58 |
|
|
59 |
C !LOCAL VARIABLES: |
C !LOCAL VARIABLES: |
60 |
C === Local variables === |
C === Local variables === |
61 |
|
c ToM<<< debug seaice_growth |
62 |
|
C msgBuf :: Informational/error message buffer |
63 |
|
CHARACTER*(MAX_LEN_MBUF) msgBuf |
64 |
|
c ToM>>> |
65 |
C |
C |
66 |
C unit/sign convention: |
C unit/sign convention: |
67 |
C Within the thermodynamic computation all stocks, except HSNOW, |
C Within the thermodynamic computation all stocks, except HSNOW, |
115 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
116 |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
117 |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
118 |
C a_QbyOCN :: available heat (in in W/m^2) due to the |
C a_QbyOCN :: available heat (in W/m^2) due to the |
119 |
C interaction of the ice pack and the ocean surface |
C interaction of the ice pack and the ocean surface |
120 |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
121 |
C processes have been accounted for |
C processes have been accounted for |
141 |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
142 |
#endif |
#endif |
143 |
|
|
|
#ifdef SEAICE_ITD |
|
|
c The change of mean ice area due to out-of-bounds values following |
|
|
c sea ice dynamics |
|
|
_RL d_AREAbyNEG (1:sNx,1:sNy) |
|
|
#endif |
|
144 |
c The change of mean ice thickness due to out-of-bounds values following |
c The change of mean ice thickness due to out-of-bounds values following |
145 |
c sea ice dynamics |
c sea ice dynamics |
146 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
201 |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
202 |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
203 |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
204 |
_RL heffFracFactor (1:sNx,1:sNy,1:nITD) |
_RL leadIceThickMin |
205 |
#endif |
#endif |
206 |
|
|
207 |
C wind speed |
C wind speed |
227 |
#endif |
#endif |
228 |
|
|
229 |
INTEGER ilockey |
INTEGER ilockey |
230 |
CToM<<< |
INTEGER it |
|
C INTEGER it |
|
|
INTEGER IT, K |
|
|
C>>>ToM |
|
231 |
_RL pFac |
_RL pFac |
232 |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
233 |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
278 |
ENDIF |
ENDIF |
279 |
|
|
280 |
C avoid unnecessary divisions in loops |
C avoid unnecessary divisions in loops |
281 |
|
c#ifdef SEAICE_ITD |
282 |
|
CToM this is now set by MULTDIM = nITD in SEAICE_SIZE.h |
283 |
|
C (see SEAICE_SIZE.h and seaice_readparms.F) |
284 |
|
c SEAICE_multDim = nITD |
285 |
|
c#endif |
286 |
recip_multDim = SEAICE_multDim |
recip_multDim = SEAICE_multDim |
287 |
recip_multDim = ONE / recip_multDim |
recip_multDim = ONE / recip_multDim |
288 |
C above/below: double/single precision calculation of recip_multDim |
C above/below: double/single precision calculation of recip_multDim |
361 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
362 |
#endif |
#endif |
363 |
|
|
|
#ifdef SEAICE_ITD |
|
|
d_AREAbyNEG(I,J) = 0.0 _d 0 |
|
|
#endif |
|
364 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
365 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
366 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
394 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
395 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
396 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
397 |
|
#ifdef SEAICE_CAP_SUBLIM |
398 |
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
399 |
|
#endif |
400 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
401 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
402 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
403 |
#endif |
#endif |
|
#ifdef SEAICE_CAP_SUBLIM |
|
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
|
|
#endif |
|
404 |
ENDDO |
ENDDO |
405 |
ENDDO |
ENDDO |
406 |
ENDDO |
ENDDO |
435 |
ENDDO |
ENDDO |
436 |
ENDDO |
ENDDO |
437 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
438 |
DO K=1,nITD |
DO IT=1,nITD |
439 |
DO J=1,sNy |
DO J=1,sNy |
440 |
DO I=1,sNx |
DO I=1,sNx |
441 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
442 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
443 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
|
IF (AREA(I,J,bi,bj).GT.0) THEN |
|
|
areaFracFactor(I,J,K)=AREAITD(I,J,K,bi,bj)/AREA(I,J,bi,bj) |
|
|
ELSE |
|
|
areaFracFactor(I,J,K)=ZERO |
|
|
ENDIF |
|
|
IF (HEFF(I,J,bi,bj).GT.0) THEN |
|
|
heffFracFactor(I,J,K)=HEFFITD(I,J,K,bi,bj)/HEFF(I,J,bi,bj) |
|
|
ELSE |
|
|
heffFracFactor(I,J,K)=ZERO |
|
|
ENDIF |
|
444 |
ENDDO |
ENDDO |
445 |
ENDDO |
ENDDO |
446 |
ENDDO |
ENDDO |
495 |
DO J=1,sNy |
DO J=1,sNy |
496 |
DO I=1,sNx |
DO I=1,sNx |
497 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
498 |
DO K=1,nITD |
DO IT=1,nITD |
499 |
tmpscal2=0. _d 0 |
tmpscal2=0. _d 0 |
500 |
tmpscal3=0. _d 0 |
tmpscal3=0. _d 0 |
501 |
tmpscal4=0. _d 0 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
502 |
tmpscal2=MAX(-HEFFITD(I,J,K,bi,bj),0. _d 0) |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
|
HEFFITD(I,J,K,bi,bj)=HEFFITD(I,J,K,bi,bj)+tmpscal2 |
|
503 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
504 |
tmpscal3=MAX(-HSNOWITD(I,J,K,bi,bj),0. _d 0) |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
505 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
506 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
507 |
tmpscal4=MAX(-AREAITD(I,J,K,bi,bj),0. _d 0) |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
|
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj)+tmpscal4 |
|
|
d_AREAbyNEG(I,J)=d_AREAbyNEG(I,J)+tmpscal4 |
|
508 |
ENDDO |
ENDDO |
509 |
AREA(I,J,bi,bj)=AREA(I,J,bi,bj)+d_AREAbyNEG(I,J) |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
510 |
|
C by calling SEAICE_ITD_SUM |
511 |
#else |
#else |
512 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
513 |
|
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
514 |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
515 |
|
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
516 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
517 |
#endif |
#endif |
|
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
|
|
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
|
518 |
ENDDO |
ENDDO |
519 |
ENDDO |
ENDDO |
520 |
|
|
526 |
DO J=1,sNy |
DO J=1,sNy |
527 |
DO I=1,sNx |
DO I=1,sNx |
528 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
529 |
DO K=1,nITD |
DO IT=1,nITD |
530 |
tmpscal2=0. _d 0 |
#endif |
531 |
tmpscal3=0. _d 0 |
tmpscal2=0. _d 0 |
532 |
IF (HEFFITD(I,J,K,bi,bj).LE.siEps) THEN |
tmpscal3=0. _d 0 |
533 |
tmpscal2=-HEFFITD(I,J,K,bi,bj) |
#ifdef SEAICE_ITD |
534 |
tmpscal3=-HSNOWITD(I,J,K,bi,bj) |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
535 |
TICES(I,J,K,bi,bj)=celsius2K |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
536 |
HEFFITD(I,J,K,bi,bj) =HEFFITD(I,J,K,bi,bj) +tmpscal2 |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
537 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
TICES(I,J,IT,bi,bj)=celsius2K |
538 |
c |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
|
TICE(I,J,bi,bj)=celsius2K |
|
|
c |
|
|
HEFF(I,J,bi,bj) =HEFF(I,J,bi,bj) +tmpscal2 |
|
|
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
|
|
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
|
|
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
|
539 |
ENDIF |
ENDIF |
540 |
ENDDO |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
541 |
|
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
542 |
#else |
#else |
|
tmpscal2=0. _d 0 |
|
|
tmpscal3=0. _d 0 |
|
543 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
544 |
tmpscal2=-HEFF(I,J,bi,bj) |
tmpscal2=-HEFF(I,J,bi,bj) |
545 |
tmpscal3=-HSNOW(I,J,bi,bj) |
tmpscal3=-HSNOW(I,J,bi,bj) |
546 |
TICE(I,J,bi,bj)=celsius2K |
TICE(I,J,bi,bj)=celsius2K |
547 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
548 |
TICES(I,J,IT,bi,bj)=celsius2K |
TICES(I,J,IT,bi,bj)=celsius2K |
549 |
ENDDO |
ENDDO |
550 |
ENDIF |
ENDIF |
551 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+tmpscal2 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+tmpscal2 |
|
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
|
552 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
553 |
|
#endif |
554 |
|
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
555 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
556 |
|
#ifdef SEAICE_ITD |
557 |
|
ENDDO |
558 |
#endif |
#endif |
559 |
ENDDO |
ENDDO |
560 |
ENDDO |
ENDDO |
567 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
568 |
DO J=1,sNy |
DO J=1,sNy |
569 |
DO I=1,sNx |
DO I=1,sNx |
|
CToM<<< |
|
|
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
|
|
C & (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
|
|
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) THEN |
|
|
AREA(I,J,bi,bj)=0. _d 0 |
|
570 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
571 |
DO K=1,nITD |
DO IT=1,nITD |
572 |
AREAITD(I,J,K,bi,bj)=0. _d 0 |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
573 |
HEFFITD(I,J,K,bi,bj)=0. _d 0 |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
574 |
HSNOWITD(I,J,K,bi,bj)=0. _d 0 |
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
575 |
ENDDO |
ENDDO |
576 |
|
#else |
577 |
|
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
578 |
|
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
579 |
#endif |
#endif |
|
ENDIF |
|
|
C>>>ToM |
|
580 |
ENDDO |
ENDDO |
581 |
ENDDO |
ENDDO |
582 |
|
|
588 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
589 |
DO J=1,sNy |
DO J=1,sNy |
590 |
DO I=1,sNx |
DO I=1,sNx |
|
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
|
591 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
592 |
tmpscal2=AREA(I,J,bi,bj) |
DO IT=1,nITD |
593 |
#endif |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
594 |
|
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
595 |
|
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
596 |
|
C hence use SEAICE_area_floor devided by nITD |
597 |
|
C (or install a warning in e.g. seaice_readparms.F) |
598 |
|
AREAITD(I,J,IT,bi,bj)= |
599 |
|
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
600 |
|
ENDIF |
601 |
|
ENDDO |
602 |
|
#else |
603 |
|
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
604 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
|
#ifdef SEAICE_ITD |
|
|
c ice area added (tmpscal3 is .ge.0): |
|
|
tmpscal3=AREA(I,J,bi,bj)-tmpscal2 |
|
|
c distribute this gain proportionally over categories |
|
|
DO K=1,nITD |
|
|
tmpscal4=AREAITD(I,J,K,bi,bj)/tmpscal2*tmpscal3 |
|
|
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj)+tmpscal4 |
|
|
ENDDO |
|
|
#endif |
|
605 |
ENDIF |
ENDIF |
606 |
|
#endif |
607 |
ENDDO |
ENDDO |
608 |
ENDDO |
ENDDO |
609 |
#endif /* DISABLE_AREA_FLOOR */ |
#endif /* DISABLE_AREA_FLOOR */ |
610 |
|
|
611 |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
612 |
|
|
613 |
|
CToM for SEAICE_ITD this case is treated in SEAICE_ITD_REDIST, |
614 |
|
C which is called at end of PART 1 below |
615 |
|
#ifndef SEAICE_ITD |
616 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
617 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
618 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
619 |
DO J=1,sNy |
DO J=1,sNy |
620 |
DO I=1,sNx |
DO I=1,sNx |
|
#ifdef SEAICE_ITD |
|
|
tmpscal2=AREA(I,J,bi,bj) |
|
|
#endif |
|
621 |
#ifdef ALLOW_DIAGNOSTICS |
#ifdef ALLOW_DIAGNOSTICS |
622 |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
623 |
#endif |
#endif |
625 |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
626 |
#endif |
#endif |
627 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
628 |
|
ENDDO |
629 |
|
ENDDO |
630 |
|
#endif /* notSEAICE_ITD */ |
631 |
|
|
632 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
633 |
c ice area subtracted (tmpscal3 is .ge.0): |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
634 |
tmpscal3=tmpscal2-AREA(I,J,bi,bj) |
DO J=1,sNy |
635 |
c distribute this loss proportionally over categories |
DO I=1,sNx |
636 |
DO K=1,nITD |
C TICES was changed above (item 1.25), now update TICE as ice volume |
637 |
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj) |
C weighted average of TICES |
638 |
& -tmpscal3*areaFracFactor(I,J,K) |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
639 |
|
tmpscal1 = 0. _d 0 |
640 |
|
tmpscal2 = 0. _d 0 |
641 |
|
tmpscal3 = 0. _d 0 |
642 |
|
DO IT=1,nITD |
643 |
|
tmpscal1=tmpscal1 + TICES(I,J,IT,bi,bj)*HEFFITD(I,J,IT,bi,bj) |
644 |
|
tmpscal2=tmpscal2 + HEFFITD(I,J,IT,bi,bj) |
645 |
|
tmpscal3=tmpscal3 + AREAITD(I,J,IT,bi,bj) |
646 |
ENDDO |
ENDDO |
647 |
|
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
648 |
|
C lines of item 2.5 that were omitted: |
649 |
|
C in 2.5 these lines are executed before "ridging" is applied to AREA |
650 |
|
C hence we execute them here before SEAICE_ITD_REDIST is called |
651 |
|
C although this means that AREA has not been completely regularized |
652 |
|
#ifdef ALLOW_DIAGNOSTICS |
653 |
|
DIAGarrayA(I,J) = tmpscal3 |
654 |
|
#endif |
655 |
|
#ifdef ALLOW_SITRACER |
656 |
|
SItrAREA(I,J,bi,bj,1)=tmpscal3 |
657 |
#endif |
#endif |
658 |
ENDDO |
ENDDO |
659 |
ENDDO |
ENDDO |
660 |
|
|
661 |
#ifdef SEAICE_ITD |
CToM finally make sure that all categories meet their thickness limits |
662 |
C If AREAITD is changed due to regularization (but HEFFITD not) then the |
C which includes ridging as in item 2.5 |
663 |
C actual ice thickness (HEFFITD/AREAITD) in a category can be changed so |
C and update AREA, HEFF, and HSNOW |
664 |
C that it does not fit its category limits anymore and redistribution is necessary |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
665 |
CALL SEAICE_ITD_REDIST(myTime, myIter, myThid) |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
666 |
C this should not affect the respective sums (AREA, HEFF, ...) |
|
667 |
C ... except a non-conserving redistribution scheme is used; then call: |
c ToM<<< debug seaice_growth |
668 |
c CALL SEAICE_ITD_SUM(myTime, myIter, myThid) |
WRITE(msgBuf,'(A,7F8.4)') |
669 |
#endif |
& ' SEAICE_GROWTH: Heff increments 0, HEFFITD = ', |
670 |
|
& HEFFITD(1,1,:,bi,bj) |
671 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
672 |
|
& SQUEEZE_RIGHT , myThid) |
673 |
|
WRITE(msgBuf,'(A,7F8.4)') |
674 |
|
& ' SEAICE_GROWTH: Area increments 0, AREAITD = ', |
675 |
|
& AREAITD(1,1,:,bi,bj) |
676 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
677 |
|
& SQUEEZE_RIGHT , myThid) |
678 |
|
#else |
679 |
|
WRITE(msgBuf,'(A,7F8.4)') |
680 |
|
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
681 |
|
& HEFF(1,1,bi,bj) |
682 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
683 |
|
& SQUEEZE_RIGHT , myThid) |
684 |
|
WRITE(msgBuf,'(A,7F8.4)') |
685 |
|
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
686 |
|
& AREA(1,1,bi,bj) |
687 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
688 |
|
& SQUEEZE_RIGHT , myThid) |
689 |
|
c ToM>>> |
690 |
|
#endif /* SEAICE_ITD */ |
691 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
692 |
|
C end SEAICEadjMODE.EQ.0 statement: |
693 |
ENDIF |
ENDIF |
694 |
#endif |
#endif |
695 |
|
|
711 |
ENDDO |
ENDDO |
712 |
ENDDO |
ENDDO |
713 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
714 |
DO K=1,nITD |
DO IT=1,nITD |
715 |
DO J=1,sNy |
DO J=1,sNy |
716 |
DO I=1,sNx |
DO I=1,sNx |
717 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
718 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
719 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
720 |
|
|
721 |
|
C memorize areal and volume fraction of each ITD category |
722 |
|
IF (AREA(I,J,bi,bj) .GT. ZERO) THEN |
723 |
|
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
724 |
|
ELSE |
725 |
|
C if there's no ice, potential growth starts in 1st category |
726 |
|
IF (IT .EQ. 1) THEN |
727 |
|
areaFracFactor(I,J,IT)=ONE |
728 |
|
ELSE |
729 |
|
areaFracFactor(I,J,IT)=ZERO |
730 |
|
ENDIF |
731 |
|
ENDIF |
732 |
ENDDO |
ENDDO |
733 |
ENDDO |
ENDDO |
734 |
ENDDO |
ENDDO |
735 |
|
C prepare SItrHEFF to be computed as cumulative sum |
736 |
|
DO iTr=2,5 |
737 |
|
DO J=1,sNy |
738 |
|
DO I=1,sNx |
739 |
|
SItrHEFF(I,J,bi,bj,iTr)=ZERO |
740 |
|
ENDDO |
741 |
|
ENDDO |
742 |
|
ENDDO |
743 |
|
C prepare SItrAREA to be computed as cumulative sum |
744 |
|
DO J=1,sNy |
745 |
|
DO I=1,sNx |
746 |
|
SItrAREA(I,J,bi,bj,3)=ZERO |
747 |
|
ENDDO |
748 |
|
ENDDO |
749 |
#endif |
#endif |
750 |
|
|
751 |
C 4) treat sea ice salinity pathological cases |
C 4) treat sea ice salinity pathological cases |
802 |
ENDDO |
ENDDO |
803 |
ENDDO |
ENDDO |
804 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
805 |
DO K=1,nITD |
DO IT=1,nITD |
806 |
DO J=1,sNy |
DO J=1,sNy |
807 |
DO I=1,sNx |
DO I=1,sNx |
808 |
HEFFITDpreTH(I,J,K) = 0. _d 0 |
HEFFITDpreTH(I,J,IT) = 0. _d 0 |
809 |
HSNWITDpreTH(I,J,K) = 0. _d 0 |
HSNWITDpreTH(I,J,IT) = 0. _d 0 |
810 |
AREAITDpreTH(I,J,K) = 0. _d 0 |
AREAITDpreTH(I,J,IT) = 0. _d 0 |
811 |
ENDDO |
ENDDO |
812 |
ENDDO |
ENDDO |
813 |
ENDDO |
ENDDO |
832 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
833 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
834 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
835 |
DO K=1,nITD |
DO IT=1,nITD |
836 |
#endif |
#endif |
837 |
DO J=1,sNy |
DO J=1,sNy |
838 |
DO I=1,sNx |
DO I=1,sNx |
839 |
|
|
840 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
841 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
842 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
843 |
tmpscal1 = MAX(SEAICE_area_reg,AREAITDpreTH(I,J,K)) |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
844 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K)/tmpscal1 |
& AREAITDpreTH(I,J,IT)) |
845 |
tmpscal2 = HEFFITDpreTH(I,J,K)/tmpscal1 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT)/tmpscal1 |
846 |
heffActualMult(I,J,K) = MAX(tmpscal2,SEAICE_hice_reg) |
tmpscal2 = HEFFITDpreTH(I,J,IT)/tmpscal1 |
847 |
|
heffActualMult(I,J,IT) = MAX(tmpscal2,SEAICE_hice_reg) |
848 |
#else /* SEAICE_GROWTH_LEGACY */ |
#else /* SEAICE_GROWTH_LEGACY */ |
849 |
cif regularize AREA with SEAICE_area_reg |
cif regularize AREA with SEAICE_area_reg |
850 |
tmpscal1 = SQRT(AREAITDpreTH(I,J,K) * AREAITDpreTH(I,J,K) |
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
851 |
& + area_reg_sq) |
& + area_reg_sq) |
852 |
cif heffActual calculated with the regularized AREA |
cif heffActual calculated with the regularized AREA |
853 |
tmpscal2 = HEFFITDpreTH(I,J,K) / tmpscal1 |
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
854 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
855 |
heffActualMult(I,J,K) = SQRT(tmpscal2 * tmpscal2 |
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
856 |
& + hice_reg_sq) |
& + hice_reg_sq) |
857 |
cif hsnowActual calculated with the regularized AREA |
cif hsnowActual calculated with the regularized AREA |
858 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K) / tmpscal1 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
859 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
860 |
cif regularize the inverse of heffActual by hice_reg |
cif regularize the inverse of heffActual by hice_reg |
861 |
recip_heffActualMult(I,J,K) = AREAITDpreTH(I,J,K) / |
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
862 |
& sqrt(HEFFITDpreTH(I,J,K) * HEFFITDpreTH(I,J,K) |
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
863 |
& + hice_reg_sq) |
& + hice_reg_sq) |
864 |
cif Do not regularize when HEFFpreTH = 0 |
cif Do not regularize when HEFFpreTH = 0 |
865 |
ELSE |
ELSE |
866 |
heffActualMult(I,J,K) = ZERO |
heffActualMult(I,J,IT) = ZERO |
867 |
hsnowActualMult(I,J,K) = ZERO |
hsnowActualMult(I,J,IT) = ZERO |
868 |
recip_heffActualMult(I,J,K) = ZERO |
recip_heffActualMult(I,J,IT) = ZERO |
869 |
ENDIF |
ENDIF |
870 |
#else |
#else /* SEAICE_ITD */ |
871 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
872 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
873 |
tmpscal1 = MAX(SEAICE_area_reg,AREApreTH(I,J)) |
tmpscal1 = MAX(SEAICE_area_reg,AREApreTH(I,J)) |
893 |
hsnowActual(I,J) = ZERO |
hsnowActual(I,J) = ZERO |
894 |
recip_heffActual(I,J) = ZERO |
recip_heffActual(I,J) = ZERO |
895 |
ENDIF |
ENDIF |
896 |
#endif |
#endif /* SEAICE_ITD */ |
897 |
|
|
898 |
ENDDO |
ENDDO |
899 |
ENDDO |
ENDDO |
911 |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
912 |
C AND SNOW THICKNESS |
C AND SNOW THICKNESS |
913 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
914 |
DO K=1,nITD |
DO IT=1,nITD |
915 |
#endif |
#endif |
916 |
DO J=1,sNy |
DO J=1,sNy |
917 |
DO I=1,sNx |
DO I=1,sNx |
919 |
c will sublimate all of the snow and ice over one time |
c will sublimate all of the snow and ice over one time |
920 |
c step (W/m^2) |
c step (W/m^2) |
921 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
922 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
923 |
latentHeatFluxMaxMult(I,J,K) = lhSublim*recip_deltaTtherm * |
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
924 |
& (HEFFITDpreTH(I,J,K)*SEAICE_rhoIce + |
& (HEFFITDpreTH(I,J,IT)*SEAICE_rhoIce + |
925 |
& HSNWITDpreTH(I,J,K)*SEAICE_rhoSnow)/AREAITDpreTH(I,J,K) |
& HSNWITDpreTH(I,J,IT)*SEAICE_rhoSnow) |
926 |
|
& /AREAITDpreTH(I,J,IT) |
927 |
ELSE |
ELSE |
928 |
latentHeatFluxMaxMult(I,J,K) = ZERO |
latentHeatFluxMaxMult(I,J,IT) = ZERO |
929 |
ENDIF |
ENDIF |
930 |
#else |
#else |
931 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
971 |
I TmixLoc, |
I TmixLoc, |
972 |
O a_QbyATM_open, a_QSWbyATM_open, |
O a_QbyATM_open, a_QSWbyATM_open, |
973 |
I bi, bj, myTime, myIter, myThid ) |
I bi, bj, myTime, myIter, myThid ) |
974 |
|
c ToM<<< debugging |
975 |
|
print*,' ' |
976 |
|
print*,'UG = ',UG(1,1) |
977 |
|
print*,'Tsurf = ',TmixLoc(1,1) |
978 |
|
print*,'a_QbyATM_open = ',a_QbyATM_open(1,1) |
979 |
|
print*,' ' |
980 |
|
c ToM>>> |
981 |
|
|
982 |
C determine available heat due to the atmosphere -- for ice covered water |
C determine available heat due to the atmosphere -- for ice covered water |
983 |
C ======================================================================= |
C ======================================================================= |
1019 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1020 |
|
|
1021 |
C-- Start loop over multi-categories |
C-- Start loop over multi-categories |
1022 |
|
#ifdef SEAICE_ITD |
1023 |
|
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
1024 |
|
#endif |
1025 |
DO IT=1,SEAICE_multDim |
DO IT=1,SEAICE_multDim |
1026 |
c homogeneous distribution between 0 and 2 x heffActual |
c homogeneous distribution between 0 and 2 x heffActual |
1027 |
#ifndef SEAICE_ITD |
#ifndef SEAICE_ITD |
1097 |
C update TICE & TICES |
C update TICE & TICES |
1098 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1099 |
C calculate area weighted mean |
C calculate area weighted mean |
1100 |
|
C (although the ice's temperature relates to its energy content |
1101 |
|
C and hence should be averaged weighted by ice volume, |
1102 |
|
C the temperature here is a result of the fluxes through the ice surface |
1103 |
|
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1104 |
|
C and hence is averaged area weighted [areaFracFactor]) |
1105 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1106 |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,K) |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
1107 |
#else |
#else |
1108 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1109 |
& + ticeOutMult(I,J,IT)*recip_multDim |
& + ticeOutMult(I,J,IT)*recip_multDim |
1112 |
C average over categories |
C average over categories |
1113 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1114 |
C calculate area weighted mean |
C calculate area weighted mean |
1115 |
|
C (fluxes are per unit (ice surface) area and are thus area weighted) |
1116 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1117 |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1118 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1119 |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1120 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1121 |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,K) |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,IT) |
1122 |
#else |
#else |
1123 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1124 |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1130 |
ENDDO |
ENDDO |
1131 |
ENDDO |
ENDDO |
1132 |
ENDDO |
ENDDO |
1133 |
|
c ToM<<< debugging |
1134 |
|
print*,' ' |
1135 |
|
print*,'after SOLVE4TEMP: ' |
1136 |
|
print*,'TICE = ',TICE(1,1,bi,bj) |
1137 |
|
print*,'TICES = ',TICES(1,1,:,bi,bj) |
1138 |
|
print*,'a_QSWbyATM_cover = ',a_QSWbyATM_cover(1,1) |
1139 |
|
print*,'a_QSWbyATMmult_cover = ',a_QSWbyATMmult_cover(1,1,:) |
1140 |
|
print*,' ' |
1141 |
|
c ToM>>> |
1142 |
|
|
1143 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1144 |
# ifdef ALLOW_DIAGNOSTICS |
# ifdef ALLOW_DIAGNOSTICS |
1168 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1169 |
|
|
1170 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
C switch heat fluxes from W/m2 to 'effective' ice meters |
1171 |
|
#ifdef SEAICE_ITD |
1172 |
|
DO IT=1,nITD |
1173 |
|
DO J=1,sNy |
1174 |
|
DO I=1,sNx |
1175 |
|
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1176 |
|
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1177 |
|
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
1178 |
|
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1179 |
|
C and initialize r_QbyATMmult_cover |
1180 |
|
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
1181 |
|
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1182 |
|
C Negative sublimation is resublimation and will be added as snow. |
1183 |
|
#ifdef SEAICE_DISABLE_SUBLIM |
1184 |
|
a_FWbySublimMult(I,J,IT) = ZERO |
1185 |
|
#endif |
1186 |
|
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
1187 |
|
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
1188 |
|
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
1189 |
|
ENDDO |
1190 |
|
ENDDO |
1191 |
|
ENDDO |
1192 |
|
DO J=1,sNy |
1193 |
|
DO I=1,sNx |
1194 |
|
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1195 |
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1196 |
|
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1197 |
|
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1198 |
|
C and initialize r_QbyATM_open |
1199 |
|
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1200 |
|
ENDDO |
1201 |
|
ENDDO |
1202 |
|
#else /* SEAICE_ITD */ |
1203 |
DO J=1,sNy |
DO J=1,sNy |
1204 |
DO I=1,sNx |
DO I=1,sNx |
1205 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J) |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J) |
1224 |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
1225 |
ENDDO |
ENDDO |
1226 |
ENDDO |
ENDDO |
1227 |
#ifdef SEAICE_ITD |
#endif /* SEAICE_ITD */ |
|
DO K=1,nITD |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
|
|
& * convertQ2HI * AREAITDpreTH(I,J,K) |
|
|
a_QSWbyATMmult_cover(I,J,K) = a_QSWbyATMmult_cover(I,J,K) |
|
|
& * convertQ2HI * AREAITDpreTH(I,J,K) |
|
|
r_QbyATMmult_cover(I,J,K)=a_QbyATMmult_cover(I,J,K) |
|
|
#ifdef SEAICE_DISABLE_SUBLIM |
|
|
a_FWbySublimMult(I,J,K) = ZERO |
|
|
#endif |
|
|
a_FWbySublimMult(I,J,K) = SEAICE_deltaTtherm*recip_rhoIce |
|
|
& * a_FWbySublimMult(I,J,K)*AREAITDpreTH(I,J,K) |
|
|
r_FWbySublimMult(I,J,K)=a_FWbySublimMult(I,J,K) |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
|
#endif |
|
1228 |
|
|
1229 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
1230 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1241 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1242 |
Cgf no additional dependency through ice cover |
Cgf no additional dependency through ice cover |
1243 |
IF ( SEAICEadjMODE.GE.3 ) THEN |
IF ( SEAICEadjMODE.GE.3 ) THEN |
1244 |
|
#ifdef SEAICE_ITD |
1245 |
|
DO IT=1,nITD |
1246 |
|
DO J=1,sNy |
1247 |
|
DO I=1,sNx |
1248 |
|
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1249 |
|
r_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1250 |
|
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
1251 |
|
ENDDO |
1252 |
|
ENDDO |
1253 |
|
ENDDO |
1254 |
|
#else |
1255 |
DO J=1,sNy |
DO J=1,sNy |
1256 |
DO I=1,sNx |
DO I=1,sNx |
1257 |
a_QbyATM_cover(I,J) = 0. _d 0 |
a_QbyATM_cover(I,J) = 0. _d 0 |
1259 |
a_QSWbyATM_cover(I,J) = 0. _d 0 |
a_QSWbyATM_cover(I,J) = 0. _d 0 |
1260 |
ENDDO |
ENDDO |
1261 |
ENDDO |
ENDDO |
|
#ifdef SEAICE_ITD |
|
|
DO K=1,nITD |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
a_QbyATMmult_cover(I,J,K) = 0. _d 0 |
|
|
r_QbyATMmult_cover(I,J,K) = 0. _d 0 |
|
|
a_QSWbyATMmult_cover(I,J,K) = 0. _d 0 |
|
|
ENDDO |
|
|
ENDDO |
|
|
ENDDO |
|
1262 |
#endif |
#endif |
1263 |
ENDIF |
ENDIF |
1264 |
#endif |
#endif |
1304 |
a_QbyOCN(i,j) = |
a_QbyOCN(i,j) = |
1305 |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
1306 |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
1307 |
|
c ToM<<< debugging |
1308 |
|
if (i.eq.1 .and. j.eq.1) then |
1309 |
|
print *, 'salt [psu] = ',salt(i,j,kSurface,bi,bj) |
1310 |
|
print *, 'theta [degC] = ',theta(i,j,kSurface,bi,bj) |
1311 |
|
print *, 'tempFrz [degC] = ',tempFrz |
1312 |
|
print *, 'max turb flx [m] = ',tmpscal2 |
1313 |
|
print *, 'avail trub flx [m] = ',a_QbyOCN(i,j) |
1314 |
|
endif |
1315 |
|
c ToM>>> |
1316 |
ENDDO |
ENDDO |
1317 |
ENDDO |
ENDDO |
1318 |
|
|
1333 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1334 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1335 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1336 |
DO K=1,nITD |
DO IT=1,nITD |
1337 |
#endif |
#endif |
1338 |
DO J=1,sNy |
DO J=1,sNy |
1339 |
DO I=1,sNx |
DO I=1,sNx |
1340 |
C First sublimate/deposite snow |
C First sublimate/deposite snow |
1341 |
tmpscal2 = |
tmpscal2 = |
1342 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1343 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HSNOWITD(I,J,K,bi,bj) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1344 |
& *SNOW2ICE),ZERO) |
& *SNOW2ICE),ZERO) |
1345 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1346 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1347 |
& *ICE2SNOW |
& *ICE2SNOW |
1348 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal2 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
1349 |
& *ICE2SNOW |
& *ICE2SNOW |
1350 |
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
|
C keep total up to date, too |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
|
1351 |
#else |
#else |
1352 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1353 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1365 |
C If anything is left, sublimate ice |
C If anything is left, sublimate ice |
1366 |
tmpscal2 = |
tmpscal2 = |
1367 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1368 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HEFFITD(I,J,K,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1369 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
C accumulate change over ITD categories |
1370 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1371 |
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
1372 |
C keep total up to date, too |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
|
1373 |
#else |
#else |
1374 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1375 |
d_HEFFbySublim(I,J) = - tmpscal2 |
d_HEFFbySublim(I,J) = - tmpscal2 |
1384 |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1385 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1386 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1387 |
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1388 |
& - r_FWbySublimMult(I,J,K) |
& - r_FWbySublimMult(I,J,IT) |
1389 |
r_QbyATMmult_cover(I,J,K) = r_QbyATMmult_cover(I,J,K) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1390 |
& - r_FWbySublimMult(I,J,K) |
& - r_FWbySublimMult(I,J,IT) |
1391 |
ENDDO |
#else |
|
ENDDO |
|
|
C end K loop |
|
|
ENDDO |
|
|
C then update totals |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
#endif |
|
1392 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1393 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1394 |
|
#endif |
1395 |
ENDDO |
ENDDO |
1396 |
ENDDO |
ENDDO |
1397 |
|
#ifdef SEAICE_ITD |
1398 |
|
C end IT loop |
1399 |
|
ENDDO |
1400 |
|
#endif |
1401 |
|
c ToM<<< debug seaice_growth |
1402 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1403 |
|
#ifdef SEAICE_ITD |
1404 |
|
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
1405 |
|
& HEFFITD(1,1,:,bi,bj) |
1406 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1407 |
|
& SQUEEZE_RIGHT , myThid) |
1408 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1409 |
|
& ' SEAICE_GROWTH: Area increments 1, AREAITD = ', |
1410 |
|
& AREAITD(1,1,:,bi,bj) |
1411 |
|
#else |
1412 |
|
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
1413 |
|
& HEFF(1,1,bi,bj) |
1414 |
|
#endif |
1415 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1416 |
|
& SQUEEZE_RIGHT , myThid) |
1417 |
|
c ToM>>> |
1418 |
|
|
1419 |
C compute ice thickness tendency due to ice-ocean interaction |
C compute ice thickness tendency due to ice-ocean interaction |
1420 |
C =========================================================== |
C =========================================================== |
1425 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1426 |
|
|
1427 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1428 |
DO K=1,nITD |
DO IT=1,nITD |
1429 |
DO J=1,sNy |
DO J=1,sNy |
1430 |
DO I=1,sNx |
DO I=1,sNx |
1431 |
C ice growth/melt due to ocean heat is equally distributed under the ice |
C ice growth/melt due to ocean heat r_QbyOCN (W/m^2) is |
1432 |
C and hence weighted by fractional area of each thickness category |
C equally distributed under the ice and hence weighted by |
1433 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,K), |
C fractional area of each thickness category |
1434 |
& -HEFFITD(I,J,K,bi,bj)) |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1435 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
& -HEFFITD(I,J,IT,bi,bj)) |
1436 |
d_HEFFbyOCNonICE(I,J)=d_HEFFbyOCNonICE(I,J) + tmpscal1 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1437 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1438 |
|
#ifdef ALLOW_SITRACER |
1439 |
|
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
1440 |
|
& + HEFFITD(I,J,IT,bi,bj) |
1441 |
|
#endif |
1442 |
ENDDO |
ENDDO |
1443 |
ENDDO |
ENDDO |
1444 |
ENDDO |
ENDDO |
|
#endif |
|
1445 |
DO J=1,sNy |
DO J=1,sNy |
1446 |
DO I=1,sNx |
DO I=1,sNx |
1447 |
#ifndef SEAICE_ITD |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1448 |
|
ENDDO |
1449 |
|
ENDDO |
1450 |
|
#else /* SEAICE_ITD */ |
1451 |
|
DO J=1,sNy |
1452 |
|
DO I=1,sNx |
1453 |
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
|
#endif |
|
1454 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1455 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj) + d_HEFFbyOCNonICE(I,J) |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj) + d_HEFFbyOCNonICE(I,J) |
1456 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1458 |
#endif |
#endif |
1459 |
ENDDO |
ENDDO |
1460 |
ENDDO |
ENDDO |
1461 |
|
#endif /* SEAICE_ITD */ |
1462 |
|
c ToM<<< debug seaice_growth |
1463 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1464 |
|
#ifdef SEAICE_ITD |
1465 |
|
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
1466 |
|
& HEFFITD(1,1,:,bi,bj) |
1467 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1468 |
|
& SQUEEZE_RIGHT , myThid) |
1469 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1470 |
|
& ' SEAICE_GROWTH: Area increments 2, AREAITD = ', |
1471 |
|
& AREAITD(1,1,:,bi,bj) |
1472 |
|
#else |
1473 |
|
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
1474 |
|
& HEFF(1,1,bi,bj) |
1475 |
|
#endif |
1476 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1477 |
|
& SQUEEZE_RIGHT , myThid) |
1478 |
|
c ToM>>> |
1479 |
|
|
1480 |
C compute snow melt tendency due to snow-atmosphere interaction |
C compute snow melt tendency due to snow-atmosphere interaction |
1481 |
C ================================================================== |
C ================================================================== |
1486 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1487 |
|
|
1488 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1489 |
DO K=1,nITD |
DO IT=1,nITD |
1490 |
DO J=1,sNy |
DO J=1,sNy |
1491 |
DO I=1,sNx |
DO I=1,sNx |
1492 |
C Convert to standard units (meters of ice) rather than to meters |
C Convert to standard units (meters of ice) rather than to meters |
1493 |
C of snow. This appears to be more robust. |
C of snow. This appears to be more robust. |
1494 |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,K),-HSNOWITD(I,J,K,bi,bj) |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,IT), |
1495 |
& *SNOW2ICE) |
& -HSNOWITD(I,J,IT,bi,bj)*SNOW2ICE) |
1496 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1497 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1498 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1499 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1500 |
#endif |
#endif |
1501 |
d_HSNWbyATMonSNW(I,J)=d_HSNWbyATMonSNW(I,J)+tmpscal2*ICE2SNOW |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1502 |
r_QbyATMmult_cover(I,J,K)=r_QbyATMmult_cover(I,J,K) - tmpscal2 |
& + tmpscal2*ICE2SNOW |
1503 |
C keep the total up to date, too |
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) |
1504 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
& + tmpscal2*ICE2SNOW |
1505 |
|
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1506 |
|
& - tmpscal2 |
1507 |
ENDDO |
ENDDO |
1508 |
ENDDO |
ENDDO |
1509 |
ENDDO |
ENDDO |
1510 |
#else |
#else /* SEAICE_ITD */ |
1511 |
DO J=1,sNy |
DO J=1,sNy |
1512 |
DO I=1,sNx |
DO I=1,sNx |
1513 |
C Convert to standard units (meters of ice) rather than to meters |
C Convert to standard units (meters of ice) rather than to meters |
1519 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1520 |
#endif |
#endif |
1521 |
d_HSNWbyATMonSNW(I,J)= tmpscal2*ICE2SNOW |
d_HSNWbyATMonSNW(I,J)= tmpscal2*ICE2SNOW |
1522 |
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + tmpscal2*ICE2SNOW |
1523 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1524 |
ENDDO |
ENDDO |
1525 |
ENDDO |
ENDDO |
1526 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1527 |
DO J=1,sNy |
c ToM<<< debug seaice_growth |
1528 |
DO I=1,sNx |
WRITE(msgBuf,'(A,7F8.4)') |
1529 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyATMonSNW(I,J) |
#ifdef SEAICE_ITD |
1530 |
ENDDO |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
1531 |
ENDDO |
& HEFFITD(1,1,:,bi,bj) |
1532 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1533 |
|
& SQUEEZE_RIGHT , myThid) |
1534 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1535 |
|
& ' SEAICE_GROWTH: Area increments 3, AREAITD = ', |
1536 |
|
& AREAITD(1,1,:,bi,bj) |
1537 |
|
#else |
1538 |
|
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
1539 |
|
& HEFF(1,1,bi,bj) |
1540 |
|
#endif |
1541 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1542 |
|
& SQUEEZE_RIGHT , myThid) |
1543 |
|
c ToM>>> |
1544 |
|
|
1545 |
C compute ice thickness tendency due to the atmosphere |
C compute ice thickness tendency due to the atmosphere |
1546 |
C ==================================================== |
C ==================================================== |
1556 |
Cgf warming conditions, the lab_sea results were not changed. |
Cgf warming conditions, the lab_sea results were not changed. |
1557 |
|
|
1558 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1559 |
DO K=1,nITD |
DO IT=1,nITD |
1560 |
DO J=1,sNy |
DO J=1,sNy |
1561 |
DO I=1,sNx |
DO I=1,sNx |
1562 |
#ifdef SEAICE_GROWTH_LEGACY |
#ifdef SEAICE_GROWTH_LEGACY |
1563 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K)) |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1564 |
|
& r_QbyATMmult_cover(I,J,IT)) |
1565 |
#else |
#else |
1566 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K) |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1567 |
|
& r_QbyATMmult_cover(I,J,IT) |
1568 |
c Limit ice growth by potential melt by ocean |
c Limit ice growth by potential melt by ocean |
1569 |
& + AREAITDpreTH(I,J,K) * r_QbyOCN(I,J)*areaFracFactor(I,J,K)) |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1570 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1571 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1572 |
& + tmpscal2 |
& + tmpscal2 |
1573 |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1574 |
& + tmpscal2 |
& + tmpscal2 |
1575 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1576 |
& - tmpscal2 |
& - tmpscal2 |
1577 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal2 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
1578 |
|
|
1579 |
|
#ifdef ALLOW_SITRACER |
1580 |
|
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
1581 |
|
& + HEFFITD(I,J,IT,bi,bj) |
1582 |
|
#endif |
1583 |
ENDDO |
ENDDO |
1584 |
ENDDO |
ENDDO |
1585 |
ENDDO |
ENDDO |
1586 |
#else |
#else /* SEAICE_ITD */ |
1587 |
DO J=1,sNy |
DO J=1,sNy |
1588 |
DO I=1,sNx |
DO I=1,sNx |
1589 |
|
|
1598 |
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
1599 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
1600 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J)-tmpscal2 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J)-tmpscal2 |
1601 |
ENDDO |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal2 |
|
ENDDO |
|
|
#endif /* SEAICE_ITD */ |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
|
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) +d_HEFFbyATMonOCN_cover(I,J) |
|
1602 |
|
|
1603 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1604 |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
1605 |
#endif |
#endif |
1606 |
ENDDO |
ENDDO |
1607 |
ENDDO |
ENDDO |
1608 |
|
#endif /* SEAICE_ITD */ |
1609 |
|
c ToM<<< debug seaice_growth |
1610 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1611 |
|
#ifdef SEAICE_ITD |
1612 |
|
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
1613 |
|
& HEFFITD(1,1,:,bi,bj) |
1614 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1615 |
|
& SQUEEZE_RIGHT , myThid) |
1616 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1617 |
|
& ' SEAICE_GROWTH: Area increments 4, AREAITD = ', |
1618 |
|
& AREAITD(1,1,:,bi,bj) |
1619 |
|
#else |
1620 |
|
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
1621 |
|
& HEFF(1,1,bi,bj) |
1622 |
|
#endif |
1623 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1624 |
|
& SQUEEZE_RIGHT , myThid) |
1625 |
|
c ToM>>> |
1626 |
|
|
1627 |
C attribute precip to fresh water or snow stock, |
C attribute precip to fresh water or snow stock, |
1628 |
C depending on atmospheric conditions. |
C depending on atmospheric conditions. |
1649 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1650 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
1651 |
ENDIF |
ENDIF |
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
|
1652 |
ENDDO |
ENDDO |
1653 |
ENDDO |
ENDDO |
1654 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1655 |
DO K=1,nITD |
DO IT=1,nITD |
1656 |
DO J=1,sNy |
DO J=1,sNy |
1657 |
DO I=1,sNx |
DO I=1,sNx |
1658 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1659 |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,K) |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1660 |
ENDDO |
ENDDO |
1661 |
ENDDO |
ENDDO |
1662 |
ENDDO |
ENDDO |
1663 |
|
#else |
1664 |
|
DO J=1,sNy |
1665 |
|
DO I=1,sNx |
1666 |
|
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1667 |
|
ENDDO |
1668 |
|
ENDDO |
1669 |
#endif |
#endif |
1670 |
Cgf note: this does not affect air-sea heat flux, |
Cgf note: this does not affect air-sea heat flux, |
1671 |
Cgf since the implied air heat gain to turn |
Cgf since the implied air heat gain to turn |
1672 |
Cgf rain to snow is not a surface process. |
Cgf rain to snow is not a surface process. |
1673 |
#endif /* ALLOW_ATM_TEMP */ |
#endif /* ALLOW_ATM_TEMP */ |
1674 |
|
c ToM<<< debug seaice_growth |
1675 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1676 |
|
#ifdef SEAICE_ITD |
1677 |
|
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
1678 |
|
& HEFFITD(1,1,:,bi,bj) |
1679 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1680 |
|
& SQUEEZE_RIGHT , myThid) |
1681 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1682 |
|
& ' SEAICE_GROWTH: Area increments 5, AREAITD = ', |
1683 |
|
& AREAITD(1,1,:,bi,bj) |
1684 |
|
#else |
1685 |
|
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
1686 |
|
& HEFF(1,1,bi,bj) |
1687 |
|
#endif |
1688 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1689 |
|
& SQUEEZE_RIGHT , myThid) |
1690 |
|
c ToM>>> |
1691 |
|
|
1692 |
C compute snow melt due to heat available from ocean. |
C compute snow melt due to heat available from ocean. |
1693 |
C ================================================================= |
C ================================================================= |
1701 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1702 |
|
|
1703 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1704 |
DO K=1,nITD |
DO IT=1,nITD |
1705 |
DO J=1,sNy |
DO J=1,sNy |
1706 |
DO I=1,sNx |
DO I=1,sNx |
1707 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,K), |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1708 |
& -HSNOW(I,J,bi,bj)) |
& -HSNOWITD(I,J,IT,bi,bj)) |
1709 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1710 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1711 |
Cgf no additional dependency through snow |
Cgf no additional dependency through snow |
1712 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1713 |
#endif |
#endif |
|
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) + tmpscal2 |
|
1714 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1715 |
|
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
1716 |
|
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) + tmpscal2 |
1717 |
ENDDO |
ENDDO |
1718 |
ENDDO |
ENDDO |
1719 |
ENDDO |
ENDDO |
1720 |
#endif |
#else /* SEAICE_ITD */ |
1721 |
DO J=1,sNy |
DO J=1,sNy |
1722 |
DO I=1,sNx |
DO I=1,sNx |
|
#ifndef SEAICE_ITD |
|
1723 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
1724 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1725 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1727 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1728 |
#endif |
#endif |
1729 |
d_HSNWbyOCNonSNW(I,J) = tmpscal2 |
d_HSNWbyOCNonSNW(I,J) = tmpscal2 |
|
#endif |
|
1730 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) |
r_QbyOCN(I,J)=r_QbyOCN(I,J) |
1731 |
& -d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
& -d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
1732 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
1733 |
ENDDO |
ENDDO |
1734 |
ENDDO |
ENDDO |
1735 |
|
#endif /* SEAICE_ITD */ |
1736 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1737 |
Cph) |
Cph) |
1738 |
|
c ToM<<< debug seaice_growth |
1739 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1740 |
|
#ifdef SEAICE_ITD |
1741 |
|
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
1742 |
|
& HEFFITD(1,1,:,bi,bj) |
1743 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1744 |
|
& SQUEEZE_RIGHT , myThid) |
1745 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1746 |
|
& ' SEAICE_GROWTH: Area increments 6, AREAITD = ', |
1747 |
|
& AREAITD(1,1,:,bi,bj) |
1748 |
|
#else |
1749 |
|
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
1750 |
|
& HEFF(1,1,bi,bj) |
1751 |
|
#endif |
1752 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1753 |
|
& SQUEEZE_RIGHT , myThid) |
1754 |
|
c ToM>>> |
1755 |
|
|
1756 |
C gain of new ice over open water |
C gain of new ice over open water |
1757 |
C =============================== |
C =============================== |
1776 |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1777 |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
1778 |
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
1779 |
|
c ToM<<< debugging |
1780 |
|
if (I.eq.1 .and. J.eq.1) then |
1781 |
|
print*,'r_QbyATM_open(I,J) = ', r_QbyATM_open(I,J) |
1782 |
|
print*,'r_QbyOCN(i,j) = ', r_QbyOCN(i,j) |
1783 |
|
print*,'1 - AREApreTH = ', (1.0 _d 0 - AREApreTH(I,J)) |
1784 |
|
print*,'tmpscal1 = ', tmpscal1 |
1785 |
|
print*,' ' |
1786 |
|
print*,'SWFracB = ', SWFracB |
1787 |
|
print*,'a_QSWbyATM_open(I,J) = ', a_QSWbyATM_open(I,J) |
1788 |
|
print*,'tmpscal2 = ', tmpscal2 |
1789 |
|
print*,' ' |
1790 |
|
print*,'facOpenGrow = ', facOpenGrow |
1791 |
|
print*,'HEFF(I,J,bi,bj) = ', HEFF(I,J,bi,bj) |
1792 |
|
print*,'facOpenMelt = ', facOpenMelt |
1793 |
|
print*,'MAX = ', MAX(tmpscal1-tmpscal2, |
1794 |
|
& -HEFF(I,J,bi,bj)*facOpenMelt) |
1795 |
|
print*,'HEFFM(I,J,bi,bj) = ', HEFFM(I,J,bi,bj) |
1796 |
|
print*,'tmpscal3 = ', tmpscal3 |
1797 |
|
print*,' ' |
1798 |
|
endif |
1799 |
|
c ToM>>> |
1800 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1801 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1802 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
1803 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1804 |
C determine thickness of new ice |
cC open water area fraction |
1805 |
C considering the entire open water area to refreeze |
c tmpscal0 = ONE-AREApreTH(I,J) |
1806 |
tmpscal4 = tmpscal3/(ONE-AREApreTH(I,J)) |
cC determine thickness of new ice |
1807 |
C then add new ice volume to appropriate thickness category |
cctomC considering the entire open water area to refreeze |
1808 |
DO K=1,nITD |
cctom tmpscal1 = tmpscal3/tmpscal0 |
1809 |
IF (tmpscal4.LT.Hlimit(K)) THEN |
cC considering a minimum lead ice thickness of 10 cm |
1810 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal3 |
cC WATCH that leadIceThickMin is smaller that Hlimit(1)! |
1811 |
AREAITD(I,J,K,bi,bj) = AREAITD(I,J,K,bi,bj) |
c leadIceThickMin = 0.1 |
1812 |
& + ONE-AREApreTH(I,J) |
c tmpscal1 = MAX(leadIceThickMin,tmpscal3/tmpscal0) |
1813 |
ENDIF |
cC adjust ice area fraction covered by new ice |
1814 |
ENDDO |
c tmpscal0 = tmpscal3/tmpscal1 |
1815 |
C in this case no open water is left after this step |
cC then add new ice volume to appropriate thickness category |
1816 |
AREA(I,J,bi,bj) = ONE |
c DO IT=1,nITD |
1817 |
#endif |
c IF (tmpscal1.LT.Hlimit(IT)) THEN |
1818 |
|
c HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
1819 |
|
c tmpscal3=ZERO |
1820 |
|
cC not sure if AREAITD should be changed here since AREA is incremented |
1821 |
|
cC in PART 4 below in non-itd code |
1822 |
|
cC in this scenario all open water is covered by new ice instantaneously, |
1823 |
|
cC i.e. no delayed lead closing is concidered such as is associated with |
1824 |
|
cC Hibler's h_0 parameter |
1825 |
|
c AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
1826 |
|
c & + tmpscal0 |
1827 |
|
c tmpscal0=ZERO |
1828 |
|
c ENDIF |
1829 |
|
c ENDDO |
1830 |
|
ctom debugging: 1 category only |
1831 |
|
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) + tmpscal3 |
1832 |
|
#else |
1833 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
1834 |
|
#endif |
1835 |
ENDDO |
ENDDO |
1836 |
ENDDO |
ENDDO |
1837 |
|
|
1838 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1839 |
|
#ifdef SEAICE_ITD |
1840 |
|
DO IT=1,nITD |
1841 |
|
DO J=1,sNy |
1842 |
|
DO I=1,sNx |
1843 |
|
c needs to be here to allow use also with LEGACY branch |
1844 |
|
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
1845 |
|
& + HEFFITD(I,J,IT,bi,bj) |
1846 |
|
ENDDO |
1847 |
|
ENDDO |
1848 |
|
ENDDO |
1849 |
|
#else |
1850 |
DO J=1,sNy |
DO J=1,sNy |
1851 |
DO I=1,sNx |
DO I=1,sNx |
1852 |
c needs to be here to allow use also with LEGACY branch |
c needs to be here to allow use also with LEGACY branch |
1853 |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1854 |
ENDDO |
ENDDO |
1855 |
ENDDO |
ENDDO |
1856 |
|
#endif |
1857 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1858 |
|
c ToM<<< debug seaice_growth |
1859 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1860 |
|
#ifdef SEAICE_ITD |
1861 |
|
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
1862 |
|
& HEFFITD(1,1,:,bi,bj) |
1863 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1864 |
|
& SQUEEZE_RIGHT , myThid) |
1865 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1866 |
|
& ' SEAICE_GROWTH: Area increments 7, AREAITD = ', |
1867 |
|
& AREAITD(1,1,:,bi,bj) |
1868 |
|
#else |
1869 |
|
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
1870 |
|
& HEFF(1,1,bi,bj) |
1871 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1872 |
|
& SQUEEZE_RIGHT , myThid) |
1873 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1874 |
|
& ' SEAICE_GROWTH: Area increments 7, AREA = ', |
1875 |
|
& AREA(1,1,bi,bj) |
1876 |
|
#endif |
1877 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1878 |
|
& SQUEEZE_RIGHT , myThid) |
1879 |
|
c ToM>>> |
1880 |
|
|
1881 |
C convert snow to ice if submerged. |
C convert snow to ice if submerged. |
1882 |
C ================================= |
C ================================= |
1889 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1890 |
IF ( SEAICEuseFlooding ) THEN |
IF ( SEAICEuseFlooding ) THEN |
1891 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1892 |
DO K=1,nITD |
DO IT=1,nITD |
1893 |
DO J=1,sNy |
DO J=1,sNy |
1894 |
DO I=1,sNx |
DO I=1,sNx |
1895 |
tmpscal0 = (HSNOWITD(I,J,K,bi,bj)*SEAICE_rhoSnow |
tmpscal0 = (HSNOWITD(I,J,IT,bi,bj)*SEAICE_rhoSnow |
1896 |
& +HEFFITD(I,J,K,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
& + HEFFITD(I,J,IT,bi,bj) *SEAICE_rhoIce) |
1897 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,K,bi,bj)) |
& *recip_rhoConst |
1898 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,IT,bi,bj)) |
1899 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1900 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal1 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1901 |
|
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) - tmpscal1 |
1902 |
& * ICE2SNOW |
& * ICE2SNOW |
1903 |
ENDDO |
ENDDO |
1904 |
ENDDO |
ENDDO |
1910 |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
1911 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
1912 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
|
ENDDO |
|
|
ENDDO |
|
|
#endif |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
1913 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1914 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1915 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1916 |
ENDDO |
ENDDO |
1917 |
ENDDO |
ENDDO |
1918 |
|
#endif |
1919 |
ENDIF |
ENDIF |
1920 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1921 |
|
c ToM<<< debug seaice_growth |
1922 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1923 |
|
#ifdef SEAICE_ITD |
1924 |
|
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
1925 |
|
& HEFFITD(1,1,:,bi,bj) |
1926 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1927 |
|
& SQUEEZE_RIGHT , myThid) |
1928 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1929 |
|
& ' SEAICE_GROWTH: Area increments 8, AREAITD = ', |
1930 |
|
& AREAITD(1,1,:,bi,bj) |
1931 |
|
#else |
1932 |
|
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
1933 |
|
& HEFF(1,1,bi,bj) |
1934 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1935 |
|
& SQUEEZE_RIGHT , myThid) |
1936 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1937 |
|
& ' SEAICE_GROWTH: Area increments 8, AREA = ', |
1938 |
|
& AREA(1,1,bi,bj) |
1939 |
|
#endif |
1940 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1941 |
|
& SQUEEZE_RIGHT , myThid) |
1942 |
|
c ToM>>> |
1943 |
|
|
1944 |
C =================================================================== |
C =================================================================== |
1945 |
C ==========PART 4: determine ice cover fraction increments=========- |
C ==========PART 4: determine ice cover fraction increments=========- |
1965 |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1966 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1967 |
|
|
1968 |
#ifdef SEAICE_ITD |
c#ifdef SEAICE_ITD |
1969 |
C replaces Hibler '79 scheme and lead closing parameter |
cC replaces Hibler '79 scheme and lead closing parameter |
1970 |
C because ITD accounts explicitly for lead openings and |
cC because ITD accounts explicitly for lead openings and |
1971 |
C different melt rates due to varying ice thickness |
cC different melt rates due to varying ice thickness |
1972 |
C |
cC |
1973 |
C only consider ice area loss due to total ice thickness loss |
cC only consider ice area loss due to total ice thickness loss; |
1974 |
C ice area gain due to freezing of open water as handled above |
cC ice area gain due to freezing of open water is handled above |
1975 |
C under "gain of new ice over open water" |
cC under "gain of new ice over open water" |
1976 |
C |
cC |
1977 |
C does not account for lateral melt of ice floes |
cC does not account for lateral melt of ice floes |
1978 |
C |
cC |
1979 |
DO K=1,nITD |
cC AREAITD is incremented in section "gain of new ice over open water" above |
1980 |
DO J=1,sNy |
cC |
1981 |
DO I=1,sNx |
c DO IT=1,nITD |
1982 |
IF (HEFFITD(I,J,K,bi,bj).LE.ZERO) THEN |
c DO J=1,sNy |
1983 |
AREAITD(I,J,K,bi,bj)=ZERO |
c DO I=1,sNx |
1984 |
ENDIF |
c IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
1985 |
ENDDO |
c AREAITD(I,J,IT,bi,bj)=ZERO |
1986 |
ENDDO |
c ENDIF |
1987 |
ENDDO |
c#ifdef ALLOW_SITRACER |
1988 |
C update total AREA, HEFF, HSNOW |
c SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
1989 |
CALL SEAICE_ITD_SUM(myTime,myIter,myThid) |
c & + AREAITD(I,J,IT,bi,bj) |
1990 |
#else |
c#endif /* ALLOW_SITRACER */ |
1991 |
|
c ENDDO |
1992 |
|
c ENDDO |
1993 |
|
c ENDDO |
1994 |
|
c#else /* SEAICE_ITD */ |
1995 |
DO J=1,sNy |
DO J=1,sNy |
1996 |
DO I=1,sNx |
DO I=1,sNx |
1997 |
|
|
1998 |
|
ctom<<< debugging |
1999 |
|
#ifdef SEAICE_ITD |
2000 |
|
HEFF(I,J,bi,bj)=HEFFITD(I,J,1,bi,bj) |
2001 |
|
AREA(I,J,bi,bj)=AREAITD(I,J,1,bi,bj) |
2002 |
|
HSNOW(I,J,bi,bj)=HSNOWITD(I,J,1,bi,bj) |
2003 |
|
HEFFpreTH(I,J)=HEFFITDpreTH(I,J,1) |
2004 |
|
AREApreTH(I,J)=AREAITDpreTH(I,J,1) |
2005 |
|
recip_heffActual(I,J)=recip_heffActualMult(I,J,1) |
2006 |
|
#endif |
2007 |
|
ctom>>> debugging |
2008 |
|
|
2009 |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
2010 |
recip_HO=1. _d 0 / HO_south |
recip_HO=1. _d 0 / HO_south |
2011 |
ELSE |
ELSE |
2070 |
d_AREAbyOCN(I,J)= |
d_AREAbyOCN(I,J)= |
2071 |
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
2072 |
#endif /* ALLOW_DIAGNOSTICS */ |
#endif /* ALLOW_DIAGNOSTICS */ |
2073 |
|
ctom<<< debugging |
2074 |
|
#ifdef SEAICE_ITD |
2075 |
|
HEFFITD(I,J,1,bi,bj)=HEFF(I,J,bi,bj) |
2076 |
|
AREAITD(I,J,1,bi,bj)=AREA(I,J,bi,bj) |
2077 |
|
HSNOWITD(I,J,1,bi,bj)=HSNOW(I,J,bi,bj) |
2078 |
|
#endif |
2079 |
|
ctom>>> debugging |
2080 |
ENDDO |
ENDDO |
2081 |
ENDDO |
ENDDO |
2082 |
#endif /* SEAICE_ITD */ |
c#endif /* SEAICE_ITD */ |
2083 |
|
|
2084 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
2085 |
Cgf 'bulk' linearization of area=f(HEFF) |
Cgf 'bulk' linearization of area=f(HEFF) |
2086 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
IF ( SEAICEadjMODE.GE.1 ) THEN |
2087 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
2088 |
DO K=1,nITD |
DO IT=1,nITD |
2089 |
DO J=1,sNy |
DO J=1,sNy |
2090 |
DO I=1,sNx |
DO I=1,sNx |
2091 |
AREAITD(I,J,K,bi,bj) = AREAITDpreTH(I,J,K) + 0.1 _d 0 * |
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
2092 |
& ( HEFFITD(I,J,K,bi,bj) - HEFFITDpreTH(I,J,K) ) |
& ( HEFFITD(I,J,IT,bi,bj) - HEFFITDpreTH(I,J,IT) ) |
2093 |
ENDDO |
ENDDO |
2094 |
ENDDO |
ENDDO |
2095 |
ENDDO |
ENDDO |
|
C update total AREA, HEFF, HSNOW |
|
|
CALL SEAICE_ITD_SUM(myTime,myIter,myThid) |
|
2096 |
#else |
#else |
2097 |
DO J=1,sNy |
DO J=1,sNy |
2098 |
DO I=1,sNx |
DO I=1,sNx |
2104 |
#endif |
#endif |
2105 |
ENDIF |
ENDIF |
2106 |
#endif |
#endif |
2107 |
|
#ifdef SEAICE_ITD |
2108 |
|
C check categories for consistency with limits after growth/melt |
2109 |
|
CALL SEAICE_ITD_REDIST(bi, bj, myTime,myIter,myThid) |
2110 |
|
C finally update total AREA, HEFF, HSNOW |
2111 |
|
CALL SEAICE_ITD_SUM(bi, bj, myTime,myIter,myThid) |
2112 |
|
#endif |
2113 |
|
|
2114 |
|
c ToM<<< debugging |
2115 |
|
DO J=1,sNy |
2116 |
|
DO I=1,sNx |
2117 |
|
if (I.eq.1 .and. J.eq.1) then |
2118 |
|
print *, 'd_HEFFbyNEG(I,J) = ', d_HEFFbyNEG(I,J) |
2119 |
|
print *, 'd_HEFFbyOCNonICE(I,J) = ', d_HEFFbyOCNonICE(I,J) |
2120 |
|
print *, 'd_HEFFbyATMonOCN(I,J) = ', d_HEFFbyATMonOCN(I,J) |
2121 |
|
print *, 'd_HEFFbyATMonOCN_cover(I,J) = ', |
2122 |
|
& d_HEFFbyATMonOCN_cover(I,J) |
2123 |
|
print *, 'd_HEFFbyATMonOCN_open(I,J) = ', |
2124 |
|
& d_HEFFbyATMonOCN_open(I,J) |
2125 |
|
print *, 'd_HEFFbyFLOODING(I,J) = ', d_HEFFbyFLOODING(I,J) |
2126 |
|
print *, 'd_HEFFbySublim(I,J) = ', d_HEFFbySublim(I,J) |
2127 |
|
endif |
2128 |
|
ENDDO |
2129 |
|
ENDDO |
2130 |
|
c ToM>>> |
2131 |
C =================================================================== |
C =================================================================== |
2132 |
C =============PART 5: determine ice salinity increments============= |
C =============PART 5: determine ice salinity increments============= |
2133 |
C =================================================================== |
C =================================================================== |
2341 |
C accounting for the part used in melt/freeze processes |
C accounting for the part used in melt/freeze processes |
2342 |
C ===================================================== |
C ===================================================== |
2343 |
|
|
2344 |
|
#ifdef SEAICE_ITD |
2345 |
|
C compute total of "mult" fluxes for ocean forcing |
2346 |
|
DO J=1,sNy |
2347 |
|
DO I=1,sNx |
2348 |
|
a_QbyATM_cover(I,J) = 0.0 _d 0 |
2349 |
|
r_QbyATM_cover(I,J) = 0.0 _d 0 |
2350 |
|
a_QSWbyATM_cover(I,J) = 0.0 _d 0 |
2351 |
|
r_FWbySublim(I,J) = 0.0 _d 0 |
2352 |
|
ENDDO |
2353 |
|
ENDDO |
2354 |
|
DO IT=1,nITD |
2355 |
|
DO J=1,sNy |
2356 |
|
DO I=1,sNx |
2357 |
|
cToM if fluxes in W/m^2 then |
2358 |
|
c a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2359 |
|
c & + a_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2360 |
|
c r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2361 |
|
c & + r_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2362 |
|
c a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2363 |
|
c & + a_QSWbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2364 |
|
c r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2365 |
|
c & + r_FWbySublimMult(I,J,IT) * areaFracFactor(I,J,IT) |
2366 |
|
cToM if fluxes in effective ice meters, i.e. ice volume per area, then |
2367 |
|
a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2368 |
|
& + a_QbyATMmult_cover(I,J,IT) |
2369 |
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2370 |
|
& + r_QbyATMmult_cover(I,J,IT) |
2371 |
|
a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2372 |
|
& + a_QSWbyATMmult_cover(I,J,IT) |
2373 |
|
r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2374 |
|
& + r_FWbySublimMult(I,J,IT) |
2375 |
|
ENDDO |
2376 |
|
ENDDO |
2377 |
|
ENDDO |
2378 |
|
#endif |
2379 |
|
|
2380 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
2381 |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
2382 |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
2401 |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
2402 |
ENDDO |
ENDDO |
2403 |
ENDDO |
ENDDO |
2404 |
|
cToM<<< debugging |
2405 |
|
print*,'------------------' |
2406 |
|
print*,'OcnModFrc: QNET = ',QNET(1,1,bi,bj) |
2407 |
|
print*,'OcnModFrc: QSW = ',QSW(1,1,bi,bj) |
2408 |
|
print*,' ' |
2409 |
|
print*,'r_QbyATM_cover = ', r_QbyATM_cover(1,1) |
2410 |
|
print*,'r_QbyATM_open = ', r_QbyATM_open(1,1) |
2411 |
|
print*,'a_QSWbyATM_cover = ', a_QSWbyATM_cover(1,1) |
2412 |
|
print*,'d_HEFFbyOCNonICE = ', d_HEFFbyOCNonICE(1,1) |
2413 |
|
print*,'d_HSNWbyOCNonSNW = ', d_HSNWbyOCNonSNW(1,1) |
2414 |
|
print*,'d_HEFFbyNEG = ', d_HEFFbyNEG(1,1) |
2415 |
|
print*,'d_HSNWbyNEG = ', d_HSNWbyNEG(1,1) |
2416 |
|
print*,'SNOW2ICE = ',SNOW2ICE |
2417 |
|
print*,'maskC = ', maskC(1,1,kSurface,bi,bj) |
2418 |
|
print*,'------------------' |
2419 |
|
cToM>>> |
2420 |
|
|
2421 |
C switch heat fluxes from 'effective' ice meters to W/m2 |
C switch heat fluxes from 'effective' ice meters to W/m2 |
2422 |
C ====================================================== |
C ====================================================== |