print*,' ' |
|
|
endif |
|
|
c ToM>>> |
|
1865 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1866 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1867 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
|
#ifdef SEAICE_ITD |
|
|
cC open water area fraction |
|
|
c tmpscal0 = ONE-AREApreTH(I,J) |
|
|
cC determine thickness of new ice |
|
|
cctomC considering the entire open water area to refreeze |
|
|
cctom tmpscal1 = tmpscal3/tmpscal0 |
|
|
cC considering a minimum lead ice thickness of 10 cm |
|
|
cC WATCH that leadIceThickMin is smaller that Hlimit(1)! |
|
|
c leadIceThickMin = 0.1 |
|
|
c tmpscal1 = MAX(leadIceThickMin,tmpscal3/tmpscal0) |
|
|
cC adjust ice area fraction covered by new ice |
|
|
c tmpscal0 = tmpscal3/tmpscal1 |
|
|
cC then add new ice volume to appropriate thickness category |
|
|
c DO IT=1,nITD |
|
|
c IF (tmpscal1.LT.Hlimit(IT)) THEN |
|
|
c HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
|
|
c tmpscal3=ZERO |
|
|
cC not sure if AREAITD should be changed here since AREA is incremented |
|
|
cC in PART 4 below in non-itd code |
|
|
cC in this scenario all open water is covered by new ice instantaneously, |
|
|
cC i.e. no delayed lead closing is concidered such as is associated with |
|
|
cC Hibler's h_0 parameter |
|
|
c AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
|
|
c & + tmpscal0 |
|
|
c tmpscal0=ZERO |
|
|
c ENDIF |
|
|
c ENDDO |
|
|
ctom debugging: 1 category only |
|
|
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) + tmpscal3 |
|
|
#else |
|
1868 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
|
#endif |
|
1869 |
ENDDO |
ENDDO |
1870 |
ENDDO |
ENDDO |
1871 |
|
|
1872 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
|
#ifdef SEAICE_ITD |
|
|
DO IT=1,nITD |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
c needs to be here to allow use also with LEGACY branch |
|
|
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
|
|
& + HEFFITD(I,J,IT,bi,bj) |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
#else |
|
1873 |
DO J=1,sNy |
DO J=1,sNy |
1874 |
DO I=1,sNx |
DO I=1,sNx |
1875 |
c needs to be here to allow use also with LEGACY branch |
C needs to be here to allow use also with LEGACY branch |
1876 |
|
#ifdef SEAICE_ITD |
1877 |
|
SItrHEFF(I,J,bi,bj,4)=SItrHEFF(I,J,bi,bj,3) |
1878 |
|
& +d_HEFFbyATMonOCN_open(I,J) |
1879 |
|
#else |
1880 |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1881 |
|
#endif |
1882 |
ENDDO |
ENDDO |
1883 |
ENDDO |
ENDDO |
|
#endif |
|
1884 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1885 |
|
#ifdef SEAICE_DEBUG |
1886 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1887 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1888 |
|
& ' SEAICE_GROWTH: Heff increments 7, d_HEFFbyATMonOCN_open = ', |
1889 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1890 |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
& d_HEFFbyATMonOCN_open_ITD(1,1,:) |
|
& HEFFITD(1,1,:,bi,bj) |
|
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
|
|
& SQUEEZE_RIGHT , myThid) |
|
|
WRITE(msgBuf,'(A,7F8.4)') |
|
|
& ' SEAICE_GROWTH: Area increments 7, AREAITD = ', |
|
|
& AREAITD(1,1,:,bi,bj) |
|
1891 |
#else |
#else |
1892 |
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
& d_HEFFbyATMonOCN_open(1,1) |
1893 |
& HEFF(1,1,bi,bj) |
#endif |
1894 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1895 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1896 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1897 |
& ' SEAICE_GROWTH: Area increments 7, AREA = ', |
& ' SEAICE_GROWTH: Heff increments 7, d_HEFFbyATMonOCN = ', |
1898 |
& AREA(1,1,bi,bj) |
#ifdef SEAICE_ITD |
1899 |
|
& d_HEFFbyATMonOCN_ITD(1,1,:) |
1900 |
|
#else |
1901 |
|
& d_HEFFbyATMonOCN(1,1) |
1902 |
#endif |
#endif |
1903 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1904 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1905 |
c ToM>>> |
c ToM>>> |
1906 |
|
#endif |
1907 |
|
|
1908 |
C convert snow to ice if submerged. |
C convert snow to ice if submerged. |
1909 |
C ================================= |
C ================================= |
1919 |
DO IT=1,nITD |
DO IT=1,nITD |
1920 |
DO J=1,sNy |
DO J=1,sNy |
1921 |
DO I=1,sNx |
DO I=1,sNx |
1922 |
tmpscal0 = (HSNOWITD(I,J,IT,bi,bj)*SEAICE_rhoSnow |
tmpscal3 = HEFFITDpreTH(I,J,IT) |
1923 |
& + HEFFITD(I,J,IT,bi,bj) *SEAICE_rhoIce) |
& + d_HEFFbySublim_ITD(I,J,IT) |
1924 |
& *recip_rhoConst |
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1925 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,IT,bi,bj)) |
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1926 |
|
tmpscal4 = HSNWITDpreTH(I,J,IT) |
1927 |
|
& + d_HSNWbySublim_ITD(I,J,IT) |
1928 |
|
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1929 |
|
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1930 |
|
tmpscal0 = (tmpscal4*SEAICE_rhoSnow |
1931 |
|
& + tmpscal3*SEAICE_rhoIce) |
1932 |
|
& * recip_rhoConst |
1933 |
|
tmpscal1 = MAX( 0. _d 0, tmpscal0 - tmpscal3) |
1934 |
|
d_HEFFbyFLOODING_ITD(I,J,IT) = tmpscal1 |
1935 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
|
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) - tmpscal1 |
|
|
& * ICE2SNOW |
|
1936 |
ENDDO |
ENDDO |
1937 |
ENDDO |
ENDDO |
1938 |
ENDDO |
ENDDO |
1946 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1947 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1948 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1949 |
ENDDO |
ENDDO |
1950 |
ENDDO |
ENDDO |
1951 |
#endif |
#endif |
1952 |
ENDIF |
ENDIF |
1953 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1954 |
|
#ifdef SEAICE_DEBUG |
1955 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1956 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
1957 |
|
& ' SEAICE_GROWTH: Heff increments 8, d_HEFFbyFLOODING = ', |
1958 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1959 |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
& d_HEFFbyFLOODING_ITD(1,1,:) |
1960 |
& HEFFITD(1,1,:,bi,bj) |
#else |
1961 |
|
& d_HEFFbyFLOODING(1,1) |
1962 |
|
#endif |
1963 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1964 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1965 |
WRITE(msgBuf,'(A,7F8.4)') |
c ToM>>> |
1966 |
& ' SEAICE_GROWTH: Area increments 8, AREAITD = ', |
#endif |
1967 |
& AREAITD(1,1,:,bi,bj) |
#ifdef SEAICE_ITD |
1968 |
|
C apply ice and snow thickness changes |
1969 |
|
C ================================================================= |
1970 |
|
DO IT=1,nITD |
1971 |
|
DO J=1,sNy |
1972 |
|
DO I=1,sNx |
1973 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) |
1974 |
|
& + d_HEFFbySublim_ITD(I,J,IT) |
1975 |
|
& + d_HEFFbyOCNonICE_ITD(I,J,IT) |
1976 |
|
& + d_HEFFbyATMonOCN_ITD(I,J,IT) |
1977 |
|
& + d_HEFFbyFLOODING_ITD(I,J,IT) |
1978 |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1979 |
|
& + d_HSNWbySublim_ITD(I,J,IT) |
1980 |
|
& + d_HSNWbyATMonSNW_ITD(I,J,IT) |
1981 |
|
& + d_HSNWbyRAIN_ITD(I,J,IT) |
1982 |
|
& + d_HSNWbyOCNonSNW_ITD(I,J,IT) |
1983 |
|
& - d_HEFFbyFLOODING_ITD(I,J,IT) |
1984 |
|
& * ICE2SNOW |
1985 |
|
ENDDO |
1986 |
|
ENDDO |
1987 |
|
ENDDO |
1988 |
|
#endif |
1989 |
|
c ToM<<< debug seaice_growth |
1990 |
|
WRITE(msgBuf,msgBufForm) |
1991 |
|
& ' SEAICE_GROWTH: Heff increments 9, HEFF = ', |
1992 |
|
#ifdef SEAICE_ITD |
1993 |
|
& HEFFITD(1,1,:,bi,bj) |
1994 |
#else |
#else |
|
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
|
1995 |
& HEFF(1,1,bi,bj) |
& HEFF(1,1,bi,bj) |
1996 |
|
#endif |
1997 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1998 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1999 |
WRITE(msgBuf,'(A,7F8.4)') |
WRITE(msgBuf,msgBufForm) |
2000 |
& ' SEAICE_GROWTH: Area increments 8, AREA = ', |
& ' SEAICE_GROWTH: Area increments 9, AREA = ', |
2001 |
|
#ifdef SEAICE_ITD |
2002 |
|
& AREAITD(1,1,:,bi,bj) |
2003 |
|
#else |
2004 |
& AREA(1,1,bi,bj) |
& AREA(1,1,bi,bj) |
2005 |
#endif |
#endif |
2006 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2031 |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2032 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2033 |
|
|
2034 |
c#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
2035 |
cC replaces Hibler '79 scheme and lead closing parameter |
C-- account for lateral ice growth and melt only in thinnest category |
2036 |
cC because ITD accounts explicitly for lead openings and |
C-- use HEFF, ARE, HSNOW, etc. temporarily for 1st category |
2037 |
cC different melt rates due to varying ice thickness |
C (this way we can use same code for ITD and non-ITD case) |
|
cC |
|
|
cC only consider ice area loss due to total ice thickness loss; |
|
|
cC ice area gain due to freezing of open water is handled above |
|
|
cC under "gain of new ice over open water" |
|
|
cC |
|
|
cC does not account for lateral melt of ice floes |
|
|
cC |
|
|
cC AREAITD is incremented in section "gain of new ice over open water" above |
|
|
cC |
|
|
c DO IT=1,nITD |
|
|
c DO J=1,sNy |
|
|
c DO I=1,sNx |
|
|
c IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
|
|
c AREAITD(I,J,IT,bi,bj)=ZERO |
|
|
c ENDIF |
|
|
c#ifdef ALLOW_SITRACER |
|
|
c SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
|
|
c & + AREAITD(I,J,IT,bi,bj) |
|
|
c#endif /* ALLOW_SITRACER */ |
|
|
c ENDDO |
|
|
c ENDDO |
|
|
c ENDDO |
|
|
c#else /* SEAICE_ITD */ |
|
2038 |
DO J=1,sNy |
DO J=1,sNy |
2039 |
DO I=1,sNx |
DO I=1,sNx |
|
|
|
|
ctom<<< debugging |
|
|
#ifdef SEAICE_ITD |
|
2040 |
HEFF(I,J,bi,bj)=HEFFITD(I,J,1,bi,bj) |
HEFF(I,J,bi,bj)=HEFFITD(I,J,1,bi,bj) |
2041 |
AREA(I,J,bi,bj)=AREAITD(I,J,1,bi,bj) |
AREA(I,J,bi,bj)=AREAITD(I,J,1,bi,bj) |
2042 |
HSNOW(I,J,bi,bj)=HSNOWITD(I,J,1,bi,bj) |
HSNOW(I,J,bi,bj)=HSNOWITD(I,J,1,bi,bj) |
2043 |
HEFFpreTH(I,J)=HEFFITDpreTH(I,J,1) |
HEFFpreTH(I,J)=HEFFITDpreTH(I,J,1) |
2044 |
AREApreTH(I,J)=AREAITDpreTH(I,J,1) |
AREApreTH(I,J)=AREAITDpreTH(I,J,1) |
2045 |
recip_heffActual(I,J)=recip_heffActualMult(I,J,1) |
recip_heffActual(I,J)=recip_heffActualMult(I,J,1) |
2046 |
|
ENDDO |
2047 |
|
ENDDO |
2048 |
|
C all other categories only experience basal growth or melt, |
2049 |
|
C i.e. change sin AREA only occur when all ice in a category is melted |
2050 |
|
IF (nITD .gt. 1) THEN |
2051 |
|
DO IT=2,nITD |
2052 |
|
DO J=1,sNy |
2053 |
|
DO I=1,sNx |
2054 |
|
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
2055 |
|
AREAITD(I,J,IT,bi,bj)=ZERO |
2056 |
|
ENDIF |
2057 |
|
ENDDO |
2058 |
|
ENDDO |
2059 |
|
ENDDO |
2060 |
|
ENDIF |
2061 |
#endif |
#endif |
2062 |
ctom>>> debugging |
DO J=1,sNy |
2063 |
|
DO I=1,sNx |
2064 |
|
|
2065 |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
2066 |
recip_HO=1. _d 0 / HO_south |
recip_HO=1. _d 0 / HO_south |
2126 |
d_AREAbyOCN(I,J)= |
d_AREAbyOCN(I,J)= |
2127 |
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
2128 |
#endif /* ALLOW_DIAGNOSTICS */ |
#endif /* ALLOW_DIAGNOSTICS */ |
2129 |
ctom<<< debugging |
ENDDO |
2130 |
|
ENDDO |
2131 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
2132 |
|
C transfer 1st category values back into ITD variables |
2133 |
|
DO J=1,sNy |
2134 |
|
DO I=1,sNx |
2135 |
HEFFITD(I,J,1,bi,bj)=HEFF(I,J,bi,bj) |
HEFFITD(I,J,1,bi,bj)=HEFF(I,J,bi,bj) |
2136 |
AREAITD(I,J,1,bi,bj)=AREA(I,J,bi,bj) |
AREAITD(I,J,1,bi,bj)=AREA(I,J,bi,bj) |
2137 |
HSNOWITD(I,J,1,bi,bj)=HSNOW(I,J,bi,bj) |
HSNOWITD(I,J,1,bi,bj)=HSNOW(I,J,bi,bj) |
|
#endif |
|
|
ctom>>> debugging |
|
2138 |
ENDDO |
ENDDO |
2139 |
ENDDO |
ENDDO |
2140 |
c#endif /* SEAICE_ITD */ |
#endif |
2141 |
|
|
2142 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
2143 |
Cgf 'bulk' linearization of area=f(HEFF) |
Cgf 'bulk' linearization of area=f(HEFF) |
2169 |
CALL SEAICE_ITD_SUM(bi, bj, myTime,myIter,myThid) |
CALL SEAICE_ITD_SUM(bi, bj, myTime,myIter,myThid) |
2170 |
#endif |
#endif |
2171 |
|
|
|
c ToM<<< debugging |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
if (I.eq.1 .and. J.eq.1) then |
|
|
print *, 'd_HEFFbyNEG(I,J) = ', d_HEFFbyNEG(I,J) |
|
|
print *, 'd_HEFFbyOCNonICE(I,J) = ', d_HEFFbyOCNonICE(I,J) |
|
|
print *, 'd_HEFFbyATMonOCN(I,J) = ', d_HEFFbyATMonOCN(I,J) |
|
|
print *, 'd_HEFFbyATMonOCN_cover(I,J) = ', |
|
|
& d_HEFFbyATMonOCN_cover(I,J) |
|
|
print *, 'd_HEFFbyATMonOCN_open(I,J) = ', |
|
|
& d_HEFFbyATMonOCN_open(I,J) |
|
|
print *, 'd_HEFFbyFLOODING(I,J) = ', d_HEFFbyFLOODING(I,J) |
|
|
print *, 'd_HEFFbySublim(I,J) = ', d_HEFFbySublim(I,J) |
|
|
endif |
|
|
ENDDO |
|
|
ENDDO |
|
|
c ToM>>> |
|
2172 |
C =================================================================== |
C =================================================================== |
2173 |
C =============PART 5: determine ice salinity increments============= |
C =============PART 5: determine ice salinity increments============= |
2174 |
C =================================================================== |
C =================================================================== |
2190 |
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
2191 |
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
2192 |
& + d_HEFFbySublim(I,J) |
& + d_HEFFbySublim(I,J) |
2193 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2194 |
+ d_HEFFbyRLX(I,J) |
& + d_HEFFbyRLX(I,J) |
2195 |
#endif |
#endif |
2196 |
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
2197 |
& * recip_deltaTtherm * SEAICE_rhoIce |
& * recip_deltaTtherm * SEAICE_rhoIce |
2285 |
ENDDO |
ENDDO |
2286 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
#endif /* SEAICE_VARIABLE_SALINITY */ |
2287 |
|
|
|
|
|
2288 |
C ======================================================================= |
C ======================================================================= |
2289 |
C ==LEGACY PART 6 (LEGACY) treat pathological cases, then do flooding === |
C ==LEGACY PART 6 (LEGACY) treat pathological cases, then do flooding === |
2290 |
C ======================================================================= |
C ======================================================================= |
2367 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
2368 |
DO J=1,sNy |
DO J=1,sNy |
2369 |
DO I=1,sNx |
DO I=1,sNx |
2370 |
c needs to be here to allow use also with LEGACY branch |
C needs to be here to allow use also with LEGACY branch |
2371 |
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
2372 |
ENDDO |
ENDDO |
2373 |
ENDDO |
ENDDO |
2430 |
C for backward compatibility it is left out of the LEGACY branch |
C for backward compatibility it is left out of the LEGACY branch |
2431 |
& + a_QSWbyATM_cover(I,J) |
& + a_QSWbyATM_cover(I,J) |
2432 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
2433 |
& - ( d_HEFFbyOCNonICE(I,J) + |
& - ( d_HEFFbyOCNonICE(I,J) |
2434 |
& d_HSNWbyOCNonSNW(I,J)*SNOW2ICE + |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2435 |
& d_HEFFbyNEG(I,J) + |
& + d_HEFFbyNEG(I,J) |
2436 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2437 |
& d_HEFFbyRLX(I,J) + |
& + d_HEFFbyRLX(I,J) |
2438 |
#endif |
#endif |
2439 |
& d_HSNWbyNEG(I,J)*SNOW2ICE ) |
& + d_HSNWbyNEG(I,J)*SNOW2ICE |
2440 |
& * maskC(I,J,kSurface,bi,bj) |
& - convertPRECIP2HI * |
2441 |
|
& snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) |
2442 |
|
& ) * maskC(I,J,kSurface,bi,bj) |
2443 |
|
ENDDO |
2444 |
|
ENDDO |
2445 |
|
DO J=1,sNy |
2446 |
|
DO I=1,sNx |
2447 |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
2448 |
ENDDO |
ENDDO |
2449 |
ENDDO |
ENDDO |
|
cToM<<< debugging |
|
|
print*,'------------------' |
|
|
print*,'OcnModFrc: QNET = ',QNET(1,1,bi,bj) |
|
|
print*,'OcnModFrc: QSW = ',QSW(1,1,bi,bj) |
|
|
print*,' ' |
|
|
print*,'r_QbyATM_cover = ', r_QbyATM_cover(1,1) |
|
|
print*,'r_QbyATM_open = ', r_QbyATM_open(1,1) |
|
|
print*,'a_QSWbyATM_cover = ', a_QSWbyATM_cover(1,1) |
|
|
print*,'d_HEFFbyOCNonICE = ', d_HEFFbyOCNonICE(1,1) |
|
|
print*,'d_HSNWbyOCNonSNW = ', d_HSNWbyOCNonSNW(1,1) |
|
|
print*,'d_HEFFbyNEG = ', d_HEFFbyNEG(1,1) |
|
|
print*,'d_HSNWbyNEG = ', d_HSNWbyNEG(1,1) |
|
|
print*,'SNOW2ICE = ',SNOW2ICE |
|
|
print*,'maskC = ', maskC(1,1,kSurface,bi,bj) |
|
|
print*,'------------------' |
|
|
cToM>>> |
|
2450 |
|
|
2451 |
C switch heat fluxes from 'effective' ice meters to W/m2 |
C switch heat fluxes from 'effective' ice meters to W/m2 |
2452 |
C ====================================================== |
C ====================================================== |
2471 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
2472 |
CADJ & key = iicekey, byte = isbyte |
CADJ & key = iicekey, byte = isbyte |
2473 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2474 |
IF ( SEAICEheatConsFix ) THEN |
cgf Unlike for evap and precip, the temperature of gained/lost |
2475 |
c Unlike for evap and precip, the temperature of gained/lost |
C ocean liquid water due to melt/freeze of solid water cannot be chosen |
2476 |
c ocean liquid water due to melt/freeze of solid water cannot be chosen |
C arbitrarily to be e.g. the ocean SST. Indeed the present seaice model |
2477 |
c to be e.g. the ocean SST. It must be done at 0degC. The fix below anticipates |
C implies a constant ice temperature of 0degC. If melt/freeze water is exchanged |
2478 |
c on external_forcing_surf.F and applies the correction to QNET. |
C at a different temperature, it leads to a loss of conservation in the |
2479 |
IF ((convertFW2Salt.EQ.-1.).OR.(temp_EvPrRn.EQ.UNSET_RL)) THEN |
C ocean+ice system. While this is mostly a serious issue in the |
2480 |
c I leave alone the exotic case when onvertFW2Salt.NE.-1 and temp_EvPrRn.NE.UNSET_RL and |
C real fresh water + non linear free surface framework, a mismatch |
2481 |
c the small error of the synchronous time stepping case (see external_forcing_surf.F). |
C between ice and ocean boundary condition can result in all cases. |
2482 |
|
C Below we therefore anticipate on external_forcing_surf.F |
2483 |
|
C to diagnoze and/or apply the correction to QNET. |
2484 |
DO J=1,sNy |
DO J=1,sNy |
2485 |
DO I=1,sNx |
DO I=1,sNx |
2486 |
#ifdef ALLOW_DIAGNOSTICS |
C ocean water going to ice/snow, in precip units |
2487 |
c store unaltered QNET for diagnostic purposes |
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)*( |
|
DIAGarrayA(I,J)=QNET(I,J,bi,bj) |
|
|
#endif |
|
|
c compute the ocean water going to ice/snow, in precip units |
|
|
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
|
2488 |
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2489 |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2490 |
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
2491 |
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
2492 |
& * convertHI2PRECIP |
& * convertHI2PRECIP |
2493 |
c factor in the heat content that external_forcing_surf.F |
& - snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) ) |
2494 |
c will associate with EMPMR, and remove it from QNET, so that |
C factor in the heat content as done in external_forcing_surf.F |
2495 |
c melt/freez water is in effect consistently gained/lost at 0degC |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND.useRealFreshWaterFlux |
2496 |
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2497 |
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
tmpscal1 = - tmpscal3* |
2498 |
& HeatCapacity_Cp * temp_EvPrRn |
& HeatCapacity_Cp * temp_EvPrRn |
2499 |
ELSE |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND.useRealFreshWaterFlux |
2500 |
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2501 |
|
tmpscal1 = - tmpscal3* |
2502 |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2503 |
ENDIF |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2504 |
|
tmpscal1 = - tmpscal3*HeatCapacity_Cp* |
2505 |
|
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2506 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2507 |
|
tmpscal1 = ZERO |
2508 |
|
ENDIF |
2509 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
2510 |
c back out the eventual TFLUX adjustement and fill diag |
C in all cases, diagnoze the boundary condition mismatch to SIaaflux |
2511 |
DIAGarrayA(I,J)=QNET(I,J,bi,bj)-DIAGarrayA(I,J) |
DIAGarrayA(I,J)=tmpscal1 |
2512 |
#endif |
#endif |
2513 |
|
C remove the mismatch when real fresh water is exchanged (at 0degC here) |
2514 |
|
IF ( useRealFreshWaterFlux.AND.(nonlinFreeSurf.GT.0).AND. |
2515 |
|
& SEAICEheatConsFix ) QNET(I,J,bi,bj)=QNET(I,J,bi,bj)+tmpscal1 |
2516 |
ENDDO |
ENDDO |
2517 |
ENDDO |
ENDDO |
|
ENDIF |
|
2518 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
2519 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2520 |
& 'SIaaflux',0,1,3,bi,bj,myThid) |
& 'SIaaflux',0,1,3,bi,bj,myThid) |
2521 |
#endif |
#endif |
|
ENDIF |
|
2522 |
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
2523 |
|
|
2524 |
|
C compute the net heat flux, incl. adv. by water, entering ocean+ice |
2525 |
|
C =================================================================== |
2526 |
|
DO J=1,sNy |
2527 |
|
DO I=1,sNx |
2528 |
|
cgf 1) SIatmQnt (analogous to qnet; excl. adv. by water exch.) |
2529 |
|
CML If I consider the atmosphere above the ice, the surface flux |
2530 |
|
CML which is relevant for the air temperature dT/dt Eq |
2531 |
|
CML accounts for sensible and radiation (with different treatment |
2532 |
|
CML according to wave-length) fluxes but not for "latent heat flux", |
2533 |
|
CML since it does not contribute to heating the air. |
2534 |
|
CML So this diagnostic is only good for heat budget calculations within |
2535 |
|
CML the ice-ocean system. |
2536 |
|
SIatmQnt(I,J,bi,bj) = |
2537 |
|
& maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
2538 |
|
#ifndef SEAICE_GROWTH_LEGACY |
2539 |
|
& a_QSWbyATM_cover(I,J) + |
2540 |
|
#endif /* SEAICE_GROWTH_LEGACY */ |
2541 |
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
2542 |
|
cgf 2) SItflux (analogous to tflux; includes advection by water |
2543 |
|
C exchanged between atmosphere and ocean+ice) |
2544 |
|
C solid water going to atm, in precip units |
2545 |
|
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
2546 |
|
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
2547 |
|
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
2548 |
|
C liquid water going to atm, in precip units |
2549 |
|
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
2550 |
|
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2551 |
|
& * ( ONE - AREApreTH(I,J) ) |
2552 |
|
#ifdef ALLOW_RUNOFF |
2553 |
|
& - RUNOFF(I,J,bi,bj) |
2554 |
|
#endif /* ALLOW_RUNOFF */ |
2555 |
|
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
2556 |
|
& *convertHI2PRECIP ) |
2557 |
|
C In real fresh water flux + nonlinFS, we factor in the advected specific |
2558 |
|
C energy (referenced to 0 for 0deC liquid water). In virtual salt flux or |
2559 |
|
C linFS, rain/evap get a special treatment (see external_forcing_surf.F). |
2560 |
|
tmpscal1= - tmpscal1* |
2561 |
|
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
2562 |
|
IF ( (temp_EvPrRn.NE.UNSET_RL).AND.useRealFreshWaterFlux |
2563 |
|
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2564 |
|
tmpscal2= - tmpscal2* |
2565 |
|
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2566 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND.useRealFreshWaterFlux |
2567 |
|
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2568 |
|
tmpscal2= - tmpscal2* |
2569 |
|
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2570 |
|
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2571 |
|
tmpscal2= - tmpscal2*HeatCapacity_Cp* |
2572 |
|
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2573 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2574 |
|
tmpscal2= ZERO |
2575 |
|
ENDIF |
2576 |
|
SItflux(I,J,bi,bj)= |
2577 |
|
& SIatmQnt(I,J,bi,bj)-tmpscal1-tmpscal2 |
2578 |
|
ENDDO |
2579 |
|
ENDDO |
2580 |
|
|
2581 |
C compute net fresh water flux leaving/entering |
C compute net fresh water flux leaving/entering |
2582 |
C the ocean, accounting for fresh/salt water stocks. |
C the ocean, accounting for fresh/salt water stocks. |
2583 |
C ================================================== |
C ================================================== |
2591 |
& +d_HEFFbyOCNonICE(I,J) |
& +d_HEFFbyOCNonICE(I,J) |
2592 |
& +d_HEFFbyATMonOCN(I,J) |
& +d_HEFFbyATMonOCN(I,J) |
2593 |
& +d_HEFFbyNEG(I,J) |
& +d_HEFFbyNEG(I,J) |
2594 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2595 |
& +d_HEFFbyRLX(I,J) |
& +d_HEFFbyRLX(I,J) |
2596 |
#endif |
#endif |
2597 |
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
2605 |
#endif /* ALLOW_RUNOFF */ |
#endif /* ALLOW_RUNOFF */ |
2606 |
& + tmpscal1*convertHI2PRECIP |
& + tmpscal1*convertHI2PRECIP |
2607 |
& )*rhoConstFresh |
& )*rhoConstFresh |
2608 |
|
c and the flux leaving/entering the ocean+ice |
2609 |
|
SIatmFW(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2610 |
|
& EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2611 |
|
& - PRECIP(I,J,bi,bj) |
2612 |
|
#ifdef ALLOW_RUNOFF |
2613 |
|
& - RUNOFF(I,J,bi,bj) |
2614 |
|
#endif /* ALLOW_RUNOFF */ |
2615 |
|
& )*rhoConstFresh |
2616 |
|
& + a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2617 |
|
|
2618 |
ENDDO |
ENDDO |
2619 |
ENDDO |
ENDDO |
2620 |
|
|
2621 |
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
2622 |
C-- |
C-- |
2687 |
ENDDO |
ENDDO |
2688 |
ENDIF |
ENDIF |
2689 |
|
|
2690 |
|
#ifdef ALLOW_BALANCE_FLUXES |
2691 |
|
C Compute tile integrals of heat/fresh water fluxes to/from atm. |
2692 |
|
C ============================================================== |
2693 |
|
FWFsiTile(bi,bj) = 0. _d 0 |
2694 |
|
IF ( balanceEmPmR ) THEN |
2695 |
|
DO j=1,sNy |
2696 |
|
DO i=1,sNx |
2697 |
|
FWFsiTile(bi,bj) = |
2698 |
|
& FWFsiTile(bi,bj) + SIatmFW(i,j,bi,bj) |
2699 |
|
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2700 |
|
ENDDO |
2701 |
|
ENDDO |
2702 |
|
ENDIF |
2703 |
|
c to translate global mean FWF adjustements (see below) we may need : |
2704 |
|
FWF2HFsiTile(bi,bj) = 0. _d 0 |
2705 |
|
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2706 |
|
DO j=1,sNy |
2707 |
|
DO i=1,sNx |
2708 |
|
FWF2HFsiTile(bi,bj) = FWF2HFsiTile(bi,bj) + |
2709 |
|
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2710 |
|
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2711 |
|
ENDDO |
2712 |
|
ENDDO |
2713 |
|
ENDIF |
2714 |
|
HFsiTile(bi,bj) = 0. _d 0 |
2715 |
|
IF ( balanceQnet ) THEN |
2716 |
|
DO j=1,sNy |
2717 |
|
DO i=1,sNx |
2718 |
|
HFsiTile(bi,bj) = |
2719 |
|
& HFsiTile(bi,bj) + SItflux(i,j,bi,bj) |
2720 |
|
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2721 |
|
ENDDO |
2722 |
|
ENDDO |
2723 |
|
ENDIF |
2724 |
|
#endif |
2725 |
|
|
2726 |
C =================================================================== |
C =================================================================== |
2727 |
C ======================PART 8: diagnostics========================== |
C ======================PART 8: diagnostics========================== |
2728 |
C =================================================================== |
C =================================================================== |
2773 |
#ifdef ALLOW_ATM_TEMP |
#ifdef ALLOW_ATM_TEMP |
2774 |
DO J=1,sNy |
DO J=1,sNy |
2775 |
DO I=1,sNx |
DO I=1,sNx |
|
CML If I consider the atmosphere above the ice, the surface flux |
|
|
CML which is relevant for the air temperature dT/dt Eq |
|
|
CML accounts for sensible and radiation (with different treatment |
|
|
CML according to wave-length) fluxes but not for "latent heat flux", |
|
|
CML since it does not contribute to heating the air. |
|
|
CML So this diagnostic is only good for heat budget calculations within |
|
|
CML the ice-ocean system. |
|
|
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
|
|
& a_QSWbyATM_cover(I,J) + |
|
|
#endif /* SEAICE_GROWTH_LEGACY */ |
|
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
|
|
C |
|
2776 |
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
2777 |
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
|
C |
|
|
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj)*( |
|
|
& PRECIP(I,J,bi,bj) |
|
|
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
|
|
#ifdef ALLOW_RUNOFF |
|
|
& + RUNOFF(I,J,bi,bj) |
|
|
#endif /* ALLOW_RUNOFF */ |
|
|
& )*rhoConstFresh |
|
|
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
|
2778 |
ENDDO |
ENDDO |
2779 |
ENDDO |
ENDDO |
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
|
|
& 'SIatmQnt',0,1,3,bi,bj,myThid) |
|
2780 |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
2781 |
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
|
CALL DIAGNOSTICS_FILL(DIAGarrayC, |
|
|
& 'SIatmFW ',0,1,3,bi,bj,myThid) |
|
2782 |
C |
C |
2783 |
DO J=1,sNy |
DO J=1,sNy |
2784 |
DO I=1,sNx |
DO I=1,sNx |
2786 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2787 |
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
2788 |
& * SEAICE_rhoIce * recip_deltaTtherm |
& * SEAICE_rhoIce * recip_deltaTtherm |
2789 |
c the residual Freshwater flux of sublimated ice |
C the residual Freshwater flux of sublimated ice |
2790 |
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
2791 |
& * r_FWbySublim(I,J) |
& * r_FWbySublim(I,J) |
2792 |
& * SEAICE_rhoIce * recip_deltaTtherm |
& * SEAICE_rhoIce * recip_deltaTtherm |
2803 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
2804 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
2805 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
|
|
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
c compute ice/snow water going to atm, in precip units |
|
|
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
|
|
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
|
|
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
|
|
c compute ocean water going to atm, in precip units |
|
|
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
|
|
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
|
|
& * ( ONE - AREApreTH(I,J) ) |
|
|
#ifdef ALLOW_RUNOFF |
|
|
& - RUNOFF(I,J,bi,bj) |
|
|
#endif /* ALLOW_RUNOFF */ |
|
|
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
|
|
& *convertHI2PRECIP ) |
|
|
c factor in the advected specific energy (referenced to 0 for 0deC liquid water) |
|
|
tmpscal1= - tmpscal1* |
|
|
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
|
|
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
|
|
tmpscal2= - tmpscal2* |
|
|
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
|
|
ELSE |
|
|
tmpscal2= - tmpscal2* |
|
|
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
|
|
ENDIF |
|
|
c add to SIatmQnt, leading to SItflux, which is analogous to TFLUX |
|
|
DIAGarrayA(I,J)=maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
|
|
#ifndef SEAICE_GROWTH_LEGACY |
|
|
& a_QSWbyATM_cover(I,J) + |
|
|
#endif |
|
|
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
|
|
& -tmpscal1-tmpscal2 |
|
|
ENDDO |
|
|
ENDDO |
|
|
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
|
|
& 'SItflux ',0,1,3,bi,bj,myThid) |
|
2806 |
#endif /* ALLOW_ATM_TEMP */ |
#endif /* ALLOW_ATM_TEMP */ |
2807 |
|
|
2808 |
ENDIF |
ENDIF |
2812 |
ENDDO |
ENDDO |
2813 |
ENDDO |
ENDDO |
2814 |
|
|
2815 |
|
|
2816 |
|
C =================================================================== |
2817 |
|
C =========PART 9: HF/FWF global integrals and balancing============= |
2818 |
|
C =================================================================== |
2819 |
|
|
2820 |
|
#ifdef ALLOW_BALANCE_FLUXES |
2821 |
|
|
2822 |
|
c 1) global sums |
2823 |
|
# ifdef ALLOW_AUTODIFF_TAMC |
2824 |
|
CADJ STORE FWFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2825 |
|
CADJ STORE HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2826 |
|
CADJ STORE FWF2HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2827 |
|
# endif /* ALLOW_AUTODIFF_TAMC */ |
2828 |
|
FWFsiGlob=0. _d 0 |
2829 |
|
IF ( balanceEmPmR ) |
2830 |
|
& CALL GLOBAL_SUM_TILE_RL( FWFsiTile, FWFsiGlob, myThid ) |
2831 |
|
FWF2HFsiGlob=0. _d 0 |
2832 |
|
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2833 |
|
CALL GLOBAL_SUM_TILE_RL(FWF2HFsiTile, FWF2HFsiGlob, myThid) |
2834 |
|
ELSEIF ( balanceEmPmR ) THEN |
2835 |
|
FWF2HFsiGlob=HeatCapacity_Cp * temp_EvPrRn * globalArea |
2836 |
|
ENDIF |
2837 |
|
HFsiGlob=0. _d 0 |
2838 |
|
IF ( balanceQnet ) |
2839 |
|
& CALL GLOBAL_SUM_TILE_RL( HFsiTile, HFsiGlob, myThid ) |
2840 |
|
|
2841 |
|
c 2) global means |
2842 |
|
c mean SIatmFW |
2843 |
|
tmpscal0=FWFsiGlob / globalArea |
2844 |
|
c corresponding mean advection by atm to ocean+ice water exchange |
2845 |
|
c (if mean SIatmFW was removed uniformely from ocean) |
2846 |
|
tmpscal1=FWFsiGlob / globalArea * FWF2HFsiGlob / globalArea |
2847 |
|
c mean SItflux (before potential adjustement due to SIatmFW) |
2848 |
|
tmpscal2=HFsiGlob / globalArea |
2849 |
|
c mean SItflux (after potential adjustement due to SIatmFW) |
2850 |
|
IF ( balanceEmPmR ) tmpscal2=tmpscal2-tmpscal1 |
2851 |
|
|
2852 |
|
c 3) balancing adjustments |
2853 |
|
IF ( balanceEmPmR ) THEN |
2854 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
2855 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
2856 |
|
DO j=1-OLy,sNy+OLy |
2857 |
|
DO i=1-OLx,sNx+OLx |
2858 |
|
empmr(i,j,bi,bj) = empmr(i,j,bi,bj) - tmpscal0 |
2859 |
|
SIatmFW(i,j,bi,bj) = SIatmFW(i,j,bi,bj) - tmpscal0 |
2860 |
|
c adjust SItflux consistently |
2861 |
|
IF ( (temp_EvPrRn.NE.UNSET_RL).AND. |
2862 |
|
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2863 |
|
tmpscal1= |
2864 |
|
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2865 |
|
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND. |
2866 |
|
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2867 |
|
tmpscal1= |
2868 |
|
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2869 |
|
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2870 |
|
tmpscal1= |
2871 |
|
& HeatCapacity_Cp*(temp_EvPrRn - theta(I,J,kSurface,bi,bj)) |
2872 |
|
ELSE |
2873 |
|
tmpscal1=ZERO |
2874 |
|
ENDIF |
2875 |
|
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal0*tmpscal1 |
2876 |
|
c no qnet or tflux adjustement is needed |
2877 |
|
ENDDO |
2878 |
|
ENDDO |
2879 |
|
ENDDO |
2880 |
|
ENDDO |
2881 |
|
IF ( balancePrintMean ) THEN |
2882 |
|
_BEGIN_MASTER( myThid ) |
2883 |
|
WRITE(msgbuf,'(a,a,e24.17)') 'rm Global mean of ', |
2884 |
|
& 'SIatmFW = ', tmpscal0 |
2885 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2886 |
|
& SQUEEZE_RIGHT , myThid) |
2887 |
|
_END_MASTER( myThid ) |
2888 |
|
ENDIF |
2889 |
|
ENDIF |
2890 |
|
IF ( balanceQnet ) THEN |
2891 |
|
DO bj=myByLo(myThid),myByHi(myThid) |
2892 |
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
2893 |
|
DO j=1-OLy,sNy+OLy |
2894 |
|
DO i=1-OLx,sNx+OLx |
2895 |
|
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal2 |
2896 |
|
qnet(i,j,bi,bj) = qnet(i,j,bi,bj) - tmpscal2 |
2897 |
|
SIatmQnt(i,j,bi,bj) = SIatmQnt(i,j,bi,bj) - tmpscal2 |
2898 |
|
ENDDO |
2899 |
|
ENDDO |
2900 |
|
ENDDO |
2901 |
|
ENDDO |
2902 |
|
IF ( balancePrintMean ) THEN |
2903 |
|
_BEGIN_MASTER( myThid ) |
2904 |
|
WRITE(msgbuf,'(a,a,e24.17)') 'rm Global mean of ', |
2905 |
|
& 'SItflux = ', tmpscal2 |
2906 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2907 |
|
& SQUEEZE_RIGHT , myThid) |
2908 |
|
_END_MASTER( myThid ) |
2909 |
|
ENDIF |
2910 |
|
ENDIF |
2911 |
|
#endif /* */ |
2912 |
|
|
2913 |
|
#ifdef ALLOW_DIAGNOSTICS |
2914 |
|
c these diags need to be done outside of the bi,bj loop so that |
2915 |
|
c we may do potential global mean adjustement to them consistently. |
2916 |
|
CALL DIAGNOSTICS_FILL(SItflux, |
2917 |
|
& 'SItflux ',0,1,0,1,1,myThid) |
2918 |
|
CALL DIAGNOSTICS_FILL(SIatmQnt, |
2919 |
|
& 'SIatmQnt',0,1,0,1,1,myThid) |
2920 |
|
c SIatmFW follows the same convention as empmr -- SIatmFW diag does not |
2921 |
|
tmpscal1= - 1. _d 0 |
2922 |
|
CALL DIAGNOSTICS_SCALE_FILL(SIatmFW, |
2923 |
|
& tmpscal1,1,'SIatmFW ',0,1,0,1,1,myThid) |
2924 |
|
#endif /* ALLOW_DIAGNOSTICS */ |
2925 |
|
|
2926 |
RETURN |
RETURN |
2927 |
END |
END |