115 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
116 |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
117 |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
118 |
C a_QbyOCN :: available heat (in in W/m^2) due to the |
C a_QbyOCN :: available heat (in W/m^2) due to the |
119 |
C interaction of the ice pack and the ocean surface |
C interaction of the ice pack and the ocean surface |
120 |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
121 |
C processes have been accounted for |
C processes have been accounted for |
177 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
178 |
C The latent heat flux which will sublimate all snow and ice |
C The latent heat flux which will sublimate all snow and ice |
179 |
C over one time step |
C over one time step |
|
#ifdef SEAICE_ITD |
|
|
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
|
|
#else |
|
180 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
181 |
#endif |
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
182 |
#endif |
#endif |
183 |
|
|
184 |
C actual ice thickness (with upper and lower limit) |
C actual ice thickness (with upper and lower limit) |
201 |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
202 |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
203 |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
204 |
_RL heffFracFactor (1:sNx,1:sNy,1:nITD) |
_RL leadIceThickMin |
205 |
#endif |
#endif |
206 |
|
|
207 |
C wind speed |
C wind speed |
278 |
ENDIF |
ENDIF |
279 |
|
|
280 |
C avoid unnecessary divisions in loops |
C avoid unnecessary divisions in loops |
281 |
#ifdef SEAICE_ITD |
c#ifdef SEAICE_ITD |
282 |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
CToM this is now set by MULTDIM = nITD in SEAICE_SIZE.h |
283 |
#endif |
C (see SEAICE_SIZE.h and seaice_readparms.F) |
284 |
|
c SEAICE_multDim = nITD |
285 |
|
c#endif |
286 |
recip_multDim = SEAICE_multDim |
recip_multDim = SEAICE_multDim |
287 |
recip_multDim = ONE / recip_multDim |
recip_multDim = ONE / recip_multDim |
288 |
C above/below: double/single precision calculation of recip_multDim |
C above/below: double/single precision calculation of recip_multDim |
378 |
d_HEFFbySublim(I,J) = 0.0 _d 0 |
d_HEFFbySublim(I,J) = 0.0 _d 0 |
379 |
d_HSNWbySublim(I,J) = 0.0 _d 0 |
d_HSNWbySublim(I,J) = 0.0 _d 0 |
380 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
|
#ifdef SEAICE_ITD |
|
|
DO IT=1,SEAICE_multDim |
|
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
|
|
ENDDO |
|
|
#else |
|
381 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
382 |
#endif |
#endif |
|
#endif |
|
383 |
c |
c |
384 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
385 |
|
|
394 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
395 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
396 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
397 |
|
#ifdef SEAICE_CAP_SUBLIM |
398 |
|
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
399 |
|
#endif |
400 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
401 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
402 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
504 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
505 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
506 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
507 |
AREAITD(I,J,IT,bi,bj)=MAX(-AREAITD(I,J,IT,bi,bj),0. _d 0) |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
508 |
ENDDO |
ENDDO |
509 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
510 |
C by calling SEAICE_ITD_SUM |
C by calling SEAICE_ITD_SUM |
664 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
665 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
666 |
|
|
667 |
#endif |
c ToM<<< debug seaice_growth |
668 |
|
WRITE(msgBuf,'(A,7F8.4)') |
669 |
|
& ' SEAICE_GROWTH: Heff increments 0, HEFFITD = ', |
670 |
|
& HEFFITD(1,1,:,bi,bj) |
671 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
672 |
|
& SQUEEZE_RIGHT , myThid) |
673 |
|
WRITE(msgBuf,'(A,7F8.4)') |
674 |
|
& ' SEAICE_GROWTH: Area increments 0, AREAITD = ', |
675 |
|
& AREAITD(1,1,:,bi,bj) |
676 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
677 |
|
& SQUEEZE_RIGHT , myThid) |
678 |
|
#else |
679 |
|
WRITE(msgBuf,'(A,7F8.4)') |
680 |
|
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
681 |
|
& HEFF(1,1,bi,bj) |
682 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
683 |
|
& SQUEEZE_RIGHT , myThid) |
684 |
|
WRITE(msgBuf,'(A,7F8.4)') |
685 |
|
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
686 |
|
& AREA(1,1,bi,bj) |
687 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
688 |
|
& SQUEEZE_RIGHT , myThid) |
689 |
|
c ToM>>> |
690 |
|
#endif /* SEAICE_ITD */ |
691 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
692 |
C end SEAICEadjMODE.EQ.0 statement: |
C end SEAICEadjMODE.EQ.0 statement: |
693 |
ENDIF |
ENDIF |
719 |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
720 |
|
|
721 |
C memorize areal and volume fraction of each ITD category |
C memorize areal and volume fraction of each ITD category |
722 |
IF (AREA(I,J,bi,bj).GT.0) THEN |
IF (AREA(I,J,bi,bj) .GT. ZERO) THEN |
723 |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
724 |
ELSE |
ELSE |
725 |
areaFracFactor(I,J,IT)=ZERO |
C if there's no ice, potential growth starts in 1st category |
726 |
ENDIF |
IF (IT .EQ. 1) THEN |
727 |
IF (HEFF(I,J,bi,bj).GT.0) THEN |
areaFracFactor(I,J,IT)=ONE |
728 |
heffFracFactor(I,J,IT)=HEFFITD(I,J,IT,bi,bj)/HEFF(I,J,bi,bj) |
ELSE |
729 |
ELSE |
areaFracFactor(I,J,IT)=ZERO |
730 |
heffFracFactor(I,J,IT)=ZERO |
ENDIF |
731 |
ENDIF |
ENDIF |
732 |
ENDDO |
ENDDO |
733 |
ENDDO |
ENDDO |
971 |
I TmixLoc, |
I TmixLoc, |
972 |
O a_QbyATM_open, a_QSWbyATM_open, |
O a_QbyATM_open, a_QSWbyATM_open, |
973 |
I bi, bj, myTime, myIter, myThid ) |
I bi, bj, myTime, myIter, myThid ) |
974 |
|
c ToM<<< debugging |
975 |
|
print*,' ' |
976 |
|
print*,'UG = ',UG(1,1) |
977 |
|
print*,'Tsurf = ',TmixLoc(1,1) |
978 |
|
print*,'a_QbyATM_open = ',a_QbyATM_open(1,1) |
979 |
|
print*,' ' |
980 |
|
c ToM>>> |
981 |
|
|
982 |
C determine available heat due to the atmosphere -- for ice covered water |
C determine available heat due to the atmosphere -- for ice covered water |
983 |
C ======================================================================= |
C ======================================================================= |
1098 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1099 |
C calculate area weighted mean |
C calculate area weighted mean |
1100 |
C (although the ice's temperature relates to its energy content |
C (although the ice's temperature relates to its energy content |
1101 |
C and hence should be averaged weighted by ice volume [heffFracFactor], |
C and hence should be averaged weighted by ice volume, |
1102 |
C the temperature here is a result of the fluxes through the ice surface |
C the temperature here is a result of the fluxes through the ice surface |
1103 |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1104 |
C and hence is averaged area weighted [areaFracFactor]) |
C and hence is averaged area weighted [areaFracFactor]) |
1130 |
ENDDO |
ENDDO |
1131 |
ENDDO |
ENDDO |
1132 |
ENDDO |
ENDDO |
1133 |
|
c ToM<<< debugging |
1134 |
|
print*,' ' |
1135 |
|
print*,'after SOLVE4TEMP: ' |
1136 |
|
print*,'TICE = ',TICE(1,1,bi,bj) |
1137 |
|
print*,'TICES = ',TICES(1,1,:,bi,bj) |
1138 |
|
print*,'a_QSWbyATM_cover = ',a_QSWbyATM_cover(1,1) |
1139 |
|
print*,'a_QSWbyATMmult_cover = ',a_QSWbyATMmult_cover(1,1,:) |
1140 |
|
print*,' ' |
1141 |
|
c ToM>>> |
1142 |
|
|
1143 |
#ifdef SEAICE_CAP_SUBLIM |
#ifdef SEAICE_CAP_SUBLIM |
1144 |
# ifdef ALLOW_DIAGNOSTICS |
# ifdef ALLOW_DIAGNOSTICS |
1176 |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1177 |
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
1178 |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1179 |
C and initialize r_QbyATM_cover |
C and initialize r_QbyATMmult_cover |
1180 |
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
1181 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1182 |
C Negative sublimation is resublimation and will be added as snow. |
C Negative sublimation is resublimation and will be added as snow. |
1304 |
a_QbyOCN(i,j) = |
a_QbyOCN(i,j) = |
1305 |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
1306 |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
1307 |
|
c ToM<<< debugging |
1308 |
|
if (i.eq.1 .and. j.eq.1) then |
1309 |
|
print *, 'salt [psu] = ',salt(i,j,kSurface,bi,bj) |
1310 |
|
print *, 'theta [degC] = ',theta(i,j,kSurface,bi,bj) |
1311 |
|
print *, 'tempFrz [degC] = ',tempFrz |
1312 |
|
print *, 'max turb flx [m] = ',tmpscal2 |
1313 |
|
print *, 'avail trub flx [m] = ',a_QbyOCN(i,j) |
1314 |
|
endif |
1315 |
|
c ToM>>> |
1316 |
ENDDO |
ENDDO |
1317 |
ENDDO |
ENDDO |
1318 |
|
|
1348 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
1349 |
& *ICE2SNOW |
& *ICE2SNOW |
1350 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
|
C keep total up to date, too |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
|
1351 |
#else |
#else |
1352 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1353 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1367 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1368 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1369 |
C accumulate change over ITD categories |
C accumulate change over ITD categories |
1370 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1371 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
1372 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
|
C keep total up to date, too |
|
|
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
|
1373 |
#else |
#else |
1374 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1375 |
d_HEFFbySublim(I,J) = - tmpscal2 |
d_HEFFbySublim(I,J) = - tmpscal2 |
1388 |
& - r_FWbySublimMult(I,J,IT) |
& - r_FWbySublimMult(I,J,IT) |
1389 |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1390 |
& - r_FWbySublimMult(I,J,IT) |
& - r_FWbySublimMult(I,J,IT) |
1391 |
|
#else |
1392 |
|
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1393 |
|
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1394 |
|
#endif |
1395 |
ENDDO |
ENDDO |
1396 |
ENDDO |
ENDDO |
1397 |
|
#ifdef SEAICE_ITD |
1398 |
C end IT loop |
C end IT loop |
1399 |
ENDDO |
ENDDO |
|
C then update totals |
|
|
DO J=1,sNy |
|
|
DO I=1,sNx |
|
1400 |
#endif |
#endif |
|
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
|
|
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
|
|
ENDDO |
|
|
ENDDO |
|
1401 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1402 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1403 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1404 |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
1405 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1406 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1407 |
|
& SQUEEZE_RIGHT , myThid) |
1408 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1409 |
|
& ' SEAICE_GROWTH: Area increments 1, AREAITD = ', |
1410 |
|
& AREAITD(1,1,:,bi,bj) |
1411 |
#else |
#else |
1412 |
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
1413 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1414 |
#endif |
#endif |
1415 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1416 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1428 |
DO IT=1,nITD |
DO IT=1,nITD |
1429 |
DO J=1,sNy |
DO J=1,sNy |
1430 |
DO I=1,sNx |
DO I=1,sNx |
1431 |
C ice growth/melt due to ocean heat is equally distributed under the ice |
C ice growth/melt due to ocean heat r_QbyOCN (W/m^2) is |
1432 |
C and hence weighted by fractional area of each thickness category |
C equally distributed under the ice and hence weighted by |
1433 |
|
C fractional area of each thickness category |
1434 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1435 |
& -HEFFITD(I,J,IT,bi,bj)) |
& -HEFFITD(I,J,IT,bi,bj)) |
1436 |
d_HEFFbyOCNonICE(I,J)= d_HEFFbyOCNonICE(I,J) + tmpscal1 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1437 |
r_QbyOCN(I,J) = r_QbyOCN(I,J) - tmpscal1 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
|
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
|
1438 |
#ifdef ALLOW_SITRACER |
#ifdef ALLOW_SITRACER |
1439 |
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
1440 |
& + HEFFITD(I,J,IT,bi,bj) |
& + HEFFITD(I,J,IT,bi,bj) |
1442 |
ENDDO |
ENDDO |
1443 |
ENDDO |
ENDDO |
1444 |
ENDDO |
ENDDO |
1445 |
|
DO J=1,sNy |
1446 |
|
DO I=1,sNx |
1447 |
|
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1448 |
|
ENDDO |
1449 |
|
ENDDO |
1450 |
#else /* SEAICE_ITD */ |
#else /* SEAICE_ITD */ |
1451 |
DO J=1,sNy |
DO J=1,sNy |
1452 |
DO I=1,sNx |
DO I=1,sNx |
1460 |
ENDDO |
ENDDO |
1461 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1462 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1463 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1464 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1465 |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
1466 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1467 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1468 |
|
& SQUEEZE_RIGHT , myThid) |
1469 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1470 |
|
& ' SEAICE_GROWTH: Area increments 2, AREAITD = ', |
1471 |
|
& AREAITD(1,1,:,bi,bj) |
1472 |
#else |
#else |
1473 |
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
1474 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1475 |
#endif |
#endif |
1476 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1477 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1504 |
& + tmpscal2*ICE2SNOW |
& + tmpscal2*ICE2SNOW |
1505 |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1506 |
& - tmpscal2 |
& - tmpscal2 |
|
C keep the total up to date, too |
|
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
|
1507 |
ENDDO |
ENDDO |
1508 |
ENDDO |
ENDDO |
1509 |
ENDDO |
ENDDO |
1525 |
ENDDO |
ENDDO |
1526 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1527 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1528 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1529 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1530 |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
1531 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1532 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1533 |
|
& SQUEEZE_RIGHT , myThid) |
1534 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1535 |
|
& ' SEAICE_GROWTH: Area increments 3, AREAITD = ', |
1536 |
|
& AREAITD(1,1,:,bi,bj) |
1537 |
#else |
#else |
1538 |
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
1539 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1540 |
#endif |
#endif |
1541 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1542 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1572 |
& + tmpscal2 |
& + tmpscal2 |
1573 |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1574 |
& + tmpscal2 |
& + tmpscal2 |
1575 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1576 |
& - tmpscal2 |
& - tmpscal2 |
1577 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
1578 |
|
|
1607 |
ENDDO |
ENDDO |
1608 |
#endif /* SEAICE_ITD */ |
#endif /* SEAICE_ITD */ |
1609 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1610 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1611 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1612 |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
1613 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1614 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1615 |
|
& SQUEEZE_RIGHT , myThid) |
1616 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1617 |
|
& ' SEAICE_GROWTH: Area increments 4, AREAITD = ', |
1618 |
|
& AREAITD(1,1,:,bi,bj) |
1619 |
#else |
#else |
1620 |
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
1621 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1622 |
#endif |
#endif |
1623 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1624 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1672 |
Cgf rain to snow is not a surface process. |
Cgf rain to snow is not a surface process. |
1673 |
#endif /* ALLOW_ATM_TEMP */ |
#endif /* ALLOW_ATM_TEMP */ |
1674 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1675 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1676 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1677 |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
1678 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1679 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1680 |
|
& SQUEEZE_RIGHT , myThid) |
1681 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1682 |
|
& ' SEAICE_GROWTH: Area increments 5, AREAITD = ', |
1683 |
|
& AREAITD(1,1,:,bi,bj) |
1684 |
#else |
#else |
1685 |
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
1686 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1687 |
#endif |
#endif |
1688 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1689 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1736 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1737 |
Cph) |
Cph) |
1738 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1739 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1740 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1741 |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
1742 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1743 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1744 |
|
& SQUEEZE_RIGHT , myThid) |
1745 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1746 |
|
& ' SEAICE_GROWTH: Area increments 6, AREAITD = ', |
1747 |
|
& AREAITD(1,1,:,bi,bj) |
1748 |
#else |
#else |
1749 |
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
1750 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1751 |
#endif |
#endif |
1752 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1753 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1776 |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1777 |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
1778 |
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
1779 |
|
c ToM<<< debugging |
1780 |
|
if (I.eq.1 .and. J.eq.1) then |
1781 |
|
print*,'r_QbyATM_open(I,J) = ', r_QbyATM_open(I,J) |
1782 |
|
print*,'r_QbyOCN(i,j) = ', r_QbyOCN(i,j) |
1783 |
|
print*,'1 - AREApreTH = ', (1.0 _d 0 - AREApreTH(I,J)) |
1784 |
|
print*,'tmpscal1 = ', tmpscal1 |
1785 |
|
print*,' ' |
1786 |
|
print*,'SWFracB = ', SWFracB |
1787 |
|
print*,'a_QSWbyATM_open(I,J) = ', a_QSWbyATM_open(I,J) |
1788 |
|
print*,'tmpscal2 = ', tmpscal2 |
1789 |
|
print*,' ' |
1790 |
|
print*,'facOpenGrow = ', facOpenGrow |
1791 |
|
print*,'HEFF(I,J,bi,bj) = ', HEFF(I,J,bi,bj) |
1792 |
|
print*,'facOpenMelt = ', facOpenMelt |
1793 |
|
print*,'MAX = ', MAX(tmpscal1-tmpscal2, |
1794 |
|
& -HEFF(I,J,bi,bj)*facOpenMelt) |
1795 |
|
print*,'HEFFM(I,J,bi,bj) = ', HEFFM(I,J,bi,bj) |
1796 |
|
print*,'tmpscal3 = ', tmpscal3 |
1797 |
|
print*,' ' |
1798 |
|
endif |
1799 |
|
c ToM>>> |
1800 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1801 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1802 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
1803 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1804 |
C open water area fraction |
cC open water area fraction |
1805 |
tmpscal0 = ONE-AREApreTH(I,J) |
c tmpscal0 = ONE-AREApreTH(I,J) |
1806 |
C determine thickness of new ice |
cC determine thickness of new ice |
1807 |
C considering the entire open water area to refreeze |
cctomC considering the entire open water area to refreeze |
1808 |
tmpscal1 = tmpscal3/tmpscal0 |
cctom tmpscal1 = tmpscal3/tmpscal0 |
1809 |
C then add new ice volume to appropriate thickness category |
cC considering a minimum lead ice thickness of 10 cm |
1810 |
DO IT=1,nITD |
cC WATCH that leadIceThickMin is smaller that Hlimit(1)! |
1811 |
IF (tmpscal1.LT.Hlimit(IT)) THEN |
c leadIceThickMin = 0.1 |
1812 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
c tmpscal1 = MAX(leadIceThickMin,tmpscal3/tmpscal0) |
1813 |
tmpscal3=ZERO |
cC adjust ice area fraction covered by new ice |
1814 |
C not sure if AREAITD should be changed here since AREA is incremented |
c tmpscal0 = tmpscal3/tmpscal1 |
1815 |
C in PART 4 below in non-itd code |
cC then add new ice volume to appropriate thickness category |
1816 |
C in this scenario all open water is covered by new ice instantaneously, |
c DO IT=1,nITD |
1817 |
C i.e. no delayed lead closing is concidered such as is associated with |
c IF (tmpscal1.LT.Hlimit(IT)) THEN |
1818 |
C Hibler's h_0 parameter |
c HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
1819 |
AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
c tmpscal3=ZERO |
1820 |
& + tmpscal0 |
cC not sure if AREAITD should be changed here since AREA is incremented |
1821 |
tmpscal0=ZERO |
cC in PART 4 below in non-itd code |
1822 |
ENDIF |
cC in this scenario all open water is covered by new ice instantaneously, |
1823 |
ENDDO |
cC i.e. no delayed lead closing is concidered such as is associated with |
1824 |
|
cC Hibler's h_0 parameter |
1825 |
|
c AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
1826 |
|
c & + tmpscal0 |
1827 |
|
c tmpscal0=ZERO |
1828 |
|
c ENDIF |
1829 |
|
c ENDDO |
1830 |
|
ctom debugging: 1 category only |
1831 |
|
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) + tmpscal3 |
1832 |
#else |
#else |
1833 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
1834 |
#endif |
#endif |
1856 |
#endif |
#endif |
1857 |
#endif /* ALLOW_SITRACER */ |
#endif /* ALLOW_SITRACER */ |
1858 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1859 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1860 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1861 |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
1862 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1863 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1864 |
|
& SQUEEZE_RIGHT , myThid) |
1865 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1866 |
|
& ' SEAICE_GROWTH: Area increments 7, AREAITD = ', |
1867 |
|
& AREAITD(1,1,:,bi,bj) |
1868 |
#else |
#else |
1869 |
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
1870 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1871 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1872 |
|
& SQUEEZE_RIGHT , myThid) |
1873 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1874 |
|
& ' SEAICE_GROWTH: Area increments 7, AREA = ', |
1875 |
|
& AREA(1,1,bi,bj) |
1876 |
#endif |
#endif |
1877 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1878 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1919 |
ENDIF |
ENDIF |
1920 |
#endif /* SEAICE_GROWTH_LEGACY */ |
#endif /* SEAICE_GROWTH_LEGACY */ |
1921 |
c ToM<<< debug seaice_growth |
c ToM<<< debug seaice_growth |
1922 |
WRITE(msgBuf,'(A,7F6.2)') |
WRITE(msgBuf,'(A,7F8.4)') |
1923 |
#ifdef SEAICE_ITD |
#ifdef SEAICE_ITD |
1924 |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
1925 |
& HEFFITD(20,20,:,bi,bj) |
& HEFFITD(1,1,:,bi,bj) |
1926 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1927 |
|
& SQUEEZE_RIGHT , myThid) |
1928 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1929 |
|
& ' SEAICE_GROWTH: Area increments 8, AREAITD = ', |
1930 |
|
& AREAITD(1,1,:,bi,bj) |
1931 |
#else |
#else |
1932 |
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
1933 |
& HEFF(20,20,bi,bj) |
& HEFF(1,1,bi,bj) |
1934 |
|
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1935 |
|
& SQUEEZE_RIGHT , myThid) |
1936 |
|
WRITE(msgBuf,'(A,7F8.4)') |
1937 |
|
& ' SEAICE_GROWTH: Area increments 8, AREA = ', |
1938 |
|
& AREA(1,1,bi,bj) |
1939 |
#endif |
#endif |
1940 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1941 |
& SQUEEZE_RIGHT , myThid) |
& SQUEEZE_RIGHT , myThid) |
1965 |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1966 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1967 |
|
|
1968 |
#ifdef SEAICE_ITD |
c#ifdef SEAICE_ITD |
1969 |
C replaces Hibler '79 scheme and lead closing parameter |
cC replaces Hibler '79 scheme and lead closing parameter |
1970 |
C because ITD accounts explicitly for lead openings and |
cC because ITD accounts explicitly for lead openings and |
1971 |
C different melt rates due to varying ice thickness |
cC different melt rates due to varying ice thickness |
1972 |
C |
cC |
1973 |
C only consider ice area loss due to total ice thickness loss |
cC only consider ice area loss due to total ice thickness loss; |
1974 |
C ice area gain due to freezing of open water as handled above |
cC ice area gain due to freezing of open water is handled above |
1975 |
C under "gain of new ice over open water" |
cC under "gain of new ice over open water" |
1976 |
C |
cC |
1977 |
C does not account for lateral melt of ice floes |
cC does not account for lateral melt of ice floes |
1978 |
C |
cC |
1979 |
C AREAITD is incremented in section "gain of new ice over open water" above |
cC AREAITD is incremented in section "gain of new ice over open water" above |
1980 |
C |
cC |
1981 |
DO IT=1,nITD |
c DO IT=1,nITD |
1982 |
DO J=1,sNy |
c DO J=1,sNy |
1983 |
DO I=1,sNx |
c DO I=1,sNx |
1984 |
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
c IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
1985 |
AREAITD(I,J,IT,bi,bj)=ZERO |
c AREAITD(I,J,IT,bi,bj)=ZERO |
1986 |
ENDIF |
c ENDIF |
1987 |
#ifdef ALLOW_SITRACER |
c#ifdef ALLOW_SITRACER |
1988 |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
c SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
1989 |
& + AREAITD(I,J,IT,bi,bj) |
c & + AREAITD(I,J,IT,bi,bj) |
1990 |
#endif /* ALLOW_SITRACER */ |
c#endif /* ALLOW_SITRACER */ |
1991 |
ENDDO |
c ENDDO |
1992 |
ENDDO |
c ENDDO |
1993 |
ENDDO |
c ENDDO |
1994 |
#else /* SEAICE_ITD */ |
c#else /* SEAICE_ITD */ |
1995 |
DO J=1,sNy |
DO J=1,sNy |
1996 |
DO I=1,sNx |
DO I=1,sNx |
1997 |
|
|
1998 |
|
ctom<<< debugging |
1999 |
|
#ifdef SEAICE_ITD |
2000 |
|
HEFF(I,J,bi,bj)=HEFFITD(I,J,1,bi,bj) |
2001 |
|
AREA(I,J,bi,bj)=AREAITD(I,J,1,bi,bj) |
2002 |
|
HSNOW(I,J,bi,bj)=HSNOWITD(I,J,1,bi,bj) |
2003 |
|
HEFFpreTH(I,J)=HEFFITDpreTH(I,J,1) |
2004 |
|
AREApreTH(I,J)=AREAITDpreTH(I,J,1) |
2005 |
|
recip_heffActual(I,J)=recip_heffActualMult(I,J,1) |
2006 |
|
#endif |
2007 |
|
ctom>>> debugging |
2008 |
|
|
2009 |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
2010 |
recip_HO=1. _d 0 / HO_south |
recip_HO=1. _d 0 / HO_south |
2011 |
ELSE |
ELSE |
2070 |
d_AREAbyOCN(I,J)= |
d_AREAbyOCN(I,J)= |
2071 |
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
2072 |
#endif /* ALLOW_DIAGNOSTICS */ |
#endif /* ALLOW_DIAGNOSTICS */ |
2073 |
|
ctom<<< debugging |
2074 |
|
#ifdef SEAICE_ITD |
2075 |
|
HEFFITD(I,J,1,bi,bj)=HEFF(I,J,bi,bj) |
2076 |
|
AREAITD(I,J,1,bi,bj)=AREA(I,J,bi,bj) |
2077 |
|
HSNOWITD(I,J,1,bi,bj)=HSNOW(I,J,bi,bj) |
2078 |
|
#endif |
2079 |
|
ctom>>> debugging |
2080 |
ENDDO |
ENDDO |
2081 |
ENDDO |
ENDDO |
2082 |
#endif /* SEAICE_ITD */ |
c#endif /* SEAICE_ITD */ |
2083 |
|
|
2084 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
2085 |
Cgf 'bulk' linearization of area=f(HEFF) |
Cgf 'bulk' linearization of area=f(HEFF) |
2111 |
CALL SEAICE_ITD_SUM(bi, bj, myTime,myIter,myThid) |
CALL SEAICE_ITD_SUM(bi, bj, myTime,myIter,myThid) |
2112 |
#endif |
#endif |
2113 |
|
|
2114 |
|
c ToM<<< debugging |
2115 |
|
DO J=1,sNy |
2116 |
|
DO I=1,sNx |
2117 |
|
if (I.eq.1 .and. J.eq.1) then |
2118 |
|
print *, 'd_HEFFbyNEG(I,J) = ', d_HEFFbyNEG(I,J) |
2119 |
|
print *, 'd_HEFFbyOCNonICE(I,J) = ', d_HEFFbyOCNonICE(I,J) |
2120 |
|
print *, 'd_HEFFbyATMonOCN(I,J) = ', d_HEFFbyATMonOCN(I,J) |
2121 |
|
print *, 'd_HEFFbyATMonOCN_cover(I,J) = ', |
2122 |
|
& d_HEFFbyATMonOCN_cover(I,J) |
2123 |
|
print *, 'd_HEFFbyATMonOCN_open(I,J) = ', |
2124 |
|
& d_HEFFbyATMonOCN_open(I,J) |
2125 |
|
print *, 'd_HEFFbyFLOODING(I,J) = ', d_HEFFbyFLOODING(I,J) |
2126 |
|
print *, 'd_HEFFbySublim(I,J) = ', d_HEFFbySublim(I,J) |
2127 |
|
endif |
2128 |
|
ENDDO |
2129 |
|
ENDDO |
2130 |
|
c ToM>>> |
2131 |
C =================================================================== |
C =================================================================== |
2132 |
C =============PART 5: determine ice salinity increments============= |
C =============PART 5: determine ice salinity increments============= |
2133 |
C =================================================================== |
C =================================================================== |
2341 |
C accounting for the part used in melt/freeze processes |
C accounting for the part used in melt/freeze processes |
2342 |
C ===================================================== |
C ===================================================== |
2343 |
|
|
2344 |
|
#ifdef SEAICE_ITD |
2345 |
|
C compute total of "mult" fluxes for ocean forcing |
2346 |
|
DO J=1,sNy |
2347 |
|
DO I=1,sNx |
2348 |
|
a_QbyATM_cover(I,J) = 0.0 _d 0 |
2349 |
|
r_QbyATM_cover(I,J) = 0.0 _d 0 |
2350 |
|
a_QSWbyATM_cover(I,J) = 0.0 _d 0 |
2351 |
|
r_FWbySublim(I,J) = 0.0 _d 0 |
2352 |
|
ENDDO |
2353 |
|
ENDDO |
2354 |
|
DO IT=1,nITD |
2355 |
|
DO J=1,sNy |
2356 |
|
DO I=1,sNx |
2357 |
|
cToM if fluxes in W/m^2 then |
2358 |
|
c a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2359 |
|
c & + a_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2360 |
|
c r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2361 |
|
c & + r_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2362 |
|
c a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2363 |
|
c & + a_QSWbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2364 |
|
c r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2365 |
|
c & + r_FWbySublimMult(I,J,IT) * areaFracFactor(I,J,IT) |
2366 |
|
cToM if fluxes in effective ice meters, i.e. ice volume per area, then |
2367 |
|
a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2368 |
|
& + a_QbyATMmult_cover(I,J,IT) |
2369 |
|
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2370 |
|
& + r_QbyATMmult_cover(I,J,IT) |
2371 |
|
a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2372 |
|
& + a_QSWbyATMmult_cover(I,J,IT) |
2373 |
|
r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2374 |
|
& + r_FWbySublimMult(I,J,IT) |
2375 |
|
ENDDO |
2376 |
|
ENDDO |
2377 |
|
ENDDO |
2378 |
|
#endif |
2379 |
|
|
2380 |
#ifdef ALLOW_AUTODIFF_TAMC |
#ifdef ALLOW_AUTODIFF_TAMC |
2381 |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
2382 |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
2401 |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
2402 |
ENDDO |
ENDDO |
2403 |
ENDDO |
ENDDO |
2404 |
|
cToM<<< debugging |
2405 |
|
print*,'------------------' |
2406 |
|
print*,'OcnModFrc: QNET = ',QNET(1,1,bi,bj) |
2407 |
|
print*,'OcnModFrc: QSW = ',QSW(1,1,bi,bj) |
2408 |
|
print*,' ' |
2409 |
|
print*,'r_QbyATM_cover = ', r_QbyATM_cover(1,1) |
2410 |
|
print*,'r_QbyATM_open = ', r_QbyATM_open(1,1) |
2411 |
|
print*,'a_QSWbyATM_cover = ', a_QSWbyATM_cover(1,1) |
2412 |
|
print*,'d_HEFFbyOCNonICE = ', d_HEFFbyOCNonICE(1,1) |
2413 |
|
print*,'d_HSNWbyOCNonSNW = ', d_HSNWbyOCNonSNW(1,1) |
2414 |
|
print*,'d_HEFFbyNEG = ', d_HEFFbyNEG(1,1) |
2415 |
|
print*,'d_HSNWbyNEG = ', d_HSNWbyNEG(1,1) |
2416 |
|
print*,'SNOW2ICE = ',SNOW2ICE |
2417 |
|
print*,'maskC = ', maskC(1,1,kSurface,bi,bj) |
2418 |
|
print*,'------------------' |
2419 |
|
cToM>>> |
2420 |
|
|
2421 |
C switch heat fluxes from 'effective' ice meters to W/m2 |
C switch heat fluxes from 'effective' ice meters to W/m2 |
2422 |
C ====================================================== |
C ====================================================== |