1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_growth.F,v 1.177 2012/09/24 15:05:29 mlosch Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SEAICE_OPTIONS.h" |
5 |
#ifdef ALLOW_EXF |
6 |
# include "EXF_OPTIONS.h" |
7 |
#endif |
8 |
|
9 |
CBOP |
10 |
C !ROUTINE: SEAICE_GROWTH |
11 |
C !INTERFACE: |
12 |
SUBROUTINE SEAICE_GROWTH( myTime, myIter, myThid ) |
13 |
C !DESCRIPTION: \bv |
14 |
C *==========================================================* |
15 |
C | SUBROUTINE seaice_growth |
16 |
C | o Updata ice thickness and snow depth |
17 |
C *==========================================================* |
18 |
C \ev |
19 |
|
20 |
C !USES: |
21 |
IMPLICIT NONE |
22 |
C === Global variables === |
23 |
#include "SIZE.h" |
24 |
#include "EEPARAMS.h" |
25 |
#include "PARAMS.h" |
26 |
#include "DYNVARS.h" |
27 |
#include "GRID.h" |
28 |
#include "FFIELDS.h" |
29 |
#include "SEAICE_SIZE.h" |
30 |
#include "SEAICE_PARAMS.h" |
31 |
#include "SEAICE.h" |
32 |
#include "SEAICE_TRACER.h" |
33 |
#ifdef ALLOW_EXF |
34 |
# include "EXF_PARAM.h" |
35 |
# include "EXF_FIELDS.h" |
36 |
#endif |
37 |
#ifdef ALLOW_SALT_PLUME |
38 |
# include "SALT_PLUME.h" |
39 |
#endif |
40 |
#ifdef ALLOW_AUTODIFF_TAMC |
41 |
# include "tamc.h" |
42 |
#endif |
43 |
|
44 |
C !INPUT/OUTPUT PARAMETERS: |
45 |
C === Routine arguments === |
46 |
C myTime :: Simulation time |
47 |
C myIter :: Simulation timestep number |
48 |
C myThid :: Thread no. that called this routine. |
49 |
_RL myTime |
50 |
INTEGER myIter, myThid |
51 |
CEOP |
52 |
|
53 |
C !FUNCTIONS: |
54 |
#ifdef ALLOW_DIAGNOSTICS |
55 |
LOGICAL DIAGNOSTICS_IS_ON |
56 |
EXTERNAL DIAGNOSTICS_IS_ON |
57 |
#endif |
58 |
|
59 |
C !LOCAL VARIABLES: |
60 |
C === Local variables === |
61 |
#ifdef SEAICE_DEBUG |
62 |
c ToM<<< debug seaice_growth |
63 |
C msgBuf :: Informational/error message buffer |
64 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
65 |
c ToM>>> |
66 |
#endif |
67 |
C |
68 |
C unit/sign convention: |
69 |
C Within the thermodynamic computation all stocks, except HSNOW, |
70 |
C are in 'effective ice meters' units, and >0 implies more ice. |
71 |
C This holds for stocks due to ocean and atmosphere heat, |
72 |
C at the outset of 'PART 2: determine heat fluxes/stocks' |
73 |
C and until 'PART 7: determine ocean model forcing' |
74 |
C This strategy minimizes the need for multiplications/divisions |
75 |
C by ice fraction, heat capacity, etc. The only conversions that |
76 |
C occurs are for the HSNOW (in effective snow meters) and |
77 |
C PRECIP (fresh water m/s). |
78 |
C |
79 |
C HEFF is effective Hice thickness (m3/m2) |
80 |
C HSNOW is Heffective snow thickness (m3/m2) |
81 |
C HSALT is Heffective salt content (g/m2) |
82 |
C AREA is the seaice cover fraction (0<=AREA<=1) |
83 |
C Q denotes heat stocks -- converted to ice stocks (m3/m2) early on |
84 |
C |
85 |
C For all other stocks/increments, such as d_HEFFbyATMonOCN |
86 |
C or a_QbyATM_cover, the naming convention is as follows: |
87 |
C The prefix 'a_' means available, the prefix 'd_' means delta |
88 |
C (i.e. increment), and the prefix 'r_' means residual. |
89 |
C The suffix '_cover' denotes a value for the ice covered fraction |
90 |
C of the grid cell, whereas '_open' is for the open water fraction. |
91 |
C The main part of the name states what ice/snow stock is concerned |
92 |
C (e.g. QbyATM or HEFF), and how it is affected (e.g. d_HEFFbyATMonOCN |
93 |
C is the increment of HEFF due to the ATMosphere extracting heat from the |
94 |
C OCeaN surface, or providing heat to the OCeaN surface). |
95 |
|
96 |
C i,j,bi,bj :: Loop counters |
97 |
INTEGER i, j, bi, bj |
98 |
C number of surface interface layer |
99 |
INTEGER kSurface |
100 |
C IT :: ice thickness category index (MULTICATEGORIES and ITD code) |
101 |
INTEGER IT |
102 |
_RL pFac |
103 |
C constants |
104 |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
105 |
_RL QI, QS, recip_QI |
106 |
_RL lhSublim |
107 |
|
108 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
109 |
_RL convertQ2HI, convertHI2Q |
110 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
111 |
_RL convertPRECIP2HI, convertHI2PRECIP |
112 |
C Factor by which we increase the upper ocean friction velocity (u*) when |
113 |
C ice is absent in a grid cell (dimensionless) |
114 |
_RL MixedLayerTurbulenceFactor |
115 |
|
116 |
C wind speed square |
117 |
_RL SPEED_SQ |
118 |
|
119 |
C Regularization values squared |
120 |
_RL area_reg_sq, hice_reg_sq |
121 |
C pathological cases thresholds |
122 |
_RL heffTooHeavy |
123 |
|
124 |
C Helper variables: reciprocal of some constants |
125 |
_RL recip_multDim |
126 |
_RL recip_deltaTtherm |
127 |
_RL recip_rhoIce |
128 |
C local value (=1/HO or 1/HO_south) |
129 |
_RL recip_HO |
130 |
C local value (=1/ice thickness) |
131 |
_RL recip_HH |
132 |
C facilitate multi-category snow implementation |
133 |
_RL pFacSnow |
134 |
|
135 |
C temporary variables available for the various computations |
136 |
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
137 |
|
138 |
#ifdef ALLOW_SITRACER |
139 |
INTEGER iTr |
140 |
#ifdef ALLOW_DIAGNOSTICS |
141 |
CHARACTER*8 diagName |
142 |
#endif |
143 |
#endif /* ALLOW_SITRACER */ |
144 |
#ifdef ALLOW_AUTODIFF_TAMC |
145 |
INTEGER ilockey |
146 |
#endif |
147 |
|
148 |
C== local arrays == |
149 |
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
150 |
_RL TmixLoc (1:sNx,1:sNy) |
151 |
|
152 |
C actual ice thickness (with upper and lower limit) |
153 |
_RL heffActual (1:sNx,1:sNy) |
154 |
C actual snow thickness |
155 |
_RL hsnowActual (1:sNx,1:sNy) |
156 |
C actual ice thickness (with lower limit only) Reciprocal |
157 |
_RL recip_heffActual (1:sNx,1:sNy) |
158 |
|
159 |
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
160 |
_RL AREApreTH (1:sNx,1:sNy) |
161 |
_RL HEFFpreTH (1:sNx,1:sNy) |
162 |
_RL HSNWpreTH (1:sNx,1:sNy) |
163 |
#ifdef SEAICE_ITD |
164 |
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
165 |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
166 |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
167 |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
168 |
_RL leadIceThickMin |
169 |
#endif |
170 |
|
171 |
C wind speed |
172 |
_RL UG (1:sNx,1:sNy) |
173 |
|
174 |
C temporary variables available for the various computations |
175 |
_RL tmparr1 (1:sNx,1:sNy) |
176 |
#ifdef SEAICE_VARIABLE_SALINITY |
177 |
_RL saltFluxAdjust (1:sNx,1:sNy) |
178 |
#endif |
179 |
|
180 |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
181 |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
182 |
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
183 |
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
184 |
#ifdef SEAICE_ITD |
185 |
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
186 |
#endif |
187 |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
188 |
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
189 |
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
190 |
#ifdef SEAICE_ITD |
191 |
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
192 |
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
193 |
#endif |
194 |
|
195 |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
196 |
C the atmosphere and the ocean surface - for ice covered water |
197 |
C a_QbyATM_open :: same but for open water |
198 |
C r_QbyATM_cover :: residual of a_QbyATM_cover after freezing/melting processes |
199 |
C r_QbyATM_open :: same but for open water |
200 |
_RL a_QbyATM_cover (1:sNx,1:sNy) |
201 |
_RL a_QbyATM_open (1:sNx,1:sNy) |
202 |
_RL r_QbyATM_cover (1:sNx,1:sNy) |
203 |
_RL r_QbyATM_open (1:sNx,1:sNy) |
204 |
C a_QSWbyATM_open - short wave heat flux over ocean in W/m^2 |
205 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
206 |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
207 |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
208 |
C a_QbyOCN :: available heat (in W/m^2) due to the |
209 |
C interaction of the ice pack and the ocean surface |
210 |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
211 |
C processes have been accounted for |
212 |
_RL a_QbyOCN (1:sNx,1:sNy) |
213 |
_RL r_QbyOCN (1:sNx,1:sNy) |
214 |
|
215 |
C The change of mean ice thickness due to out-of-bounds values following |
216 |
C sea ice dyhnamics |
217 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
218 |
|
219 |
C The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
220 |
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
221 |
|
222 |
C The sum of mean ice thickness increments due to atmospheric fluxes over |
223 |
C the open water fraction and ice-covered fractions of the grid cell |
224 |
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
225 |
C The change of mean ice thickness due to flooding by snow |
226 |
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
227 |
|
228 |
C The mean ice thickness increments due to atmospheric fluxes over the open |
229 |
C water fraction and ice-covered fractions of the grid cell, respectively |
230 |
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
231 |
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
232 |
|
233 |
_RL d_HSNWbyNEG (1:sNx,1:sNy) |
234 |
_RL d_HSNWbyATMonSNW (1:sNx,1:sNy) |
235 |
_RL d_HSNWbyOCNonSNW (1:sNx,1:sNy) |
236 |
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
237 |
|
238 |
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
239 |
|
240 |
C a_FWbySublim :: fresh water flux implied by latent heat of |
241 |
C sublimation to atmosphere, same sign convention |
242 |
C as EVAP (positive upward) |
243 |
_RL a_FWbySublim (1:sNx,1:sNy) |
244 |
_RL r_FWbySublim (1:sNx,1:sNy) |
245 |
_RL d_HEFFbySublim (1:sNx,1:sNy) |
246 |
_RL d_HSNWbySublim (1:sNx,1:sNy) |
247 |
|
248 |
#ifdef SEAICE_CAP_SUBLIM |
249 |
C The latent heat flux which will sublimate all snow and ice |
250 |
C over one time step |
251 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
252 |
_RL latentHeatFluxMaxMult(1:sNx,1:sNy,MULTDIM) |
253 |
#endif |
254 |
|
255 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
256 |
C ICE/SNOW stocks tendency associated with relaxation towards observation |
257 |
_RL d_AREAbyRLX (1:sNx,1:sNy) |
258 |
C The change of mean ice thickness due to relaxation |
259 |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
260 |
#endif |
261 |
|
262 |
#ifdef ALLOW_DIAGNOSTICS |
263 |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
264 |
_RL d_AREAbyATM (1:sNx,1:sNy) |
265 |
_RL d_AREAbyOCN (1:sNx,1:sNy) |
266 |
_RL d_AREAbyICE (1:sNx,1:sNy) |
267 |
C Helper variables for diagnostics |
268 |
_RL DIAGarrayA (1:sNx,1:sNy) |
269 |
_RL DIAGarrayB (1:sNx,1:sNy) |
270 |
_RL DIAGarrayC (1:sNx,1:sNy) |
271 |
_RL DIAGarrayD (1:sNx,1:sNy) |
272 |
#endif /* ALLOW_DIAGNOSTICS */ |
273 |
|
274 |
_RL SItflux (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
275 |
_RL SIatmQnt (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
276 |
_RL SIatmFW (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) |
277 |
#ifdef ALLOW_BALANCE_FLUXES |
278 |
_RL FWFsiTile(nSx,nSy) |
279 |
_RL FWFsiGlob |
280 |
_RL HFsiTile(nSx,nSy) |
281 |
_RL HFsiGlob |
282 |
_RL FWF2HFsiTile(nSx,nSy) |
283 |
_RL FWF2HFsiGlob |
284 |
CHARACTER*(max_len_mbuf) msgbuf |
285 |
#endif |
286 |
|
287 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
288 |
|
289 |
C =================================================================== |
290 |
C =================PART 0: constants and initializations============= |
291 |
C =================================================================== |
292 |
|
293 |
IF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN |
294 |
kSurface = Nr |
295 |
ELSE |
296 |
kSurface = 1 |
297 |
ENDIF |
298 |
|
299 |
C avoid unnecessary divisions in loops |
300 |
c#ifdef SEAICE_ITD |
301 |
CToM this is now set by MULTDIM = nITD in SEAICE_SIZE.h |
302 |
C (see SEAICE_SIZE.h and seaice_readparms.F) |
303 |
c SEAICE_multDim = nITD |
304 |
c#endif |
305 |
recip_multDim = SEAICE_multDim |
306 |
recip_multDim = ONE / recip_multDim |
307 |
C above/below: double/single precision calculation of recip_multDim |
308 |
c recip_multDim = 1./float(SEAICE_multDim) |
309 |
recip_deltaTtherm = ONE / SEAICE_deltaTtherm |
310 |
recip_rhoIce = ONE / SEAICE_rhoIce |
311 |
|
312 |
C Cutoff for iceload |
313 |
heffTooHeavy=drF(kSurface) / 5. _d 0 |
314 |
|
315 |
C RATIO OF SEA ICE DENSITY to SNOW DENSITY |
316 |
ICE2SNOW = SEAICE_rhoIce/SEAICE_rhoSnow |
317 |
SNOW2ICE = ONE / ICE2SNOW |
318 |
|
319 |
C HEAT OF FUSION OF ICE (J/m^3) |
320 |
QI = SEAICE_rhoIce*SEAICE_lhFusion |
321 |
recip_QI = ONE / QI |
322 |
C HEAT OF FUSION OF SNOW (J/m^3) |
323 |
QS = SEAICE_rhoSnow*SEAICE_lhFusion |
324 |
|
325 |
C ICE LATENT HEAT CONSTANT |
326 |
lhSublim = SEAICE_lhEvap + SEAICE_lhFusion |
327 |
|
328 |
C regularization constants |
329 |
area_reg_sq = SEAICE_area_reg * SEAICE_area_reg |
330 |
hice_reg_sq = SEAICE_hice_reg * SEAICE_hice_reg |
331 |
|
332 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
333 |
convertQ2HI=SEAICE_deltaTtherm/QI |
334 |
convertHI2Q = ONE/convertQ2HI |
335 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
336 |
convertPRECIP2HI=SEAICE_deltaTtherm*rhoConstFresh/SEAICE_rhoIce |
337 |
convertHI2PRECIP = ONE/convertPRECIP2HI |
338 |
|
339 |
DO bj=myByLo(myThid),myByHi(myThid) |
340 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
341 |
|
342 |
#ifdef ALLOW_AUTODIFF_TAMC |
343 |
act1 = bi - myBxLo(myThid) |
344 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
345 |
act2 = bj - myByLo(myThid) |
346 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
347 |
act3 = myThid - 1 |
348 |
max3 = nTx*nTy |
349 |
act4 = ikey_dynamics - 1 |
350 |
iicekey = (act1 + 1) + act2*max1 |
351 |
& + act3*max1*max2 |
352 |
& + act4*max1*max2*max3 |
353 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
354 |
|
355 |
C array initializations |
356 |
C ===================== |
357 |
|
358 |
DO J=1,sNy |
359 |
DO I=1,sNx |
360 |
a_QbyATM_cover (I,J) = 0.0 _d 0 |
361 |
a_QbyATM_open(I,J) = 0.0 _d 0 |
362 |
r_QbyATM_cover (I,J) = 0.0 _d 0 |
363 |
r_QbyATM_open (I,J) = 0.0 _d 0 |
364 |
|
365 |
a_QSWbyATM_open (I,J) = 0.0 _d 0 |
366 |
a_QSWbyATM_cover (I,J) = 0.0 _d 0 |
367 |
|
368 |
a_QbyOCN (I,J) = 0.0 _d 0 |
369 |
r_QbyOCN (I,J) = 0.0 _d 0 |
370 |
|
371 |
#ifdef ALLOW_DIAGNOSTICS |
372 |
d_AREAbyATM(I,J) = 0.0 _d 0 |
373 |
d_AREAbyICE(I,J) = 0.0 _d 0 |
374 |
d_AREAbyOCN(I,J) = 0.0 _d 0 |
375 |
#endif |
376 |
|
377 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
378 |
d_AREAbyRLX(I,J) = 0.0 _d 0 |
379 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
380 |
#endif |
381 |
|
382 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
383 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
384 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
385 |
d_HEFFbyFLOODING(I,J) = 0.0 _d 0 |
386 |
|
387 |
d_HEFFbyATMonOCN_open(I,J) = 0.0 _d 0 |
388 |
d_HEFFbyATMonOCN_cover(I,J) = 0.0 _d 0 |
389 |
|
390 |
d_HSNWbyNEG(I,J) = 0.0 _d 0 |
391 |
d_HSNWbyATMonSNW(I,J) = 0.0 _d 0 |
392 |
d_HSNWbyOCNonSNW(I,J) = 0.0 _d 0 |
393 |
d_HSNWbyRAIN(I,J) = 0.0 _d 0 |
394 |
a_FWbySublim(I,J) = 0.0 _d 0 |
395 |
r_FWbySublim(I,J) = 0.0 _d 0 |
396 |
d_HEFFbySublim(I,J) = 0.0 _d 0 |
397 |
d_HSNWbySublim(I,J) = 0.0 _d 0 |
398 |
#ifdef SEAICE_CAP_SUBLIM |
399 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
400 |
#endif |
401 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
402 |
tmparr1(I,J) = 0.0 _d 0 |
403 |
#ifdef SEAICE_VARIABLE_SALINITY |
404 |
saltFluxAdjust(I,J) = 0.0 _d 0 |
405 |
#endif |
406 |
DO IT=1,SEAICE_multDim |
407 |
ticeInMult(I,J,IT) = 0.0 _d 0 |
408 |
ticeOutMult(I,J,IT) = 0.0 _d 0 |
409 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
410 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
411 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
412 |
#ifdef SEAICE_CAP_SUBLIM |
413 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
414 |
#endif |
415 |
#ifdef SEAICE_ITD |
416 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
417 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
418 |
#endif |
419 |
ENDDO |
420 |
ENDDO |
421 |
ENDDO |
422 |
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
423 |
DO J=1-oLy,sNy+oLy |
424 |
DO I=1-oLx,sNx+oLx |
425 |
frWtrAtm(I,J,bi,bj) = 0.0 _d 0 |
426 |
ENDDO |
427 |
ENDDO |
428 |
#endif |
429 |
|
430 |
C ===================================================================== |
431 |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
432 |
C ===================================================================== |
433 |
|
434 |
#ifdef SEAICE_GROWTH_LEGACY |
435 |
|
436 |
DO J=1,sNy |
437 |
DO I=1,sNx |
438 |
HEFFpreTH(I,J)=HEFFNM1(I,J,bi,bj) |
439 |
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
440 |
AREApreTH(I,J)=AREANM1(I,J,bi,bj) |
441 |
d_HEFFbyNEG(I,J)=0. _d 0 |
442 |
d_HSNWbyNEG(I,J)=0. _d 0 |
443 |
#ifdef ALLOW_DIAGNOSTICS |
444 |
DIAGarrayA(I,J) = AREANM1(I,J,bi,bj) |
445 |
DIAGarrayB(I,J) = AREANM1(I,J,bi,bj) |
446 |
DIAGarrayC(I,J) = HEFFNM1(I,J,bi,bj) |
447 |
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
448 |
#endif |
449 |
ENDDO |
450 |
ENDDO |
451 |
#ifdef SEAICE_ITD |
452 |
DO IT=1,nITD |
453 |
DO J=1,sNy |
454 |
DO I=1,sNx |
455 |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
456 |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
457 |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
458 |
ENDDO |
459 |
ENDDO |
460 |
ENDDO |
461 |
#endif |
462 |
|
463 |
#else /* SEAICE_GROWTH_LEGACY */ |
464 |
|
465 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
466 |
Cgf no dependency through pathological cases treatment |
467 |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
468 |
#endif |
469 |
|
470 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
471 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
472 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
473 |
C 0) relax sea ice concentration towards observation |
474 |
IF (SEAICE_tauAreaObsRelax .GT. 0.) THEN |
475 |
DO J=1,sNy |
476 |
DO I=1,sNx |
477 |
C d_AREAbyRLX(i,j) = 0. _d 0 |
478 |
C d_HEFFbyRLX(i,j) = 0. _d 0 |
479 |
IF ( obsSIce(I,J,bi,bj).GT.AREA(I,J,bi,bj)) THEN |
480 |
d_AREAbyRLX(i,j) = |
481 |
& SEAICE_deltaTtherm/SEAICE_tauAreaObsRelax |
482 |
& * (obsSIce(I,J,bi,bj) - AREA(I,J,bi,bj)) |
483 |
ENDIF |
484 |
IF ( obsSIce(I,J,bi,bj).GT.0. _d 0 .AND. |
485 |
& AREA(I,J,bi,bj).EQ.0. _d 0) THEN |
486 |
C d_HEFFbyRLX(i,j) = 1. _d 1 * siEps * d_AREAbyRLX(i,j) |
487 |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
488 |
ENDIF |
489 |
#ifdef SEAICE_ITD |
490 |
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
491 |
& + d_AREAbyRLX(i,j) |
492 |
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
493 |
& + d_HEFFbyRLX(i,j) |
494 |
#endif |
495 |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj) + d_AREAbyRLX(i,j) |
496 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + d_HEFFbyRLX(i,j) |
497 |
ENDDO |
498 |
ENDDO |
499 |
ENDIF |
500 |
#endif /* EXF_ALLOW_SEAICE_RELAX */ |
501 |
|
502 |
C 1) treat the case of negative values: |
503 |
|
504 |
#ifdef ALLOW_AUTODIFF_TAMC |
505 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
506 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
507 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
508 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
509 |
DO J=1,sNy |
510 |
DO I=1,sNx |
511 |
#ifdef SEAICE_ITD |
512 |
DO IT=1,nITD |
513 |
tmpscal2=0. _d 0 |
514 |
tmpscal3=0. _d 0 |
515 |
tmpscal2=MAX(-HEFFITD(I,J,IT,bi,bj),0. _d 0) |
516 |
HEFFITD(I,J,IT,bi,bj)=HEFFITD(I,J,IT,bi,bj)+tmpscal2 |
517 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
518 |
tmpscal3=MAX(-HSNOWITD(I,J,IT,bi,bj),0. _d 0) |
519 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
520 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
521 |
AREAITD(I,J,IT,bi,bj)=MAX(AREAITD(I,J,IT,bi,bj),0. _d 0) |
522 |
ENDDO |
523 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
524 |
C by calling SEAICE_ITD_SUM |
525 |
#else |
526 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
527 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
528 |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
529 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
530 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
531 |
#endif |
532 |
ENDDO |
533 |
ENDDO |
534 |
|
535 |
C 1.25) treat the case of very thin ice: |
536 |
|
537 |
#ifdef ALLOW_AUTODIFF_TAMC |
538 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
539 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
540 |
DO J=1,sNy |
541 |
DO I=1,sNx |
542 |
#ifdef SEAICE_ITD |
543 |
DO IT=1,nITD |
544 |
#endif |
545 |
tmpscal2=0. _d 0 |
546 |
tmpscal3=0. _d 0 |
547 |
#ifdef SEAICE_ITD |
548 |
IF (HEFFITD(I,J,IT,bi,bj).LE.siEps) THEN |
549 |
tmpscal2=-HEFFITD(I,J,IT,bi,bj) |
550 |
tmpscal3=-HSNOWITD(I,J,IT,bi,bj) |
551 |
TICES(I,J,IT,bi,bj)=celsius2K |
552 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
553 |
ENDIF |
554 |
HEFFITD(I,J,IT,bi,bj) =HEFFITD(I,J,IT,bi,bj) +tmpscal2 |
555 |
HSNOWITD(I,J,IT,bi,bj)=HSNOWITD(I,J,IT,bi,bj)+tmpscal3 |
556 |
#else |
557 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
558 |
tmpscal2=-HEFF(I,J,bi,bj) |
559 |
tmpscal3=-HSNOW(I,J,bi,bj) |
560 |
TICE(I,J,bi,bj)=celsius2K |
561 |
DO IT=1,SEAICE_multDim |
562 |
TICES(I,J,IT,bi,bj)=celsius2K |
563 |
ENDDO |
564 |
ENDIF |
565 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+tmpscal2 |
566 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
567 |
#endif |
568 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
569 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
570 |
#ifdef SEAICE_ITD |
571 |
ENDDO |
572 |
#endif |
573 |
ENDDO |
574 |
ENDDO |
575 |
|
576 |
C 1.5) treat the case of area but no ice/snow: |
577 |
|
578 |
#ifdef ALLOW_AUTODIFF_TAMC |
579 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
580 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
581 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
582 |
DO J=1,sNy |
583 |
DO I=1,sNx |
584 |
#ifdef SEAICE_ITD |
585 |
DO IT=1,nITD |
586 |
IF ((HEFFITD(I,J,IT,bi,bj).EQ.0. _d 0).AND. |
587 |
& (HSNOWITD(I,J,IT,bi,bj).EQ.0. _d 0)) |
588 |
& AREAITD(I,J,IT,bi,bj)=0. _d 0 |
589 |
ENDDO |
590 |
#else |
591 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
592 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
593 |
#endif |
594 |
ENDDO |
595 |
ENDDO |
596 |
|
597 |
C 2) treat the case of very small area: |
598 |
|
599 |
#ifndef DISABLE_AREA_FLOOR |
600 |
#ifdef ALLOW_AUTODIFF_TAMC |
601 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
602 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
603 |
DO J=1,sNy |
604 |
DO I=1,sNx |
605 |
#ifdef SEAICE_ITD |
606 |
DO IT=1,nITD |
607 |
IF ((HEFFITD(I,J,IT,bi,bj).GT.0).OR. |
608 |
& (HSNOWITD(I,J,IT,bi,bj).GT.0)) THEN |
609 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
610 |
C hence use SEAICE_area_floor devided by nITD |
611 |
C (or install a warning in e.g. seaice_readparms.F) |
612 |
AREAITD(I,J,IT,bi,bj)= |
613 |
& MAX(AREAITD(I,J,IT,bi,bj),SEAICE_area_floor/float(nITD)) |
614 |
ENDIF |
615 |
ENDDO |
616 |
#else |
617 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
618 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
619 |
ENDIF |
620 |
#endif |
621 |
ENDDO |
622 |
ENDDO |
623 |
#endif /* DISABLE_AREA_FLOOR */ |
624 |
|
625 |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
626 |
|
627 |
CToM for SEAICE_ITD this case is treated in SEAICE_ITD_REDIST, |
628 |
C which is called at end of PART 1 below |
629 |
#ifndef SEAICE_ITD |
630 |
#ifdef ALLOW_AUTODIFF_TAMC |
631 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
632 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
633 |
DO J=1,sNy |
634 |
DO I=1,sNx |
635 |
#ifdef ALLOW_DIAGNOSTICS |
636 |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
637 |
#endif |
638 |
#ifdef ALLOW_SITRACER |
639 |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
640 |
#endif |
641 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
642 |
ENDDO |
643 |
ENDDO |
644 |
#endif /* notSEAICE_ITD */ |
645 |
|
646 |
#ifdef SEAICE_ITD |
647 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
648 |
DO J=1,sNy |
649 |
DO I=1,sNx |
650 |
C TICES was changed above (item 1.25), now update TICE as ice volume |
651 |
C weighted average of TICES |
652 |
C also compute total of AREAITD (needed for finishing item 2.5, see below) |
653 |
tmpscal1 = 0. _d 0 |
654 |
tmpscal2 = 0. _d 0 |
655 |
tmpscal3 = 0. _d 0 |
656 |
DO IT=1,nITD |
657 |
tmpscal1=tmpscal1 + TICES(I,J,IT,bi,bj)*HEFFITD(I,J,IT,bi,bj) |
658 |
tmpscal2=tmpscal2 + HEFFITD(I,J,IT,bi,bj) |
659 |
tmpscal3=tmpscal3 + AREAITD(I,J,IT,bi,bj) |
660 |
ENDDO |
661 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
662 |
C lines of item 2.5 that were omitted: |
663 |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
664 |
C hence we execute them here before SEAICE_ITD_REDIST is called |
665 |
C although this means that AREA has not been completely regularized |
666 |
#ifdef ALLOW_DIAGNOSTICS |
667 |
DIAGarrayA(I,J) = tmpscal3 |
668 |
#endif |
669 |
#ifdef ALLOW_SITRACER |
670 |
SItrAREA(I,J,bi,bj,1)=tmpscal3 |
671 |
#endif |
672 |
ENDDO |
673 |
ENDDO |
674 |
|
675 |
CToM finally make sure that all categories meet their thickness limits |
676 |
C which includes ridging as in item 2.5 |
677 |
C and update AREA, HEFF, and HSNOW |
678 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
679 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
680 |
|
681 |
#ifdef SEAICE_DEBUG |
682 |
c ToM<<< debug seaice_growth |
683 |
WRITE(msgBuf,'(A,7F8.4)') |
684 |
& ' SEAICE_GROWTH: Heff increments 0, HEFFITD = ', |
685 |
& HEFFITD(1,1,:,bi,bj) |
686 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
687 |
& SQUEEZE_RIGHT , myThid) |
688 |
WRITE(msgBuf,'(A,7F8.4)') |
689 |
& ' SEAICE_GROWTH: Area increments 0, AREAITD = ', |
690 |
& AREAITD(1,1,:,bi,bj) |
691 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
692 |
& SQUEEZE_RIGHT , myThid) |
693 |
#endif |
694 |
#else |
695 |
#ifdef SEAICE_DEBUG |
696 |
WRITE(msgBuf,'(A,7F8.4)') |
697 |
& ' SEAICE_GROWTH: Heff increments 0, HEFF = ', |
698 |
& HEFF(1,1,bi,bj) |
699 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
700 |
& SQUEEZE_RIGHT , myThid) |
701 |
WRITE(msgBuf,'(A,7F8.4)') |
702 |
& ' SEAICE_GROWTH: Area increments 0, AREA = ', |
703 |
& AREA(1,1,bi,bj) |
704 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
705 |
& SQUEEZE_RIGHT , myThid) |
706 |
c ToM>>> |
707 |
#endif |
708 |
#endif /* SEAICE_ITD */ |
709 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
710 |
C end SEAICEadjMODE.EQ.0 statement: |
711 |
ENDIF |
712 |
#endif |
713 |
|
714 |
C 3) store regularized values of heff, hsnow, area at the onset of thermo. |
715 |
DO J=1,sNy |
716 |
DO I=1,sNx |
717 |
HEFFpreTH(I,J)=HEFF(I,J,bi,bj) |
718 |
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
719 |
AREApreTH(I,J)=AREA(I,J,bi,bj) |
720 |
#ifdef ALLOW_DIAGNOSTICS |
721 |
DIAGarrayB(I,J) = AREA(I,J,bi,bj) |
722 |
DIAGarrayC(I,J) = HEFF(I,J,bi,bj) |
723 |
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
724 |
#endif |
725 |
#ifdef ALLOW_SITRACER |
726 |
SItrHEFF(I,J,bi,bj,1)=HEFF(I,J,bi,bj) |
727 |
SItrAREA(I,J,bi,bj,2)=AREA(I,J,bi,bj) |
728 |
#endif |
729 |
ENDDO |
730 |
ENDDO |
731 |
#ifdef SEAICE_ITD |
732 |
DO IT=1,nITD |
733 |
DO J=1,sNy |
734 |
DO I=1,sNx |
735 |
HEFFITDpreTH(I,J,IT)=HEFFITD(I,J,IT,bi,bj) |
736 |
HSNWITDpreTH(I,J,IT)=HSNOWITD(I,J,IT,bi,bj) |
737 |
AREAITDpreTH(I,J,IT)=AREAITD(I,J,IT,bi,bj) |
738 |
|
739 |
C memorize areal and volume fraction of each ITD category |
740 |
IF (AREA(I,J,bi,bj) .GT. ZERO) THEN |
741 |
areaFracFactor(I,J,IT)=AREAITD(I,J,IT,bi,bj)/AREA(I,J,bi,bj) |
742 |
ELSE |
743 |
C if there's no ice, potential growth starts in 1st category |
744 |
IF (IT .EQ. 1) THEN |
745 |
areaFracFactor(I,J,IT)=ONE |
746 |
ELSE |
747 |
areaFracFactor(I,J,IT)=ZERO |
748 |
ENDIF |
749 |
ENDIF |
750 |
ENDDO |
751 |
ENDDO |
752 |
ENDDO |
753 |
#ifdef ALLOW_SITRACER |
754 |
C prepare SItrHEFF to be computed as cumulative sum |
755 |
DO iTr=2,5 |
756 |
DO J=1,sNy |
757 |
DO I=1,sNx |
758 |
SItrHEFF(I,J,bi,bj,iTr)=ZERO |
759 |
ENDDO |
760 |
ENDDO |
761 |
ENDDO |
762 |
C prepare SItrAREA to be computed as cumulative sum |
763 |
DO J=1,sNy |
764 |
DO I=1,sNx |
765 |
SItrAREA(I,J,bi,bj,3)=ZERO |
766 |
ENDDO |
767 |
ENDDO |
768 |
#endif |
769 |
#endif /* SEAICE_ITD */ |
770 |
|
771 |
C 4) treat sea ice salinity pathological cases |
772 |
#ifdef SEAICE_VARIABLE_SALINITY |
773 |
#ifdef ALLOW_AUTODIFF_TAMC |
774 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
775 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
776 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
777 |
DO J=1,sNy |
778 |
DO I=1,sNx |
779 |
IF ( (HSALT(I,J,bi,bj) .LT. 0.0).OR. |
780 |
& (HEFF(I,J,bi,bj) .EQ. 0.0) ) THEN |
781 |
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
782 |
& HSALT(I,J,bi,bj) * recip_deltaTtherm |
783 |
HSALT(I,J,bi,bj) = 0.0 _d 0 |
784 |
ENDIF |
785 |
ENDDO |
786 |
ENDDO |
787 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
788 |
|
789 |
#endif /* SEAICE_GROWTH_LEGACY */ |
790 |
|
791 |
#ifdef ALLOW_DIAGNOSTICS |
792 |
IF ( useDiagnostics ) THEN |
793 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIareaPR',0,1,3,bi,bj,myThid) |
794 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIareaPT',0,1,3,bi,bj,myThid) |
795 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIheffPT',0,1,3,bi,bj,myThid) |
796 |
CALL DIAGNOSTICS_FILL(DIAGarrayD,'SIhsnoPT',0,1,3,bi,bj,myThid) |
797 |
#ifdef ALLOW_SITRACER |
798 |
DO iTr = 1, SItrNumInUse |
799 |
WRITE(diagName,'(A4,I2.2,A2)') 'SItr',iTr,'PT' |
800 |
IF (SItrMate(iTr).EQ.'HEFF') THEN |
801 |
CALL DIAGNOSTICS_FRACT_FILL( |
802 |
I SItracer(1-OLx,1-OLy,bi,bj,iTr),HEFF(1-OLx,1-OLy,bi,bj), |
803 |
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
804 |
ELSE |
805 |
CALL DIAGNOSTICS_FRACT_FILL( |
806 |
I SItracer(1-OLx,1-OLy,bi,bj,iTr),AREA(1-OLx,1-OLy,bi,bj), |
807 |
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
808 |
ENDIF |
809 |
ENDDO |
810 |
#endif /* ALLOW_SITRACER */ |
811 |
ENDIF |
812 |
#endif /* ALLOW_DIAGNOSTICS */ |
813 |
|
814 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
815 |
Cgf no additional dependency of air-sea fluxes to ice |
816 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
817 |
DO J=1,sNy |
818 |
DO I=1,sNx |
819 |
HEFFpreTH(I,J) = 0. _d 0 |
820 |
HSNWpreTH(I,J) = 0. _d 0 |
821 |
AREApreTH(I,J) = 0. _d 0 |
822 |
ENDDO |
823 |
ENDDO |
824 |
#ifdef SEAICE_ITD |
825 |
DO IT=1,nITD |
826 |
DO J=1,sNy |
827 |
DO I=1,sNx |
828 |
HEFFITDpreTH(I,J,IT) = 0. _d 0 |
829 |
HSNWITDpreTH(I,J,IT) = 0. _d 0 |
830 |
AREAITDpreTH(I,J,IT) = 0. _d 0 |
831 |
ENDDO |
832 |
ENDDO |
833 |
ENDDO |
834 |
#endif |
835 |
ENDIF |
836 |
#endif |
837 |
|
838 |
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
839 |
DO J=1,sNy |
840 |
DO I=1,sNx |
841 |
AREAforAtmFW(I,J,bi,bj) = AREApreTH(I,J) |
842 |
ENDDO |
843 |
ENDDO |
844 |
#endif |
845 |
|
846 |
C 4) COMPUTE ACTUAL ICE/SNOW THICKNESS; USE MIN/MAX VALUES |
847 |
C TO REGULARIZE SEAICE_SOLVE4TEMP/d_AREA COMPUTATIONS |
848 |
|
849 |
#ifdef ALLOW_AUTODIFF_TAMC |
850 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
851 |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
852 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
853 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
854 |
#ifdef SEAICE_ITD |
855 |
DO IT=1,nITD |
856 |
#endif |
857 |
DO J=1,sNy |
858 |
DO I=1,sNx |
859 |
|
860 |
#ifdef SEAICE_ITD |
861 |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
862 |
#ifdef SEAICE_GROWTH_LEGACY |
863 |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
864 |
& AREAITDpreTH(I,J,IT)) |
865 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT)/tmpscal1 |
866 |
tmpscal2 = HEFFITDpreTH(I,J,IT)/tmpscal1 |
867 |
heffActualMult(I,J,IT) = MAX(tmpscal2,SEAICE_hice_reg) |
868 |
#else /* SEAICE_GROWTH_LEGACY */ |
869 |
cif regularize AREA with SEAICE_area_reg |
870 |
tmpscal1 = SQRT(AREAITDpreTH(I,J,IT) * AREAITDpreTH(I,J,IT) |
871 |
& + area_reg_sq) |
872 |
cif heffActual calculated with the regularized AREA |
873 |
tmpscal2 = HEFFITDpreTH(I,J,IT) / tmpscal1 |
874 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
875 |
heffActualMult(I,J,IT) = SQRT(tmpscal2 * tmpscal2 |
876 |
& + hice_reg_sq) |
877 |
cif hsnowActual calculated with the regularized AREA |
878 |
hsnowActualMult(I,J,IT) = HSNWITDpreTH(I,J,IT) / tmpscal1 |
879 |
#endif /* SEAICE_GROWTH_LEGACY */ |
880 |
cif regularize the inverse of heffActual by hice_reg |
881 |
recip_heffActualMult(I,J,IT) = AREAITDpreTH(I,J,IT) / |
882 |
& sqrt(HEFFITDpreTH(I,J,IT) * HEFFITDpreTH(I,J,IT) |
883 |
& + hice_reg_sq) |
884 |
cif Do not regularize when HEFFpreTH = 0 |
885 |
ELSE |
886 |
heffActualMult(I,J,IT) = ZERO |
887 |
hsnowActualMult(I,J,IT) = ZERO |
888 |
recip_heffActualMult(I,J,IT) = ZERO |
889 |
ENDIF |
890 |
#else /* SEAICE_ITD */ |
891 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
892 |
#ifdef SEAICE_GROWTH_LEGACY |
893 |
tmpscal1 = MAX(SEAICE_area_reg,AREApreTH(I,J)) |
894 |
hsnowActual(I,J) = HSNWpreTH(I,J)/tmpscal1 |
895 |
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
896 |
heffActual(I,J) = MAX(tmpscal2,SEAICE_hice_reg) |
897 |
#else /* SEAICE_GROWTH_LEGACY */ |
898 |
Cif regularize AREA with SEAICE_area_reg |
899 |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
900 |
Cif heffActual calculated with the regularized AREA |
901 |
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
902 |
Cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
903 |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
904 |
Cif hsnowActual calculated with the regularized AREA |
905 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
906 |
#endif /* SEAICE_GROWTH_LEGACY */ |
907 |
Cif regularize the inverse of heffActual by hice_reg |
908 |
recip_heffActual(I,J) = AREApreTH(I,J) / |
909 |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
910 |
Cif Do not regularize when HEFFpreTH = 0 |
911 |
ELSE |
912 |
heffActual(I,J) = ZERO |
913 |
hsnowActual(I,J) = ZERO |
914 |
recip_heffActual(I,J) = ZERO |
915 |
ENDIF |
916 |
#endif /* SEAICE_ITD */ |
917 |
|
918 |
ENDDO |
919 |
ENDDO |
920 |
#ifdef SEAICE_ITD |
921 |
ENDDO |
922 |
#endif |
923 |
|
924 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
925 |
CALL ZERO_ADJ_1D( sNx*sNy, heffActual, myThid) |
926 |
CALL ZERO_ADJ_1D( sNx*sNy, hsnowActual, myThid) |
927 |
CALL ZERO_ADJ_1D( sNx*sNy, recip_heffActual, myThid) |
928 |
#endif |
929 |
|
930 |
#ifdef SEAICE_CAP_SUBLIM |
931 |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
932 |
C AND SNOW THICKNESS |
933 |
#ifdef SEAICE_ITD |
934 |
DO IT=1,nITD |
935 |
#endif |
936 |
DO J=1,sNy |
937 |
DO I=1,sNx |
938 |
C The latent heat flux over the sea ice which |
939 |
C will sublimate all of the snow and ice over one time |
940 |
C step (W/m^2) |
941 |
#ifdef SEAICE_ITD |
942 |
IF (HEFFITDpreTH(I,J,IT) .GT. ZERO) THEN |
943 |
latentHeatFluxMaxMult(I,J,IT) = lhSublim*recip_deltaTtherm * |
944 |
& (HEFFITDpreTH(I,J,IT)*SEAICE_rhoIce + |
945 |
& HSNWITDpreTH(I,J,IT)*SEAICE_rhoSnow) |
946 |
& /AREAITDpreTH(I,J,IT) |
947 |
ELSE |
948 |
latentHeatFluxMaxMult(I,J,IT) = ZERO |
949 |
ENDIF |
950 |
#else |
951 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
952 |
latentHeatFluxMax(I,J) = lhSublim * recip_deltaTtherm * |
953 |
& (HEFFpreTH(I,J) * SEAICE_rhoIce + |
954 |
& HSNWpreTH(I,J) * SEAICE_rhoSnow)/AREApreTH(I,J) |
955 |
ELSE |
956 |
latentHeatFluxMax(I,J) = ZERO |
957 |
ENDIF |
958 |
#endif |
959 |
ENDDO |
960 |
ENDDO |
961 |
#ifdef SEAICE_ITD |
962 |
ENDDO |
963 |
#endif |
964 |
#endif /* SEAICE_CAP_SUBLIM */ |
965 |
|
966 |
C =================================================================== |
967 |
C ================PART 2: determine heat fluxes/stocks=============== |
968 |
C =================================================================== |
969 |
|
970 |
C determine available heat due to the atmosphere -- for open water |
971 |
C ================================================================ |
972 |
|
973 |
DO j=1,sNy |
974 |
DO i=1,sNx |
975 |
C ocean surface/mixed layer temperature |
976 |
TmixLoc(i,j) = theta(i,j,kSurface,bi,bj)+celsius2K |
977 |
C wind speed from exf |
978 |
UG(I,J) = MAX(SEAICE_EPS,wspeed(I,J,bi,bj)) |
979 |
ENDDO |
980 |
ENDDO |
981 |
|
982 |
#ifdef ALLOW_AUTODIFF_TAMC |
983 |
CADJ STORE qnet(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
984 |
CADJ STORE qsw(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
985 |
cCADJ STORE UG = comlev1_bibj, key = iicekey,byte=isbyte |
986 |
cCADJ STORE TmixLoc = comlev1_bibj, key = iicekey,byte=isbyte |
987 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
988 |
|
989 |
CALL SEAICE_BUDGET_OCEAN( |
990 |
I UG, |
991 |
I TmixLoc, |
992 |
O a_QbyATM_open, a_QSWbyATM_open, |
993 |
I bi, bj, myTime, myIter, myThid ) |
994 |
|
995 |
C determine available heat due to the atmosphere -- for ice covered water |
996 |
C ======================================================================= |
997 |
|
998 |
IF (useRelativeWind.AND.useAtmWind) THEN |
999 |
C Compute relative wind speed over sea ice. |
1000 |
DO J=1,sNy |
1001 |
DO I=1,sNx |
1002 |
SPEED_SQ = |
1003 |
& (uWind(I,J,bi,bj) |
1004 |
& +0.5 _d 0*(uVel(i,j,kSurface,bi,bj) |
1005 |
& +uVel(i+1,j,kSurface,bi,bj)) |
1006 |
& -0.5 _d 0*(uice(i,j,bi,bj)+uice(i+1,j,bi,bj)))**2 |
1007 |
& +(vWind(I,J,bi,bj) |
1008 |
& +0.5 _d 0*(vVel(i,j,kSurface,bi,bj) |
1009 |
& +vVel(i,j+1,kSurface,bi,bj)) |
1010 |
& -0.5 _d 0*(vice(i,j,bi,bj)+vice(i,j+1,bi,bj)))**2 |
1011 |
IF ( SPEED_SQ .LE. SEAICE_EPS_SQ ) THEN |
1012 |
UG(I,J)=SEAICE_EPS |
1013 |
ELSE |
1014 |
UG(I,J)=SQRT(SPEED_SQ) |
1015 |
ENDIF |
1016 |
ENDDO |
1017 |
ENDDO |
1018 |
ENDIF |
1019 |
|
1020 |
#ifdef ALLOW_AUTODIFF_TAMC |
1021 |
CADJ STORE tice(:,:,bi,bj) |
1022 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1023 |
CADJ STORE hsnowActual = comlev1_bibj, key = iicekey, byte = isbyte |
1024 |
CADJ STORE heffActual = comlev1_bibj, key = iicekey, byte = isbyte |
1025 |
CADJ STORE UG = comlev1_bibj, key = iicekey, byte = isbyte |
1026 |
CADJ STORE tices(:,:,:,bi,bj) |
1027 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1028 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1029 |
CADJ & key = iicekey, byte = isbyte |
1030 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1031 |
|
1032 |
C-- Start loop over multi-categories |
1033 |
#ifdef SEAICE_ITD |
1034 |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
1035 |
#endif |
1036 |
DO IT=1,SEAICE_multDim |
1037 |
C homogeneous distribution between 0 and 2 x heffActual |
1038 |
#ifndef SEAICE_ITD |
1039 |
pFac = (2.0 _d 0*IT - 1.0 _d 0)*recip_multDim |
1040 |
pFacSnow = 1. _d 0 |
1041 |
IF ( SEAICE_useMultDimSnow ) pFacSnow=pFac |
1042 |
#endif |
1043 |
DO J=1,sNy |
1044 |
DO I=1,sNx |
1045 |
#ifndef SEAICE_ITD |
1046 |
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
1047 |
C (instead of heffActual and latentHeatFluxMax) |
1048 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
1049 |
hsnowActualMult(I,J,IT)=hsnowActual(I,J)*pFacSnow |
1050 |
#ifdef SEAICE_CAP_SUBLIM |
1051 |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
1052 |
#endif |
1053 |
#endif |
1054 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1055 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1056 |
TICE(I,J,bi,bj) = ZERO |
1057 |
TICES(I,J,IT,bi,bj) = ZERO |
1058 |
ENDDO |
1059 |
ENDDO |
1060 |
ENDDO |
1061 |
|
1062 |
#ifdef ALLOW_AUTODIFF_TAMC |
1063 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1064 |
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1065 |
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
1066 |
# ifdef SEAICE_CAP_SUBLIM |
1067 |
CADJ STORE latentHeatFluxMaxMult |
1068 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1069 |
# endif |
1070 |
CADJ STORE a_QbyATMmult_cover = |
1071 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1072 |
CADJ STORE a_QSWbyATMmult_cover = |
1073 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1074 |
CADJ STORE a_FWbySublimMult = |
1075 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1076 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1077 |
|
1078 |
DO IT=1,SEAICE_multDim |
1079 |
CALL SEAICE_SOLVE4TEMP( |
1080 |
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
1081 |
#ifdef SEAICE_CAP_SUBLIM |
1082 |
I latentHeatFluxMaxMult(1,1,IT), |
1083 |
#endif |
1084 |
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
1085 |
O a_QbyATMmult_cover(1,1,IT), |
1086 |
O a_QSWbyATMmult_cover(1,1,IT), |
1087 |
O a_FWbySublimMult(1,1,IT), |
1088 |
I bi, bj, myTime, myIter, myThid ) |
1089 |
ENDDO |
1090 |
|
1091 |
#ifdef ALLOW_AUTODIFF_TAMC |
1092 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1093 |
CADJ STORE hsnowActualMult= comlev1_bibj, key = iicekey, byte = isbyte |
1094 |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
1095 |
# ifdef SEAICE_CAP_SUBLIM |
1096 |
CADJ STORE latentHeatFluxMaxMult |
1097 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1098 |
# endif |
1099 |
CADJ STORE a_QbyATMmult_cover = |
1100 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1101 |
CADJ STORE a_QSWbyATMmult_cover = |
1102 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1103 |
CADJ STORE a_FWbySublimMult = |
1104 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1105 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1106 |
|
1107 |
DO IT=1,SEAICE_multDim |
1108 |
DO J=1,sNy |
1109 |
DO I=1,sNx |
1110 |
C update TICE & TICES |
1111 |
#ifdef SEAICE_ITD |
1112 |
C calculate area weighted mean |
1113 |
C (although the ice's temperature relates to its energy content |
1114 |
C and hence should be averaged weighted by ice volume, |
1115 |
C the temperature here is a result of the fluxes through the ice surface |
1116 |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1117 |
C and hence is averaged area weighted [areaFracFactor]) |
1118 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1119 |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,IT) |
1120 |
#else |
1121 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1122 |
& + ticeOutMult(I,J,IT)*recip_multDim |
1123 |
#endif |
1124 |
TICES(I,J,IT,bi,bj) = ticeOutMult(I,J,IT) |
1125 |
C average over categories |
1126 |
#ifdef SEAICE_ITD |
1127 |
C calculate area weighted mean |
1128 |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
1129 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1130 |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1131 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1132 |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,IT) |
1133 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1134 |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,IT) |
1135 |
#else |
1136 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1137 |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1138 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1139 |
& + a_QSWbyATMmult_cover(I,J,IT)*recip_multDim |
1140 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1141 |
& + a_FWbySublimMult(I,J,IT)*recip_multDim |
1142 |
#endif |
1143 |
ENDDO |
1144 |
ENDDO |
1145 |
ENDDO |
1146 |
|
1147 |
#ifdef SEAICE_CAP_SUBLIM |
1148 |
# ifdef ALLOW_DIAGNOSTICS |
1149 |
DO J=1,sNy |
1150 |
DO I=1,sNx |
1151 |
C The actual latent heat flux realized by SOLVE4TEMP |
1152 |
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
1153 |
ENDDO |
1154 |
ENDDO |
1155 |
Cif The actual vs. maximum latent heat flux |
1156 |
IF ( useDiagnostics ) THEN |
1157 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
1158 |
& 'SIactLHF',0,1,3,bi,bj,myThid) |
1159 |
CALL DIAGNOSTICS_FILL(latentHeatFluxMax, |
1160 |
& 'SImaxLHF',0,1,3,bi,bj,myThid) |
1161 |
ENDIF |
1162 |
# endif /* ALLOW_DIAGNOSTICS */ |
1163 |
#endif /* SEAICE_CAP_SUBLIM */ |
1164 |
|
1165 |
#ifdef ALLOW_AUTODIFF_TAMC |
1166 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1167 |
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1168 |
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
1169 |
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1170 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1171 |
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1172 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1173 |
|
1174 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
1175 |
#ifdef SEAICE_ITD |
1176 |
DO IT=1,nITD |
1177 |
DO J=1,sNy |
1178 |
DO I=1,sNx |
1179 |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1180 |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1181 |
a_QSWbyATMmult_cover(I,J,IT) = a_QSWbyATMmult_cover(I,J,IT) |
1182 |
& * convertQ2HI * AREAITDpreTH(I,J,IT) |
1183 |
C and initialize r_QbyATMmult_cover |
1184 |
r_QbyATMmult_cover(I,J,IT)=a_QbyATMmult_cover(I,J,IT) |
1185 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1186 |
C Negative sublimation is resublimation and will be added as snow. |
1187 |
#ifdef SEAICE_DISABLE_SUBLIM |
1188 |
a_FWbySublimMult(I,J,IT) = ZERO |
1189 |
#endif |
1190 |
a_FWbySublimMult(I,J,IT) = SEAICE_deltaTtherm*recip_rhoIce |
1191 |
& * a_FWbySublimMult(I,J,IT)*AREAITDpreTH(I,J,IT) |
1192 |
r_FWbySublimMult(I,J,IT)=a_FWbySublimMult(I,J,IT) |
1193 |
ENDDO |
1194 |
ENDDO |
1195 |
ENDDO |
1196 |
DO J=1,sNy |
1197 |
DO I=1,sNx |
1198 |
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1199 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1200 |
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1201 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1202 |
C and initialize r_QbyATM_open |
1203 |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1204 |
ENDDO |
1205 |
ENDDO |
1206 |
#else /* SEAICE_ITD */ |
1207 |
DO J=1,sNy |
1208 |
DO I=1,sNx |
1209 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J) |
1210 |
& * convertQ2HI * AREApreTH(I,J) |
1211 |
a_QSWbyATM_cover(I,J) = a_QSWbyATM_cover(I,J) |
1212 |
& * convertQ2HI * AREApreTH(I,J) |
1213 |
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1214 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1215 |
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1216 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1217 |
C and initialize r_QbyATM_cover/r_QbyATM_open |
1218 |
r_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
1219 |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1220 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1221 |
C Negative sublimation is resublimation and will be added as snow. |
1222 |
#ifdef SEAICE_DISABLE_SUBLIM |
1223 |
Cgf just for those who may need to omit this term to reproduce old results |
1224 |
a_FWbySublim(I,J) = ZERO |
1225 |
#endif /* SEAICE_DISABLE_SUBLIM */ |
1226 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
1227 |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
1228 |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
1229 |
ENDDO |
1230 |
ENDDO |
1231 |
#endif /* SEAICE_ITD */ |
1232 |
|
1233 |
#ifdef ALLOW_AUTODIFF_TAMC |
1234 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1235 |
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1236 |
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
1237 |
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1238 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1239 |
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1240 |
CADJ STORE r_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1241 |
CADJ STORE r_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1242 |
CADJ STORE r_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1243 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1244 |
|
1245 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1246 |
Cgf no additional dependency through ice cover |
1247 |
IF ( SEAICEadjMODE.GE.3 ) THEN |
1248 |
#ifdef SEAICE_ITD |
1249 |
DO IT=1,nITD |
1250 |
DO J=1,sNy |
1251 |
DO I=1,sNx |
1252 |
a_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1253 |
r_QbyATMmult_cover(I,J,IT) = 0. _d 0 |
1254 |
a_QSWbyATMmult_cover(I,J,IT) = 0. _d 0 |
1255 |
ENDDO |
1256 |
ENDDO |
1257 |
ENDDO |
1258 |
#else |
1259 |
DO J=1,sNy |
1260 |
DO I=1,sNx |
1261 |
a_QbyATM_cover(I,J) = 0. _d 0 |
1262 |
r_QbyATM_cover(I,J) = 0. _d 0 |
1263 |
a_QSWbyATM_cover(I,J) = 0. _d 0 |
1264 |
ENDDO |
1265 |
ENDDO |
1266 |
#endif |
1267 |
ENDIF |
1268 |
#endif |
1269 |
|
1270 |
C determine available heat due to the ice pack tying the |
1271 |
C underlying surface water temperature to freezing point |
1272 |
C ====================================================== |
1273 |
|
1274 |
#ifdef ALLOW_AUTODIFF_TAMC |
1275 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
1276 |
CADJ & key = iicekey, byte = isbyte |
1277 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1278 |
CADJ & key = iicekey, byte = isbyte |
1279 |
#endif |
1280 |
|
1281 |
DO J=1,sNy |
1282 |
DO I=1,sNx |
1283 |
C FREEZING TEMP. OF SEA WATER (deg C) |
1284 |
tempFrz = SEAICE_tempFrz0 + |
1285 |
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
1286 |
C efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
1287 |
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
1288 |
tmpscal1 = SEAICE_mcPheePiston |
1289 |
ELSE |
1290 |
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
1291 |
ENDIF |
1292 |
C efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
1293 |
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1294 |
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
1295 |
MixedLayerTurbulenceFactor = ONE - |
1296 |
& SEAICE_mcPheeTaper * AREApreTH(I,J) |
1297 |
ELSEIF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1298 |
& (SEAICE_mcPheeStepFunc) ) THEN |
1299 |
MixedLayerTurbulenceFactor = ONE - SEAICE_mcPheeTaper |
1300 |
ELSE |
1301 |
MixedLayerTurbulenceFactor = ONE |
1302 |
ENDIF |
1303 |
C maximum turbulent flux, in ice meters |
1304 |
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
1305 |
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
1306 |
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
1307 |
C available turbulent flux |
1308 |
a_QbyOCN(i,j) = |
1309 |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
1310 |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
1311 |
ENDDO |
1312 |
ENDDO |
1313 |
|
1314 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1315 |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
1316 |
#endif |
1317 |
|
1318 |
C =================================================================== |
1319 |
C =========PART 3: determine effective thicknesses increments======== |
1320 |
C =================================================================== |
1321 |
|
1322 |
C compute snow/ice tendency due to sublimation |
1323 |
C ============================================ |
1324 |
|
1325 |
#ifdef ALLOW_AUTODIFF_TAMC |
1326 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1327 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1328 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1329 |
#ifdef SEAICE_ITD |
1330 |
DO IT=1,nITD |
1331 |
#endif |
1332 |
DO J=1,sNy |
1333 |
DO I=1,sNx |
1334 |
C First sublimate/deposite snow |
1335 |
tmpscal2 = |
1336 |
#ifdef SEAICE_ITD |
1337 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HSNOWITD(I,J,IT,bi,bj) |
1338 |
& *SNOW2ICE),ZERO) |
1339 |
C accumulate change over ITD categories |
1340 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1341 |
& *ICE2SNOW |
1342 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) - tmpscal2 |
1343 |
& *ICE2SNOW |
1344 |
r_FWbySublimMult(I,J,IT)= r_FWbySublimMult(I,J,IT) - tmpscal2 |
1345 |
#else |
1346 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1347 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1348 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) - tmpscal2*ICE2SNOW |
1349 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1350 |
#endif |
1351 |
ENDDO |
1352 |
ENDDO |
1353 |
#ifdef ALLOW_AUTODIFF_TAMC |
1354 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1355 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1356 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1357 |
DO J=1,sNy |
1358 |
DO I=1,sNx |
1359 |
C If anything is left, sublimate ice |
1360 |
tmpscal2 = |
1361 |
#ifdef SEAICE_ITD |
1362 |
& MAX(MIN(r_FWbySublimMult(I,J,IT),HEFFITD(I,J,IT,bi,bj)),ZERO) |
1363 |
C accumulate change over ITD categories |
1364 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1365 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) - tmpscal2 |
1366 |
r_FWbySublimMult(I,J,IT) = r_FWbySublimMult(I,J,IT) - tmpscal2 |
1367 |
#else |
1368 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1369 |
d_HEFFbySublim(I,J) = - tmpscal2 |
1370 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) - tmpscal2 |
1371 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1372 |
#endif |
1373 |
ENDDO |
1374 |
ENDDO |
1375 |
DO J=1,sNy |
1376 |
DO I=1,sNx |
1377 |
C If anything is left, it will be evaporated from the ocean rather than sublimated. |
1378 |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1379 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1380 |
#ifdef SEAICE_ITD |
1381 |
a_QbyATMmult_cover(I,J,IT) = a_QbyATMmult_cover(I,J,IT) |
1382 |
& - r_FWbySublimMult(I,J,IT) |
1383 |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1384 |
& - r_FWbySublimMult(I,J,IT) |
1385 |
#else |
1386 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1387 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1388 |
#endif |
1389 |
ENDDO |
1390 |
ENDDO |
1391 |
#ifdef SEAICE_ITD |
1392 |
C end IT loop |
1393 |
ENDDO |
1394 |
#endif |
1395 |
#ifdef SEAICE_DEBUG |
1396 |
c ToM<<< debug seaice_growth |
1397 |
WRITE(msgBuf,'(A,7F8.4)') |
1398 |
#ifdef SEAICE_ITD |
1399 |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
1400 |
& HEFFITD(1,1,:,bi,bj) |
1401 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1402 |
& SQUEEZE_RIGHT , myThid) |
1403 |
WRITE(msgBuf,'(A,7F8.4)') |
1404 |
& ' SEAICE_GROWTH: Area increments 1, AREAITD = ', |
1405 |
& AREAITD(1,1,:,bi,bj) |
1406 |
#else |
1407 |
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
1408 |
& HEFF(1,1,bi,bj) |
1409 |
#endif |
1410 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1411 |
& SQUEEZE_RIGHT , myThid) |
1412 |
c ToM>>> |
1413 |
#endif |
1414 |
|
1415 |
C compute ice thickness tendency due to ice-ocean interaction |
1416 |
C =========================================================== |
1417 |
|
1418 |
#ifdef ALLOW_AUTODIFF_TAMC |
1419 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1420 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1421 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1422 |
|
1423 |
#ifdef SEAICE_ITD |
1424 |
DO IT=1,nITD |
1425 |
DO J=1,sNy |
1426 |
DO I=1,sNx |
1427 |
C ice growth/melt due to ocean heat r_QbyOCN (W/m^2) is |
1428 |
C equally distributed under the ice and hence weighted by |
1429 |
C fractional area of each thickness category |
1430 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,IT), |
1431 |
& -HEFFITD(I,J,IT,bi,bj)) |
1432 |
d_HEFFbyOCNonICE(I,J) = d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1433 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1434 |
#ifdef ALLOW_SITRACER |
1435 |
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
1436 |
& + HEFFITD(I,J,IT,bi,bj) |
1437 |
#endif |
1438 |
ENDDO |
1439 |
ENDDO |
1440 |
ENDDO |
1441 |
DO J=1,sNy |
1442 |
DO I=1,sNx |
1443 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1444 |
ENDDO |
1445 |
ENDDO |
1446 |
#else /* SEAICE_ITD */ |
1447 |
DO J=1,sNy |
1448 |
DO I=1,sNx |
1449 |
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
1450 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1451 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj) + d_HEFFbyOCNonICE(I,J) |
1452 |
#ifdef ALLOW_SITRACER |
1453 |
SItrHEFF(I,J,bi,bj,2)=HEFF(I,J,bi,bj) |
1454 |
#endif |
1455 |
ENDDO |
1456 |
ENDDO |
1457 |
#endif /* SEAICE_ITD */ |
1458 |
#ifdef SEAICE_DEBUG |
1459 |
c ToM<<< debug seaice_growth |
1460 |
WRITE(msgBuf,'(A,7F8.4)') |
1461 |
#ifdef SEAICE_ITD |
1462 |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
1463 |
& HEFFITD(1,1,:,bi,bj) |
1464 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1465 |
& SQUEEZE_RIGHT , myThid) |
1466 |
WRITE(msgBuf,'(A,7F8.4)') |
1467 |
& ' SEAICE_GROWTH: Area increments 2, AREAITD = ', |
1468 |
& AREAITD(1,1,:,bi,bj) |
1469 |
#else |
1470 |
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
1471 |
& HEFF(1,1,bi,bj) |
1472 |
#endif |
1473 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1474 |
& SQUEEZE_RIGHT , myThid) |
1475 |
c ToM>>> |
1476 |
#endif |
1477 |
|
1478 |
C compute snow melt tendency due to snow-atmosphere interaction |
1479 |
C ================================================================== |
1480 |
|
1481 |
#ifdef ALLOW_AUTODIFF_TAMC |
1482 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1483 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1484 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1485 |
|
1486 |
#ifdef SEAICE_ITD |
1487 |
DO IT=1,nITD |
1488 |
DO J=1,sNy |
1489 |
DO I=1,sNx |
1490 |
C Convert to standard units (meters of ice) rather than to meters |
1491 |
C of snow. This appears to be more robust. |
1492 |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,IT), |
1493 |
& -HSNOWITD(I,J,IT,bi,bj)*SNOW2ICE) |
1494 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1495 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1496 |
Cgf no additional dependency through snow |
1497 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1498 |
#endif |
1499 |
d_HSNWbyATMonSNW(I,J) = d_HSNWbyATMonSNW(I,J) |
1500 |
& + tmpscal2*ICE2SNOW |
1501 |
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) |
1502 |
& + tmpscal2*ICE2SNOW |
1503 |
r_QbyATMmult_cover(I,J,IT)=r_QbyATMmult_cover(I,J,IT) |
1504 |
& - tmpscal2 |
1505 |
ENDDO |
1506 |
ENDDO |
1507 |
ENDDO |
1508 |
#else /* SEAICE_ITD */ |
1509 |
DO J=1,sNy |
1510 |
DO I=1,sNx |
1511 |
C Convert to standard units (meters of ice) rather than to meters |
1512 |
C of snow. This appears to be more robust. |
1513 |
tmpscal1=MAX(r_QbyATM_cover(I,J),-HSNOW(I,J,bi,bj)*SNOW2ICE) |
1514 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1515 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1516 |
Cgf no additional dependency through snow |
1517 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1518 |
#endif |
1519 |
d_HSNWbyATMonSNW(I,J)= tmpscal2*ICE2SNOW |
1520 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + tmpscal2*ICE2SNOW |
1521 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1522 |
ENDDO |
1523 |
ENDDO |
1524 |
#endif /* SEAICE_ITD */ |
1525 |
#ifdef SEAICE_DEBUG |
1526 |
c ToM<<< debug seaice_growth |
1527 |
WRITE(msgBuf,'(A,7F8.4)') |
1528 |
#ifdef SEAICE_ITD |
1529 |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
1530 |
& HEFFITD(1,1,:,bi,bj) |
1531 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1532 |
& SQUEEZE_RIGHT , myThid) |
1533 |
WRITE(msgBuf,'(A,7F8.4)') |
1534 |
& ' SEAICE_GROWTH: Area increments 3, AREAITD = ', |
1535 |
& AREAITD(1,1,:,bi,bj) |
1536 |
#else |
1537 |
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
1538 |
& HEFF(1,1,bi,bj) |
1539 |
#endif |
1540 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1541 |
& SQUEEZE_RIGHT , myThid) |
1542 |
c ToM>>> |
1543 |
#endif |
1544 |
|
1545 |
C compute ice thickness tendency due to the atmosphere |
1546 |
C ==================================================== |
1547 |
|
1548 |
#ifdef ALLOW_AUTODIFF_TAMC |
1549 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1550 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1551 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1552 |
|
1553 |
Cgf note: this block is not actually tested by lab_sea |
1554 |
Cgf where all experiments start in January. So even though |
1555 |
Cgf the v1.81=>v1.82 revision would change results in |
1556 |
Cgf warming conditions, the lab_sea results were not changed. |
1557 |
|
1558 |
#ifdef SEAICE_ITD |
1559 |
DO IT=1,nITD |
1560 |
DO J=1,sNy |
1561 |
DO I=1,sNx |
1562 |
#ifdef SEAICE_GROWTH_LEGACY |
1563 |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1564 |
& r_QbyATMmult_cover(I,J,IT)) |
1565 |
#else |
1566 |
tmpscal2 = MAX(-HEFFITD(I,J,IT,bi,bj), |
1567 |
& r_QbyATMmult_cover(I,J,IT) |
1568 |
c Limit ice growth by potential melt by ocean |
1569 |
& + AREAITDpreTH(I,J,IT) * r_QbyOCN(I,J)) |
1570 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1571 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1572 |
& + tmpscal2 |
1573 |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1574 |
& + tmpscal2 |
1575 |
r_QbyATMmult_cover(I,J,IT) = r_QbyATMmult_cover(I,J,IT) |
1576 |
& - tmpscal2 |
1577 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal2 |
1578 |
|
1579 |
#ifdef ALLOW_SITRACER |
1580 |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
1581 |
& + HEFFITD(I,J,IT,bi,bj) |
1582 |
#endif |
1583 |
ENDDO |
1584 |
ENDDO |
1585 |
ENDDO |
1586 |
#else /* SEAICE_ITD */ |
1587 |
DO J=1,sNy |
1588 |
DO I=1,sNx |
1589 |
|
1590 |
#ifdef SEAICE_GROWTH_LEGACY |
1591 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
1592 |
#else |
1593 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
1594 |
C Limit ice growth by potential melt by ocean |
1595 |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
1596 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1597 |
|
1598 |
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
1599 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
1600 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J)-tmpscal2 |
1601 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal2 |
1602 |
|
1603 |
#ifdef ALLOW_SITRACER |
1604 |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
1605 |
#endif |
1606 |
ENDDO |
1607 |
ENDDO |
1608 |
#endif /* SEAICE_ITD */ |
1609 |
#ifdef SEAICE_DEBUG |
1610 |
c ToM<<< debug seaice_growth |
1611 |
WRITE(msgBuf,'(A,7F8.4)') |
1612 |
#ifdef SEAICE_ITD |
1613 |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
1614 |
& HEFFITD(1,1,:,bi,bj) |
1615 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1616 |
& SQUEEZE_RIGHT , myThid) |
1617 |
WRITE(msgBuf,'(A,7F8.4)') |
1618 |
& ' SEAICE_GROWTH: Area increments 4, AREAITD = ', |
1619 |
& AREAITD(1,1,:,bi,bj) |
1620 |
#else |
1621 |
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
1622 |
& HEFF(1,1,bi,bj) |
1623 |
#endif |
1624 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1625 |
& SQUEEZE_RIGHT , myThid) |
1626 |
c ToM>>> |
1627 |
#endif |
1628 |
|
1629 |
C add snow precipitation to HSNOW. |
1630 |
C ================================================= |
1631 |
#ifdef ALLOW_ATM_TEMP |
1632 |
# ifdef ALLOW_AUTODIFF_TAMC |
1633 |
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1634 |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1635 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1636 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
1637 |
IF ( snowPrecipFile .NE. ' ' ) THEN |
1638 |
C add snowPrecip to HSNOW |
1639 |
DO J=1,sNy |
1640 |
DO I=1,sNx |
1641 |
d_HSNWbyRAIN(I,J) = convertPRECIP2HI * ICE2SNOW * |
1642 |
& snowPrecip(i,j,bi,bj) * AREApreTH(I,J) |
1643 |
d_HFRWbyRAIN(I,J) = -convertPRECIP2HI * |
1644 |
& ( PRECIP(I,J,bi,bj) - snowPrecip(I,J,bi,bj) ) * |
1645 |
& AREApreTH(I,J) |
1646 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1647 |
ENDDO |
1648 |
ENDDO |
1649 |
ELSE |
1650 |
C attribute precip to fresh water or snow stock, |
1651 |
C depending on atmospheric conditions. |
1652 |
DO J=1,sNy |
1653 |
DO I=1,sNx |
1654 |
C possible alternatives to the a_QbyATM_cover criterium |
1655 |
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
1656 |
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
1657 |
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
1658 |
C add precip as snow |
1659 |
d_HFRWbyRAIN(I,J)=0. _d 0 |
1660 |
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
1661 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1662 |
ELSE |
1663 |
C add precip to the fresh water bucket |
1664 |
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
1665 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1666 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
1667 |
ENDIF |
1668 |
ENDDO |
1669 |
ENDDO |
1670 |
#ifdef SEAICE_ITD |
1671 |
DO IT=1,nITD |
1672 |
DO J=1,sNy |
1673 |
DO I=1,sNx |
1674 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) |
1675 |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,IT) |
1676 |
ENDDO |
1677 |
ENDDO |
1678 |
ENDDO |
1679 |
#else |
1680 |
DO J=1,sNy |
1681 |
DO I=1,sNx |
1682 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1683 |
ENDDO |
1684 |
ENDDO |
1685 |
#endif |
1686 |
Cgf note: this does not affect air-sea heat flux, |
1687 |
Cgf since the implied air heat gain to turn |
1688 |
Cgf rain to snow is not a surface process. |
1689 |
C end of IF statement snowPrecipFile: |
1690 |
ENDIF |
1691 |
#endif /* ALLOW_ATM_TEMP */ |
1692 |
#ifdef SEAICE_DEBUG |
1693 |
c ToM<<< debug seaice_growth |
1694 |
WRITE(msgBuf,'(A,7F8.4)') |
1695 |
#ifdef SEAICE_ITD |
1696 |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
1697 |
& HEFFITD(1,1,:,bi,bj) |
1698 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1699 |
& SQUEEZE_RIGHT , myThid) |
1700 |
WRITE(msgBuf,'(A,7F8.4)') |
1701 |
& ' SEAICE_GROWTH: Area increments 5, AREAITD = ', |
1702 |
& AREAITD(1,1,:,bi,bj) |
1703 |
#else |
1704 |
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
1705 |
& HEFF(1,1,bi,bj) |
1706 |
#endif |
1707 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1708 |
& SQUEEZE_RIGHT , myThid) |
1709 |
c ToM>>> |
1710 |
#endif |
1711 |
|
1712 |
C compute snow melt due to heat available from ocean. |
1713 |
C ================================================================= |
1714 |
|
1715 |
Cgf do we need to keep this comment and cpp bracket? |
1716 |
Cph( very sensitive bit here by JZ |
1717 |
#ifndef SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING |
1718 |
#ifdef ALLOW_AUTODIFF_TAMC |
1719 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1720 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1721 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1722 |
|
1723 |
#ifdef SEAICE_ITD |
1724 |
DO IT=1,nITD |
1725 |
DO J=1,sNy |
1726 |
DO I=1,sNx |
1727 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,IT), |
1728 |
& -HSNOWITD(I,J,IT,bi,bj)) |
1729 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1730 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1731 |
Cgf no additional dependency through snow |
1732 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1733 |
#endif |
1734 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1735 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
1736 |
HSNOWITD(I,J,IT,bi,bj) = HSNOWITD(I,J,IT,bi,bj) + tmpscal2 |
1737 |
ENDDO |
1738 |
ENDDO |
1739 |
ENDDO |
1740 |
#else /* SEAICE_ITD */ |
1741 |
DO J=1,sNy |
1742 |
DO I=1,sNx |
1743 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
1744 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1745 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1746 |
Cgf no additional dependency through snow |
1747 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1748 |
#endif |
1749 |
d_HSNWbyOCNonSNW(I,J) = tmpscal2 |
1750 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) |
1751 |
& -d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
1752 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
1753 |
ENDDO |
1754 |
ENDDO |
1755 |
#endif /* SEAICE_ITD */ |
1756 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1757 |
Cph) |
1758 |
#ifdef SEAICE_DEBUG |
1759 |
c ToM<<< debug seaice_growth |
1760 |
WRITE(msgBuf,'(A,7F8.4)') |
1761 |
#ifdef SEAICE_ITD |
1762 |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
1763 |
& HEFFITD(1,1,:,bi,bj) |
1764 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1765 |
& SQUEEZE_RIGHT , myThid) |
1766 |
WRITE(msgBuf,'(A,7F8.4)') |
1767 |
& ' SEAICE_GROWTH: Area increments 6, AREAITD = ', |
1768 |
& AREAITD(1,1,:,bi,bj) |
1769 |
#else |
1770 |
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
1771 |
& HEFF(1,1,bi,bj) |
1772 |
#endif |
1773 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1774 |
& SQUEEZE_RIGHT , myThid) |
1775 |
c ToM>>> |
1776 |
#endif |
1777 |
|
1778 |
C gain of new ice over open water |
1779 |
C =============================== |
1780 |
#ifdef ALLOW_AUTODIFF_TAMC |
1781 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1782 |
CADJ STORE r_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1783 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1784 |
CADJ STORE a_QSWbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1785 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1786 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1787 |
|
1788 |
DO J=1,sNy |
1789 |
DO I=1,sNx |
1790 |
C Initial ice growth is triggered by open water |
1791 |
C heat flux overcoming potential melt by ocean |
1792 |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
1793 |
& (1.0 _d 0 - AREApreTH(I,J)) |
1794 |
C Penetrative shortwave flux beyond first layer |
1795 |
C that is therefore not available to ice growth/melt |
1796 |
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
1797 |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
1798 |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1799 |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
1800 |
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
1801 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1802 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1803 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
1804 |
#ifdef SEAICE_ITD |
1805 |
C open water area fraction |
1806 |
tmpscal0 = ONE-AREApreTH(I,J) |
1807 |
C determine thickness of new ice |
1808 |
ctomC considering the entire open water area to refreeze |
1809 |
ctom tmpscal1 = tmpscal3/tmpscal0 |
1810 |
C considering a minimum lead ice thickness of 10 cm |
1811 |
C WATCH that leadIceThickMin is smaller that Hlimit(1)! |
1812 |
leadIceThickMin = 0.1 |
1813 |
tmpscal1 = MAX(leadIceThickMin,tmpscal3/tmpscal0) |
1814 |
C adjust ice area fraction covered by new ice |
1815 |
tmpscal0 = tmpscal3/tmpscal1 |
1816 |
C then add new ice volume to appropriate thickness category |
1817 |
DO IT=1,nITD |
1818 |
IF (tmpscal1.LT.Hlimit(IT)) THEN |
1819 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal3 |
1820 |
tmpscal3=ZERO |
1821 |
C not sure if AREAITD should be changed here since AREA is incremented |
1822 |
C in PART 4 below in non-itd code |
1823 |
C in this scenario all open water is covered by new ice instantaneously, |
1824 |
C i.e. no delayed lead closing is concidered such as is associated with |
1825 |
C Hibler's h_0 parameter |
1826 |
AREAITD(I,J,IT,bi,bj) = AREAITD(I,J,IT,bi,bj) |
1827 |
& + tmpscal0 |
1828 |
tmpscal0=ZERO |
1829 |
ENDIF |
1830 |
ENDDO |
1831 |
#else |
1832 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
1833 |
#endif |
1834 |
ENDDO |
1835 |
ENDDO |
1836 |
|
1837 |
#ifdef ALLOW_SITRACER |
1838 |
#ifdef SEAICE_ITD |
1839 |
DO IT=1,nITD |
1840 |
DO J=1,sNy |
1841 |
DO I=1,sNx |
1842 |
c needs to be here to allow use also with LEGACY branch |
1843 |
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
1844 |
& + HEFFITD(I,J,IT,bi,bj) |
1845 |
ENDDO |
1846 |
ENDDO |
1847 |
ENDDO |
1848 |
#else |
1849 |
DO J=1,sNy |
1850 |
DO I=1,sNx |
1851 |
C needs to be here to allow use also with LEGACY branch |
1852 |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1853 |
ENDDO |
1854 |
ENDDO |
1855 |
#endif |
1856 |
#endif /* ALLOW_SITRACER */ |
1857 |
#ifdef SEAICE_DEBUG |
1858 |
c ToM<<< debug seaice_growth |
1859 |
WRITE(msgBuf,'(A,7F8.4)') |
1860 |
#ifdef SEAICE_ITD |
1861 |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
1862 |
& HEFFITD(1,1,:,bi,bj) |
1863 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1864 |
& SQUEEZE_RIGHT , myThid) |
1865 |
WRITE(msgBuf,'(A,7F8.4)') |
1866 |
& ' SEAICE_GROWTH: Area increments 7, AREAITD = ', |
1867 |
& AREAITD(1,1,:,bi,bj) |
1868 |
#else |
1869 |
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
1870 |
& HEFF(1,1,bi,bj) |
1871 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1872 |
& SQUEEZE_RIGHT , myThid) |
1873 |
WRITE(msgBuf,'(A,7F8.4)') |
1874 |
& ' SEAICE_GROWTH: Area increments 7, AREA = ', |
1875 |
& AREA(1,1,bi,bj) |
1876 |
#endif |
1877 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1878 |
& SQUEEZE_RIGHT , myThid) |
1879 |
c ToM>>> |
1880 |
#endif |
1881 |
|
1882 |
C convert snow to ice if submerged. |
1883 |
C ================================= |
1884 |
|
1885 |
#ifndef SEAICE_GROWTH_LEGACY |
1886 |
C note: in legacy, this process is done at the end |
1887 |
#ifdef ALLOW_AUTODIFF_TAMC |
1888 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1889 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1890 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1891 |
IF ( SEAICEuseFlooding ) THEN |
1892 |
#ifdef SEAICE_ITD |
1893 |
DO IT=1,nITD |
1894 |
DO J=1,sNy |
1895 |
DO I=1,sNx |
1896 |
tmpscal0 = (HSNOWITD(I,J,IT,bi,bj)*SEAICE_rhoSnow |
1897 |
& + HEFFITD(I,J,IT,bi,bj) *SEAICE_rhoIce) |
1898 |
& *recip_rhoConst |
1899 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,IT,bi,bj)) |
1900 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1901 |
HEFFITD(I,J,IT,bi,bj) = HEFFITD(I,J,IT,bi,bj) + tmpscal1 |
1902 |
HSNOWITD(I,J,IT,bi,bj)= HSNOWITD(I,J,IT,bi,bj) - tmpscal1 |
1903 |
& * ICE2SNOW |
1904 |
ENDDO |
1905 |
ENDDO |
1906 |
ENDDO |
1907 |
#else |
1908 |
DO J=1,sNy |
1909 |
DO I=1,sNx |
1910 |
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1911 |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
1912 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
1913 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
1914 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1915 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1916 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1917 |
ENDDO |
1918 |
ENDDO |
1919 |
#endif |
1920 |
ENDIF |
1921 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1922 |
#ifdef SEAICE_DEBUG |
1923 |
c ToM<<< debug seaice_growth |
1924 |
WRITE(msgBuf,'(A,7F8.4)') |
1925 |
#ifdef SEAICE_ITD |
1926 |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
1927 |
& HEFFITD(1,1,:,bi,bj) |
1928 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1929 |
& SQUEEZE_RIGHT , myThid) |
1930 |
WRITE(msgBuf,'(A,7F8.4)') |
1931 |
& ' SEAICE_GROWTH: Area increments 8, AREAITD = ', |
1932 |
& AREAITD(1,1,:,bi,bj) |
1933 |
#else |
1934 |
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
1935 |
& HEFF(1,1,bi,bj) |
1936 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1937 |
& SQUEEZE_RIGHT , myThid) |
1938 |
WRITE(msgBuf,'(A,7F8.4)') |
1939 |
& ' SEAICE_GROWTH: Area increments 8, AREA = ', |
1940 |
& AREA(1,1,bi,bj) |
1941 |
#endif |
1942 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1943 |
& SQUEEZE_RIGHT , myThid) |
1944 |
c ToM>>> |
1945 |
#endif |
1946 |
|
1947 |
C =================================================================== |
1948 |
C ==========PART 4: determine ice cover fraction increments=========- |
1949 |
C =================================================================== |
1950 |
|
1951 |
#ifdef ALLOW_AUTODIFF_TAMC |
1952 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1953 |
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1954 |
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
1955 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
1956 |
CADJ STORE recip_heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
1957 |
CADJ STORE d_hsnwbyatmonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
1958 |
cph( |
1959 |
cphCADJ STORE d_AREAbyATM = comlev1_bibj,key=iicekey,byte=isbyte |
1960 |
cphCADJ STORE d_AREAbyICE = comlev1_bibj,key=iicekey,byte=isbyte |
1961 |
cphCADJ STORE d_AREAbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1962 |
cph) |
1963 |
CADJ STORE a_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1964 |
CADJ STORE heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
1965 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1966 |
CADJ STORE HEFF(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1967 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1968 |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1969 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1970 |
|
1971 |
#ifdef SEAICE_ITD |
1972 |
C replaces Hibler '79 scheme and lead closing parameter |
1973 |
C because ITD accounts explicitly for lead openings and |
1974 |
C different melt rates due to varying ice thickness |
1975 |
C |
1976 |
C only consider ice area loss due to total ice thickness loss; |
1977 |
C ice area gain due to freezing of open water is handled above |
1978 |
C under "gain of new ice over open water" |
1979 |
C |
1980 |
C does not account for lateral melt of ice floes |
1981 |
C |
1982 |
C AREAITD is incremented in section "gain of new ice over open water" above |
1983 |
C |
1984 |
DO IT=1,nITD |
1985 |
DO J=1,sNy |
1986 |
DO I=1,sNx |
1987 |
IF (HEFFITD(I,J,IT,bi,bj).LE.ZERO) THEN |
1988 |
AREAITD(I,J,IT,bi,bj)=ZERO |
1989 |
ENDIF |
1990 |
#ifdef ALLOW_SITRACER |
1991 |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
1992 |
& + AREAITD(I,J,IT,bi,bj) |
1993 |
#endif /* ALLOW_SITRACER */ |
1994 |
ENDDO |
1995 |
ENDDO |
1996 |
ENDDO |
1997 |
#else /* SEAICE_ITD */ |
1998 |
DO J=1,sNy |
1999 |
DO I=1,sNx |
2000 |
|
2001 |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
2002 |
recip_HO=1. _d 0 / HO_south |
2003 |
ELSE |
2004 |
recip_HO=1. _d 0 / HO |
2005 |
ENDIF |
2006 |
#ifdef SEAICE_GROWTH_LEGACY |
2007 |
tmpscal0=HEFF(I,J,bi,bj) - d_HEFFbyATMonOCN(I,J) |
2008 |
recip_HH = AREApreTH(I,J) /(tmpscal0+.00001 _d 0) |
2009 |
#else |
2010 |
recip_HH = recip_heffActual(I,J) |
2011 |
#endif |
2012 |
|
2013 |
C gain of ice over open water : computed from |
2014 |
C (SEAICE_areaGainFormula.EQ.1) from growth by ATM |
2015 |
C (SEAICE_areaGainFormula.EQ.2) from predicted growth by ATM |
2016 |
IF (SEAICE_areaGainFormula.EQ.1) THEN |
2017 |
tmpscal4 = MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
2018 |
ELSE |
2019 |
tmpscal4=MAX(ZERO,a_QbyATM_open(I,J)) |
2020 |
ENDIF |
2021 |
|
2022 |
C loss of ice cover by melting : computed from |
2023 |
C (SEAICE_areaLossFormula.EQ.1) from all but only melt conributions by ATM and OCN |
2024 |
C (SEAICE_areaLossFormula.EQ.2) from net melt-growth>0 by ATM and OCN |
2025 |
C (SEAICE_areaLossFormula.EQ.3) from predicted melt by ATM |
2026 |
IF (SEAICE_areaLossFormula.EQ.1) THEN |
2027 |
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) ) |
2028 |
& + MIN( 0. _d 0 , d_HEFFbyATMonOCN_open(I,J) ) |
2029 |
& + MIN( 0. _d 0 , d_HEFFbyOCNonICE(I,J) ) |
2030 |
ELSEIF (SEAICE_areaLossFormula.EQ.2) THEN |
2031 |
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) |
2032 |
& + d_HEFFbyATMonOCN_open(I,J) + d_HEFFbyOCNonICE(I,J) ) |
2033 |
ELSE |
2034 |
C compute heff after ice melt by ocn: |
2035 |
tmpscal0=HEFF(I,J,bi,bj) - d_HEFFbyATMonOCN(I,J) |
2036 |
C compute available heat left after snow melt by atm: |
2037 |
tmpscal1= a_QbyATM_open(I,J)+a_QbyATM_cover(I,J) |
2038 |
& - d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2039 |
C could not melt more than all the ice |
2040 |
tmpscal2 = MAX(-tmpscal0,tmpscal1) |
2041 |
tmpscal3 = MIN(ZERO,tmpscal2) |
2042 |
ENDIF |
2043 |
|
2044 |
C apply tendency |
2045 |
IF ( (HEFF(i,j,bi,bj).GT.0. _d 0).OR. |
2046 |
& (HSNOW(i,j,bi,bj).GT.0. _d 0) ) THEN |
2047 |
AREA(I,J,bi,bj)=MAX(0. _d 0, |
2048 |
& MIN( SEAICE_area_max, AREA(I,J,bi,bj) |
2049 |
& + recip_HO*tmpscal4+HALF*recip_HH*tmpscal3 )) |
2050 |
ELSE |
2051 |
AREA(I,J,bi,bj)=0. _d 0 |
2052 |
ENDIF |
2053 |
#ifdef ALLOW_SITRACER |
2054 |
SItrAREA(I,J,bi,bj,3)=AREA(I,J,bi,bj) |
2055 |
#endif /* ALLOW_SITRACER */ |
2056 |
#ifdef ALLOW_DIAGNOSTICS |
2057 |
d_AREAbyATM(I,J)= |
2058 |
& recip_HO*MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
2059 |
& +HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_open(I,J)) |
2060 |
d_AREAbyICE(I,J)= |
2061 |
& HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_cover(I,J)) |
2062 |
d_AREAbyOCN(I,J)= |
2063 |
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
2064 |
#endif /* ALLOW_DIAGNOSTICS */ |
2065 |
ENDDO |
2066 |
ENDDO |
2067 |
#endif /* SEAICE_ITD */ |
2068 |
|
2069 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
2070 |
Cgf 'bulk' linearization of area=f(HEFF) |
2071 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
2072 |
#ifdef SEAICE_ITD |
2073 |
DO IT=1,nITD |
2074 |
DO J=1,sNy |
2075 |
DO I=1,sNx |
2076 |
AREAITD(I,J,IT,bi,bj) = AREAITDpreTH(I,J,IT) + 0.1 _d 0 * |
2077 |
& ( HEFFITD(I,J,IT,bi,bj) - HEFFITDpreTH(I,J,IT) ) |
2078 |
ENDDO |
2079 |
ENDDO |
2080 |
ENDDO |
2081 |
#else |
2082 |
DO J=1,sNy |
2083 |
DO I=1,sNx |
2084 |
C AREA(I,J,bi,bj) = 0.1 _d 0 * HEFF(I,J,bi,bj) |
2085 |
AREA(I,J,bi,bj) = AREApreTH(I,J) + 0.1 _d 0 * |
2086 |
& ( HEFF(I,J,bi,bj) - HEFFpreTH(I,J) ) |
2087 |
ENDDO |
2088 |
ENDDO |
2089 |
#endif |
2090 |
ENDIF |
2091 |
#endif |
2092 |
#ifdef SEAICE_ITD |
2093 |
C check categories for consistency with limits after growth/melt |
2094 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime,myIter,myThid) |
2095 |
C finally update total AREA, HEFF, HSNOW |
2096 |
CALL SEAICE_ITD_SUM(bi, bj, myTime,myIter,myThid) |
2097 |
#endif |
2098 |
|
2099 |
C =================================================================== |
2100 |
C =============PART 5: determine ice salinity increments============= |
2101 |
C =================================================================== |
2102 |
|
2103 |
#ifndef SEAICE_VARIABLE_SALINITY |
2104 |
# if (defined ALLOW_AUTODIFF_TAMC && defined ALLOW_SALT_PLUME) |
2105 |
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2106 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
2107 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
2108 |
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
2109 |
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
2110 |
CADJ STORE d_HEFFbyFLOODING = comlev1_bibj,key=iicekey,byte=isbyte |
2111 |
CADJ STORE d_HEFFbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
2112 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
2113 |
CADJ & key = iicekey, byte = isbyte |
2114 |
# endif /* ALLOW_AUTODIFF_TAMC and ALLOW_SALT_PLUME */ |
2115 |
DO J=1,sNy |
2116 |
DO I=1,sNx |
2117 |
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
2118 |
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
2119 |
& + d_HEFFbySublim(I,J) |
2120 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2121 |
& + d_HEFFbyRLX(I,J) |
2122 |
#endif |
2123 |
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
2124 |
& * recip_deltaTtherm * SEAICE_rhoIce |
2125 |
saltFlux(I,J,bi,bj) = tmpscal2 |
2126 |
#ifdef ALLOW_SALT_PLUME |
2127 |
tmpscal3 = tmpscal1*salt(I,J,kSurface,bi,bj)*HEFFM(I,J,bi,bj) |
2128 |
& * recip_deltaTtherm * SEAICE_rhoIce |
2129 |
saltPlumeFlux(I,J,bi,bj) = MAX( tmpscal3-tmpscal2 , 0. _d 0) |
2130 |
& *SPsalFRAC |
2131 |
#endif /* ALLOW_SALT_PLUME */ |
2132 |
ENDDO |
2133 |
ENDDO |
2134 |
#endif /* ndef SEAICE_VARIABLE_SALINITY */ |
2135 |
|
2136 |
#ifdef SEAICE_VARIABLE_SALINITY |
2137 |
|
2138 |
#ifdef SEAICE_GROWTH_LEGACY |
2139 |
# ifdef ALLOW_AUTODIFF_TAMC |
2140 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2141 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2142 |
DO J=1,sNy |
2143 |
DO I=1,sNx |
2144 |
C set HSALT = 0 if HSALT < 0 and compute salt to remove from ocean |
2145 |
IF ( HSALT(I,J,bi,bj) .LT. 0.0 ) THEN |
2146 |
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
2147 |
& HSALT(I,J,bi,bj) * recip_deltaTtherm |
2148 |
HSALT(I,J,bi,bj) = 0.0 _d 0 |
2149 |
ENDIF |
2150 |
ENDDO |
2151 |
ENDDO |
2152 |
#endif /* SEAICE_GROWTH_LEGACY */ |
2153 |
|
2154 |
#ifdef ALLOW_AUTODIFF_TAMC |
2155 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2156 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2157 |
|
2158 |
DO J=1,sNy |
2159 |
DO I=1,sNx |
2160 |
C sum up the terms that affect the salt content of the ice pack |
2161 |
tmpscal1=d_HEFFbyOCNonICE(I,J)+d_HEFFbyATMonOCN(I,J) |
2162 |
|
2163 |
C recompute HEFF before thermodynamic updates (which is not AREApreTH in legacy code) |
2164 |
tmpscal2=HEFF(I,J,bi,bj)-tmpscal1-d_HEFFbyFLOODING(I,J) |
2165 |
C tmpscal1 > 0 : m of sea ice that is created |
2166 |
IF ( tmpscal1 .GE. 0.0 ) THEN |
2167 |
saltFlux(I,J,bi,bj) = |
2168 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2169 |
& *SEAICE_saltFrac*salt(I,J,kSurface,bi,bj) |
2170 |
& *tmpscal1*SEAICE_rhoIce |
2171 |
#ifdef ALLOW_SALT_PLUME |
2172 |
C saltPlumeFlux is defined only during freezing: |
2173 |
saltPlumeFlux(I,J,bi,bj)= |
2174 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2175 |
& *(ONE-SEAICE_saltFrac)*salt(I,J,kSurface,bi,bj) |
2176 |
& *tmpscal1*SEAICE_rhoIce |
2177 |
& *SPsalFRAC |
2178 |
C if SaltPlumeSouthernOcean=.FALSE. turn off salt plume in Southern Ocean |
2179 |
IF ( .NOT. SaltPlumeSouthernOcean ) THEN |
2180 |
IF ( YC(I,J,bi,bj) .LT. 0.0 _d 0 ) |
2181 |
& saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2182 |
ENDIF |
2183 |
#endif /* ALLOW_SALT_PLUME */ |
2184 |
|
2185 |
C tmpscal1 < 0 : m of sea ice that is melted |
2186 |
ELSE |
2187 |
saltFlux(I,J,bi,bj) = |
2188 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2189 |
& *HSALT(I,J,bi,bj) |
2190 |
& *tmpscal1/tmpscal2 |
2191 |
#ifdef ALLOW_SALT_PLUME |
2192 |
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2193 |
#endif /* ALLOW_SALT_PLUME */ |
2194 |
ENDIF |
2195 |
C update HSALT based on surface saltFlux |
2196 |
HSALT(I,J,bi,bj) = HSALT(I,J,bi,bj) + |
2197 |
& saltFlux(I,J,bi,bj) * SEAICE_deltaTtherm |
2198 |
saltFlux(I,J,bi,bj) = |
2199 |
& saltFlux(I,J,bi,bj) + saltFluxAdjust(I,J) |
2200 |
#ifdef SEAICE_GROWTH_LEGACY |
2201 |
C set HSALT = 0 if HEFF = 0 and compute salt to dump into ocean |
2202 |
IF ( HEFF(I,J,bi,bj) .EQ. 0.0 ) THEN |
2203 |
saltFlux(I,J,bi,bj) = saltFlux(I,J,bi,bj) - |
2204 |
& HEFFM(I,J,bi,bj) * HSALT(I,J,bi,bj) * recip_deltaTtherm |
2205 |
HSALT(I,J,bi,bj) = 0.0 _d 0 |
2206 |
#ifdef ALLOW_SALT_PLUME |
2207 |
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2208 |
#endif /* ALLOW_SALT_PLUME */ |
2209 |
ENDIF |
2210 |
#endif /* SEAICE_GROWTH_LEGACY */ |
2211 |
ENDDO |
2212 |
ENDDO |
2213 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
2214 |
|
2215 |
C ======================================================================= |
2216 |
C ==LEGACY PART 6 (LEGACY) treat pathological cases, then do flooding === |
2217 |
C ======================================================================= |
2218 |
|
2219 |
#ifdef SEAICE_GROWTH_LEGACY |
2220 |
|
2221 |
C treat values of ice cover fraction oustide |
2222 |
C the [0 1] range, and other such issues. |
2223 |
C =========================================== |
2224 |
|
2225 |
Cgf note: this part cannot be heat and water conserving |
2226 |
|
2227 |
#ifdef ALLOW_AUTODIFF_TAMC |
2228 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
2229 |
CADJ & key = iicekey, byte = isbyte |
2230 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, |
2231 |
CADJ & key = iicekey, byte = isbyte |
2232 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2233 |
DO J=1,sNy |
2234 |
DO I=1,sNx |
2235 |
C NOW SET AREA(I,J,bi,bj)=0 WHERE THERE IS NO ICE |
2236 |
CML replaced "/.0001 _d 0" by "*1. _d 4", 1e-4 is probably |
2237 |
CML meant to be something like a minimum thickness |
2238 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),HEFF(I,J,bi,bj)*1. _d 4) |
2239 |
ENDDO |
2240 |
ENDDO |
2241 |
|
2242 |
#ifdef ALLOW_AUTODIFF_TAMC |
2243 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
2244 |
CADJ & key = iicekey, byte = isbyte |
2245 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2246 |
DO J=1,sNy |
2247 |
DO I=1,sNx |
2248 |
C NOW TRUNCATE AREA |
2249 |
AREA(I,J,bi,bj)=MIN(ONE,AREA(I,J,bi,bj)) |
2250 |
ENDDO |
2251 |
ENDDO |
2252 |
|
2253 |
#ifdef ALLOW_AUTODIFF_TAMC |
2254 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
2255 |
CADJ & key = iicekey, byte = isbyte |
2256 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, |
2257 |
CADJ & key = iicekey, byte = isbyte |
2258 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2259 |
DO J=1,sNy |
2260 |
DO I=1,sNx |
2261 |
AREA(I,J,bi,bj) = MAX(ZERO,AREA(I,J,bi,bj)) |
2262 |
HSNOW(I,J,bi,bj) = MAX(ZERO,HSNOW(I,J,bi,bj)) |
2263 |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
2264 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
2265 |
#ifdef SEAICE_CAP_HEFF |
2266 |
C This is not energy conserving, but at least it conserves fresh water |
2267 |
tmpscal0 = -MAX(HEFF(I,J,bi,bj)-MAX_HEFF,0. _d 0) |
2268 |
d_HEFFbyNeg(I,J) = d_HEFFbyNeg(I,J) + tmpscal0 |
2269 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal0 |
2270 |
#endif /* SEAICE_CAP_HEFF */ |
2271 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
2272 |
ENDDO |
2273 |
ENDDO |
2274 |
|
2275 |
C convert snow to ice if submerged. |
2276 |
C ================================= |
2277 |
|
2278 |
IF ( SEAICEuseFlooding ) THEN |
2279 |
DO J=1,sNy |
2280 |
DO I=1,sNx |
2281 |
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2282 |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
2283 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
2284 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
2285 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
2286 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
2287 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
2288 |
ENDDO |
2289 |
ENDDO |
2290 |
ENDIF |
2291 |
|
2292 |
#endif /* SEAICE_GROWTH_LEGACY */ |
2293 |
|
2294 |
#ifdef ALLOW_SITRACER |
2295 |
DO J=1,sNy |
2296 |
DO I=1,sNx |
2297 |
C needs to be here to allow use also with LEGACY branch |
2298 |
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
2299 |
ENDDO |
2300 |
ENDDO |
2301 |
#endif /* ALLOW_SITRACER */ |
2302 |
|
2303 |
C =================================================================== |
2304 |
C ==============PART 7: determine ocean model forcing================ |
2305 |
C =================================================================== |
2306 |
|
2307 |
C compute net heat flux leaving/entering the ocean, |
2308 |
C accounting for the part used in melt/freeze processes |
2309 |
C ===================================================== |
2310 |
|
2311 |
#ifdef SEAICE_ITD |
2312 |
C compute total of "mult" fluxes for ocean forcing |
2313 |
DO J=1,sNy |
2314 |
DO I=1,sNx |
2315 |
a_QbyATM_cover(I,J) = 0.0 _d 0 |
2316 |
r_QbyATM_cover(I,J) = 0.0 _d 0 |
2317 |
a_QSWbyATM_cover(I,J) = 0.0 _d 0 |
2318 |
r_FWbySublim(I,J) = 0.0 _d 0 |
2319 |
ENDDO |
2320 |
ENDDO |
2321 |
DO IT=1,nITD |
2322 |
DO J=1,sNy |
2323 |
DO I=1,sNx |
2324 |
cToM if fluxes in W/m^2 then |
2325 |
c a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2326 |
c & + a_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2327 |
c r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2328 |
c & + r_QbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2329 |
c a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2330 |
c & + a_QSWbyATMmult_cover(I,J,IT) * areaFracFactor(I,J,IT) |
2331 |
c r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2332 |
c & + r_FWbySublimMult(I,J,IT) * areaFracFactor(I,J,IT) |
2333 |
cToM if fluxes in effective ice meters, i.e. ice volume per area, then |
2334 |
a_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
2335 |
& + a_QbyATMmult_cover(I,J,IT) |
2336 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) |
2337 |
& + r_QbyATMmult_cover(I,J,IT) |
2338 |
a_QSWbyATM_cover(I,J)=a_QSWbyATM_cover(I,J) |
2339 |
& + a_QSWbyATMmult_cover(I,J,IT) |
2340 |
r_FWbySublim(I,J)=r_FWbySublim(I,J) |
2341 |
& + r_FWbySublimMult(I,J,IT) |
2342 |
ENDDO |
2343 |
ENDDO |
2344 |
ENDDO |
2345 |
#endif |
2346 |
|
2347 |
#ifdef ALLOW_AUTODIFF_TAMC |
2348 |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
2349 |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
2350 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2351 |
|
2352 |
DO J=1,sNy |
2353 |
DO I=1,sNx |
2354 |
QNET(I,J,bi,bj) = r_QbyATM_cover(I,J) + r_QbyATM_open(I,J) |
2355 |
#ifndef SEAICE_GROWTH_LEGACY |
2356 |
C in principle a_QSWbyATM_cover should always be included here, however |
2357 |
C for backward compatibility it is left out of the LEGACY branch |
2358 |
& + a_QSWbyATM_cover(I,J) |
2359 |
#endif /* SEAICE_GROWTH_LEGACY */ |
2360 |
& - ( d_HEFFbyOCNonICE(I,J) |
2361 |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2362 |
& + d_HEFFbyNEG(I,J) |
2363 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2364 |
& + d_HEFFbyRLX(I,J) |
2365 |
#endif |
2366 |
& + d_HSNWbyNEG(I,J)*SNOW2ICE |
2367 |
& - convertPRECIP2HI * |
2368 |
& snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) |
2369 |
& ) * maskC(I,J,kSurface,bi,bj) |
2370 |
ENDDO |
2371 |
ENDDO |
2372 |
DO J=1,sNy |
2373 |
DO I=1,sNx |
2374 |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
2375 |
ENDDO |
2376 |
ENDDO |
2377 |
|
2378 |
C switch heat fluxes from 'effective' ice meters to W/m2 |
2379 |
C ====================================================== |
2380 |
|
2381 |
DO J=1,sNy |
2382 |
DO I=1,sNx |
2383 |
QNET(I,J,bi,bj) = QNET(I,J,bi,bj)*convertHI2Q |
2384 |
QSW(I,J,bi,bj) = QSW(I,J,bi,bj)*convertHI2Q |
2385 |
ENDDO |
2386 |
ENDDO |
2387 |
|
2388 |
#ifndef SEAICE_DISABLE_HEATCONSFIX |
2389 |
C treat advective heat flux by ocean to ice water exchange (at 0decC) |
2390 |
C =================================================================== |
2391 |
# ifdef ALLOW_AUTODIFF_TAMC |
2392 |
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2393 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
2394 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
2395 |
CADJ STORE d_HSNWbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2396 |
CADJ STORE d_HSNWbyOCNonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
2397 |
CADJ STORE d_HSNWbyATMonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
2398 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
2399 |
CADJ & key = iicekey, byte = isbyte |
2400 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2401 |
cgf Unlike for evap and precip, the temperature of gained/lost |
2402 |
C ocean liquid water due to melt/freeze of solid water cannot be chosen |
2403 |
C arbitrarily to be e.g. the ocean SST. Indeed the present seaice model |
2404 |
C implies a constant ice temperature of 0degC. If melt/freeze water is exchanged |
2405 |
C at a different temperature, it leads to a loss of conservation in the |
2406 |
C ocean+ice system. While this is mostly a serious issue in the |
2407 |
C real fresh water + non linear free surface framework, a mismatch |
2408 |
C between ice and ocean boundary condition can result in all cases. |
2409 |
C Below we therefore anticipate on external_forcing_surf.F |
2410 |
C to diagnoze and/or apply the correction to QNET. |
2411 |
DO J=1,sNy |
2412 |
DO I=1,sNx |
2413 |
C ocean water going to ice/snow, in precip units |
2414 |
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)*( |
2415 |
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2416 |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2417 |
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
2418 |
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
2419 |
& * convertHI2PRECIP |
2420 |
& - snowPrecip(i,j,bi,bj) * (ONE-AREApreTH(I,J)) ) |
2421 |
C factor in the heat content as done in external_forcing_surf.F |
2422 |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND.useRealFreshWaterFlux |
2423 |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2424 |
tmpscal1 = - tmpscal3* |
2425 |
& HeatCapacity_Cp * temp_EvPrRn |
2426 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND.useRealFreshWaterFlux |
2427 |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2428 |
tmpscal1 = - tmpscal3* |
2429 |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2430 |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2431 |
tmpscal1 = - tmpscal3*HeatCapacity_Cp* |
2432 |
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2433 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2434 |
tmpscal1 = ZERO |
2435 |
ENDIF |
2436 |
#ifdef ALLOW_DIAGNOSTICS |
2437 |
C in all cases, diagnoze the boundary condition mismatch to SIaaflux |
2438 |
DIAGarrayA(I,J)=tmpscal1 |
2439 |
#endif |
2440 |
C remove the mismatch when real fresh water is exchanged (at 0degC here) |
2441 |
IF ( useRealFreshWaterFlux.AND.(nonlinFreeSurf.GT.0).AND. |
2442 |
& SEAICEheatConsFix ) QNET(I,J,bi,bj)=QNET(I,J,bi,bj)+tmpscal1 |
2443 |
ENDDO |
2444 |
ENDDO |
2445 |
#ifdef ALLOW_DIAGNOSTICS |
2446 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2447 |
& 'SIaaflux',0,1,3,bi,bj,myThid) |
2448 |
#endif |
2449 |
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
2450 |
|
2451 |
C compute the net heat flux, incl. adv. by water, entering ocean+ice |
2452 |
C =================================================================== |
2453 |
DO J=1,sNy |
2454 |
DO I=1,sNx |
2455 |
cgf 1) SIatmQnt (analogous to qnet; excl. adv. by water exch.) |
2456 |
CML If I consider the atmosphere above the ice, the surface flux |
2457 |
CML which is relevant for the air temperature dT/dt Eq |
2458 |
CML accounts for sensible and radiation (with different treatment |
2459 |
CML according to wave-length) fluxes but not for "latent heat flux", |
2460 |
CML since it does not contribute to heating the air. |
2461 |
CML So this diagnostic is only good for heat budget calculations within |
2462 |
CML the ice-ocean system. |
2463 |
SIatmQnt(I,J,bi,bj) = |
2464 |
& maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
2465 |
#ifndef SEAICE_GROWTH_LEGACY |
2466 |
& a_QSWbyATM_cover(I,J) + |
2467 |
#endif /* SEAICE_GROWTH_LEGACY */ |
2468 |
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
2469 |
cgf 2) SItflux (analogous to tflux; includes advection by water |
2470 |
C exchanged between atmosphere and ocean+ice) |
2471 |
C solid water going to atm, in precip units |
2472 |
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
2473 |
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
2474 |
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
2475 |
C liquid water going to atm, in precip units |
2476 |
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
2477 |
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2478 |
& * ( ONE - AREApreTH(I,J) ) |
2479 |
#ifdef ALLOW_RUNOFF |
2480 |
& - RUNOFF(I,J,bi,bj) |
2481 |
#endif /* ALLOW_RUNOFF */ |
2482 |
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
2483 |
& *convertHI2PRECIP ) |
2484 |
C In real fresh water flux + nonlinFS, we factor in the advected specific |
2485 |
C energy (referenced to 0 for 0deC liquid water). In virtual salt flux or |
2486 |
C linFS, rain/evap get a special treatment (see external_forcing_surf.F). |
2487 |
tmpscal1= - tmpscal1* |
2488 |
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
2489 |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND.useRealFreshWaterFlux |
2490 |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2491 |
tmpscal2= - tmpscal2* |
2492 |
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2493 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND.useRealFreshWaterFlux |
2494 |
& .AND.(nonlinFreeSurf.NE.0) ) THEN |
2495 |
tmpscal2= - tmpscal2* |
2496 |
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2497 |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2498 |
tmpscal2= - tmpscal2*HeatCapacity_Cp* |
2499 |
& ( temp_EvPrRn - theta(I,J,kSurface,bi,bj) ) |
2500 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2501 |
tmpscal2= ZERO |
2502 |
ENDIF |
2503 |
SItflux(I,J,bi,bj)= |
2504 |
& SIatmQnt(I,J,bi,bj)-tmpscal1-tmpscal2 |
2505 |
ENDDO |
2506 |
ENDDO |
2507 |
|
2508 |
C compute net fresh water flux leaving/entering |
2509 |
C the ocean, accounting for fresh/salt water stocks. |
2510 |
C ================================================== |
2511 |
|
2512 |
#ifdef ALLOW_ATM_TEMP |
2513 |
DO J=1,sNy |
2514 |
DO I=1,sNx |
2515 |
tmpscal1= d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2516 |
& +d_HFRWbyRAIN(I,J) |
2517 |
& +d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2518 |
& +d_HEFFbyOCNonICE(I,J) |
2519 |
& +d_HEFFbyATMonOCN(I,J) |
2520 |
& +d_HEFFbyNEG(I,J) |
2521 |
#ifdef EXF_ALLOW_SEAICE_RELAX |
2522 |
& +d_HEFFbyRLX(I,J) |
2523 |
#endif |
2524 |
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
2525 |
C If r_FWbySublim>0, then it is evaporated from ocean. |
2526 |
& +r_FWbySublim(I,J) |
2527 |
EmPmR(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2528 |
& ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2529 |
& * ( ONE - AREApreTH(I,J) ) |
2530 |
#ifdef ALLOW_RUNOFF |
2531 |
& - RUNOFF(I,J,bi,bj) |
2532 |
#endif /* ALLOW_RUNOFF */ |
2533 |
& + tmpscal1*convertHI2PRECIP |
2534 |
& )*rhoConstFresh |
2535 |
c and the flux leaving/entering the ocean+ice |
2536 |
SIatmFW(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2537 |
& EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2538 |
& - PRECIP(I,J,bi,bj) |
2539 |
#ifdef ALLOW_RUNOFF |
2540 |
& - RUNOFF(I,J,bi,bj) |
2541 |
#endif /* ALLOW_RUNOFF */ |
2542 |
& )*rhoConstFresh |
2543 |
& + a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2544 |
|
2545 |
ENDDO |
2546 |
ENDDO |
2547 |
|
2548 |
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
2549 |
C-- |
2550 |
DO J=1,sNy |
2551 |
DO I=1,sNx |
2552 |
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2553 |
& PRECIP(I,J,bi,bj) |
2554 |
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2555 |
# ifdef ALLOW_RUNOFF |
2556 |
& + RUNOFF(I,J,bi,bj) |
2557 |
# endif /* ALLOW_RUNOFF */ |
2558 |
& )*rhoConstFresh |
2559 |
# ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
2560 |
& - a_FWbySublim(I,J)*AREApreTH(I,J) |
2561 |
# endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
2562 |
ENDDO |
2563 |
ENDDO |
2564 |
C-- |
2565 |
#else /* ndef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
2566 |
C-- |
2567 |
# ifdef ALLOW_MEAN_SFLUX_COST_CONTRIBUTION |
2568 |
DO J=1,sNy |
2569 |
DO I=1,sNx |
2570 |
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2571 |
& PRECIP(I,J,bi,bj) |
2572 |
& - EVAP(I,J,bi,bj) |
2573 |
& *( ONE - AREApreTH(I,J) ) |
2574 |
# ifdef ALLOW_RUNOFF |
2575 |
& + RUNOFF(I,J,bi,bj) |
2576 |
# endif /* ALLOW_RUNOFF */ |
2577 |
& )*rhoConstFresh |
2578 |
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2579 |
ENDDO |
2580 |
ENDDO |
2581 |
# endif |
2582 |
C-- |
2583 |
#endif /* ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
2584 |
|
2585 |
#endif /* ALLOW_ATM_TEMP */ |
2586 |
|
2587 |
#ifdef SEAICE_DEBUG |
2588 |
CALL PLOT_FIELD_XYRL( QSW,'Current QSW ', myIter, myThid ) |
2589 |
CALL PLOT_FIELD_XYRL( QNET,'Current QNET ', myIter, myThid ) |
2590 |
CALL PLOT_FIELD_XYRL( EmPmR,'Current EmPmR ', myIter, myThid ) |
2591 |
#endif /* SEAICE_DEBUG */ |
2592 |
|
2593 |
C Sea Ice Load on the sea surface. |
2594 |
C ================================= |
2595 |
|
2596 |
#ifdef ALLOW_AUTODIFF_TAMC |
2597 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2598 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2599 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2600 |
|
2601 |
IF ( useRealFreshWaterFlux ) THEN |
2602 |
DO J=1,sNy |
2603 |
DO I=1,sNx |
2604 |
#ifdef SEAICE_CAP_ICELOAD |
2605 |
tmpscal1 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
2606 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2607 |
tmpscal2 = MIN(tmpscal1,heffTooHeavy*rhoConst) |
2608 |
#else |
2609 |
tmpscal2 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
2610 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2611 |
#endif |
2612 |
sIceLoad(i,j,bi,bj) = tmpscal2 |
2613 |
ENDDO |
2614 |
ENDDO |
2615 |
ENDIF |
2616 |
|
2617 |
#ifdef ALLOW_BALANCE_FLUXES |
2618 |
C Compute tile integrals of heat/fresh water fluxes to/from atm. |
2619 |
C ============================================================== |
2620 |
FWFsiTile(bi,bj) = 0. _d 0 |
2621 |
IF ( balanceEmPmR ) THEN |
2622 |
DO j=1,sNy |
2623 |
DO i=1,sNx |
2624 |
FWFsiTile(bi,bj) = |
2625 |
& FWFsiTile(bi,bj) + SIatmFW(i,j,bi,bj) |
2626 |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2627 |
ENDDO |
2628 |
ENDDO |
2629 |
ENDIF |
2630 |
c to translate global mean FWF adjustements (see below) we may need : |
2631 |
FWF2HFsiTile(bi,bj) = 0. _d 0 |
2632 |
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2633 |
DO j=1,sNy |
2634 |
DO i=1,sNx |
2635 |
FWF2HFsiTile(bi,bj) = FWF2HFsiTile(bi,bj) + |
2636 |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2637 |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2638 |
ENDDO |
2639 |
ENDDO |
2640 |
ENDIF |
2641 |
HFsiTile(bi,bj) = 0. _d 0 |
2642 |
IF ( balanceQnet ) THEN |
2643 |
DO j=1,sNy |
2644 |
DO i=1,sNx |
2645 |
HFsiTile(bi,bj) = |
2646 |
& HFsiTile(bi,bj) + SItflux(i,j,bi,bj) |
2647 |
& * rA(i,j,bi,bj) * maskInC(i,j,bi,bj) |
2648 |
ENDDO |
2649 |
ENDDO |
2650 |
ENDIF |
2651 |
#endif |
2652 |
|
2653 |
C =================================================================== |
2654 |
C ======================PART 8: diagnostics========================== |
2655 |
C =================================================================== |
2656 |
|
2657 |
#ifdef ALLOW_DIAGNOSTICS |
2658 |
IF ( useDiagnostics ) THEN |
2659 |
tmpscal1=1. _d 0 * recip_deltaTtherm |
2660 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_cover, |
2661 |
& tmpscal1,1,'SIaQbATC',0,1,3,bi,bj,myThid) |
2662 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_open, |
2663 |
& tmpscal1,1,'SIaQbATO',0,1,3,bi,bj,myThid) |
2664 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyOCN, |
2665 |
& tmpscal1,1,'SIaQbOCN',0,1,3,bi,bj,myThid) |
2666 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyOCNonICE, |
2667 |
& tmpscal1,1,'SIdHbOCN',0,1,3,bi,bj,myThid) |
2668 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_cover, |
2669 |
& tmpscal1,1,'SIdHbATC',0,1,3,bi,bj,myThid) |
2670 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_open, |
2671 |
& tmpscal1,1,'SIdHbATO',0,1,3,bi,bj,myThid) |
2672 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyFLOODING, |
2673 |
& tmpscal1,1,'SIdHbFLO',0,1,3,bi,bj,myThid) |
2674 |
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyOCNonSNW, |
2675 |
& tmpscal1,1,'SIdSbOCN',0,1,3,bi,bj,myThid) |
2676 |
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyATMonSNW, |
2677 |
& tmpscal1,1,'SIdSbATC',0,1,3,bi,bj,myThid) |
2678 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyATM, |
2679 |
& tmpscal1,1,'SIdAbATO',0,1,3,bi,bj,myThid) |
2680 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyICE, |
2681 |
& tmpscal1,1,'SIdAbATC',0,1,3,bi,bj,myThid) |
2682 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyOCN, |
2683 |
& tmpscal1,1,'SIdAbOCN',0,1,3,bi,bj,myThid) |
2684 |
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_open, |
2685 |
& convertHI2Q,1, 'SIqneto ',0,1,3,bi,bj,myThid) |
2686 |
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_cover, |
2687 |
& convertHI2Q,1, 'SIqneti ',0,1,3,bi,bj,myThid) |
2688 |
C three that actually need intermediate storage |
2689 |
DO J=1,sNy |
2690 |
DO I=1,sNx |
2691 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2692 |
& * d_HSNWbyRAIN(I,J)*SEAICE_rhoSnow*recip_deltaTtherm |
2693 |
DIAGarrayB(I,J) = AREA(I,J,bi,bj)-AREApreTH(I,J) |
2694 |
ENDDO |
2695 |
ENDDO |
2696 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2697 |
& 'SIsnPrcp',0,1,3,bi,bj,myThid) |
2698 |
CALL DIAGNOSTICS_SCALE_FILL(DIAGarrayB, |
2699 |
& tmpscal1,1,'SIdA ',0,1,3,bi,bj,myThid) |
2700 |
#ifdef ALLOW_ATM_TEMP |
2701 |
DO J=1,sNy |
2702 |
DO I=1,sNx |
2703 |
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
2704 |
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2705 |
ENDDO |
2706 |
ENDDO |
2707 |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
2708 |
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
2709 |
C |
2710 |
DO J=1,sNy |
2711 |
DO I=1,sNx |
2712 |
C the actual Freshwater flux of sublimated ice, >0 decreases ice |
2713 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2714 |
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
2715 |
& * SEAICE_rhoIce * recip_deltaTtherm |
2716 |
C the residual Freshwater flux of sublimated ice |
2717 |
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
2718 |
& * r_FWbySublim(I,J) |
2719 |
& * SEAICE_rhoIce * recip_deltaTtherm |
2720 |
C the latent heat flux |
2721 |
tmpscal1= EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2722 |
& + r_FWbySublim(I,J)*convertHI2PRECIP |
2723 |
tmpscal2= ( a_FWbySublim(I,J)-r_FWbySublim(I,J) ) |
2724 |
& * convertHI2PRECIP |
2725 |
tmpscal3= SEAICE_lhEvap+SEAICE_lhFusion |
2726 |
DIAGarrayB(I,J) = -maskC(I,J,kSurface,bi,bj)*rhoConstFresh |
2727 |
& * ( tmpscal1*SEAICE_lhEvap + tmpscal2*tmpscal3 ) |
2728 |
ENDDO |
2729 |
ENDDO |
2730 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
2731 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
2732 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
2733 |
#endif /* ALLOW_ATM_TEMP */ |
2734 |
|
2735 |
ENDIF |
2736 |
#endif /* ALLOW_DIAGNOSTICS */ |
2737 |
|
2738 |
C close bi,bj loops |
2739 |
ENDDO |
2740 |
ENDDO |
2741 |
|
2742 |
|
2743 |
C =================================================================== |
2744 |
C =========PART 9: HF/FWF global integrals and balancing============= |
2745 |
C =================================================================== |
2746 |
|
2747 |
#ifdef ALLOW_BALANCE_FLUXES |
2748 |
|
2749 |
c 1) global sums |
2750 |
# ifdef ALLOW_AUTODIFF_TAMC |
2751 |
CADJ STORE FWFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2752 |
CADJ STORE HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2753 |
CADJ STORE FWF2HFsiTile = comlev1, key=ikey_dynamics, kind=isbyte |
2754 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2755 |
FWFsiGlob=0. _d 0 |
2756 |
IF ( balanceEmPmR ) |
2757 |
& CALL GLOBAL_SUM_TILE_RL( FWFsiTile, FWFsiGlob, myThid ) |
2758 |
FWF2HFsiGlob=0. _d 0 |
2759 |
IF ( balanceEmPmR.AND.(temp_EvPrRn.EQ.UNSET_RL) ) THEN |
2760 |
CALL GLOBAL_SUM_TILE_RL(FWF2HFsiTile, FWF2HFsiGlob, myThid) |
2761 |
ELSEIF ( balanceEmPmR ) THEN |
2762 |
FWF2HFsiGlob=HeatCapacity_Cp * temp_EvPrRn * globalArea |
2763 |
ENDIF |
2764 |
HFsiGlob=0. _d 0 |
2765 |
IF ( balanceQnet ) |
2766 |
& CALL GLOBAL_SUM_TILE_RL( HFsiTile, HFsiGlob, myThid ) |
2767 |
|
2768 |
c 2) global means |
2769 |
c mean SIatmFW |
2770 |
tmpscal0=FWFsiGlob / globalArea |
2771 |
c corresponding mean advection by atm to ocean+ice water exchange |
2772 |
c (if mean SIatmFW was removed uniformely from ocean) |
2773 |
tmpscal1=FWFsiGlob / globalArea * FWF2HFsiGlob / globalArea |
2774 |
c mean SItflux (before potential adjustement due to SIatmFW) |
2775 |
tmpscal2=HFsiGlob / globalArea |
2776 |
c mean SItflux (after potential adjustement due to SIatmFW) |
2777 |
IF ( balanceEmPmR ) tmpscal2=tmpscal2-tmpscal1 |
2778 |
|
2779 |
c 3) balancing adjustments |
2780 |
IF ( balanceEmPmR ) THEN |
2781 |
DO bj=myByLo(myThid),myByHi(myThid) |
2782 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
2783 |
DO j=1-OLy,sNy+OLy |
2784 |
DO i=1-OLx,sNx+OLx |
2785 |
empmr(i,j,bi,bj) = empmr(i,j,bi,bj) - tmpscal0 |
2786 |
SIatmFW(i,j,bi,bj) = SIatmFW(i,j,bi,bj) - tmpscal0 |
2787 |
c adjust SItflux consistently |
2788 |
IF ( (temp_EvPrRn.NE.UNSET_RL).AND. |
2789 |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2790 |
tmpscal1= |
2791 |
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2792 |
ELSEIF ( (temp_EvPrRn.EQ.UNSET_RL).AND. |
2793 |
& useRealFreshWaterFlux.AND.(nonlinFreeSurf.NE.0) ) THEN |
2794 |
tmpscal1= |
2795 |
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2796 |
ELSEIF ( (temp_EvPrRn.NE.UNSET_RL) ) THEN |
2797 |
tmpscal1= |
2798 |
& HeatCapacity_Cp*(temp_EvPrRn - theta(I,J,kSurface,bi,bj)) |
2799 |
ELSE |
2800 |
tmpscal1=ZERO |
2801 |
ENDIF |
2802 |
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal0*tmpscal1 |
2803 |
c no qnet or tflux adjustement is needed |
2804 |
ENDDO |
2805 |
ENDDO |
2806 |
ENDDO |
2807 |
ENDDO |
2808 |
IF ( balancePrintMean ) THEN |
2809 |
_BEGIN_MASTER( myThid ) |
2810 |
WRITE(msgbuf,'(a,a,e24.17)') 'rm Global mean of ', |
2811 |
& 'SIatmFW = ', tmpscal0 |
2812 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2813 |
& SQUEEZE_RIGHT , myThid) |
2814 |
_END_MASTER( myThid ) |
2815 |
ENDIF |
2816 |
ENDIF |
2817 |
IF ( balanceQnet ) THEN |
2818 |
DO bj=myByLo(myThid),myByHi(myThid) |
2819 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
2820 |
DO j=1-OLy,sNy+OLy |
2821 |
DO i=1-OLx,sNx+OLx |
2822 |
SItflux(i,j,bi,bj) = SItflux(i,j,bi,bj) - tmpscal2 |
2823 |
qnet(i,j,bi,bj) = qnet(i,j,bi,bj) - tmpscal2 |
2824 |
SIatmQnt(i,j,bi,bj) = SIatmQnt(i,j,bi,bj) - tmpscal2 |
2825 |
ENDDO |
2826 |
ENDDO |
2827 |
ENDDO |
2828 |
ENDDO |
2829 |
IF ( balancePrintMean ) THEN |
2830 |
_BEGIN_MASTER( myThid ) |
2831 |
WRITE(msgbuf,'(a,a,e24.17)') 'rm Global mean of ', |
2832 |
& 'SItflux = ', tmpscal2 |
2833 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
2834 |
& SQUEEZE_RIGHT , myThid) |
2835 |
_END_MASTER( myThid ) |
2836 |
ENDIF |
2837 |
ENDIF |
2838 |
#endif /* */ |
2839 |
|
2840 |
#ifdef ALLOW_DIAGNOSTICS |
2841 |
c these diags need to be done outside of the bi,bj loop so that |
2842 |
c we may do potential global mean adjustement to them consistently. |
2843 |
CALL DIAGNOSTICS_FILL(SItflux, |
2844 |
& 'SItflux ',0,1,0,1,1,myThid) |
2845 |
CALL DIAGNOSTICS_FILL(SIatmQnt, |
2846 |
& 'SIatmQnt',0,1,0,1,1,myThid) |
2847 |
c SIatmFW follows the same convention as empmr -- SIatmFW diag does not |
2848 |
tmpscal1= - 1. _d 0 |
2849 |
CALL DIAGNOSTICS_SCALE_FILL(SIatmFW, |
2850 |
& tmpscal1,1,'SIatmFW ',0,1,0,1,1,myThid) |
2851 |
#endif /* ALLOW_DIAGNOSTICS */ |
2852 |
|
2853 |
RETURN |
2854 |
END |