1 |
C $Header: /u/gcmpack/MITgcm/pkg/seaice/seaice_growth.F,v 1.162 2012/03/15 03:07:31 jmc Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "SEAICE_OPTIONS.h" |
5 |
#ifdef ALLOW_EXF |
6 |
# include "EXF_OPTIONS.h" |
7 |
#endif |
8 |
|
9 |
CBOP |
10 |
C !ROUTINE: SEAICE_GROWTH |
11 |
C !INTERFACE: |
12 |
SUBROUTINE SEAICE_GROWTH( myTime, myIter, myThid ) |
13 |
C !DESCRIPTION: \bv |
14 |
C *==========================================================* |
15 |
C | SUBROUTINE seaice_growth |
16 |
C | o Updata ice thickness and snow depth |
17 |
C *==========================================================* |
18 |
C \ev |
19 |
|
20 |
C !USES: |
21 |
IMPLICIT NONE |
22 |
C === Global variables === |
23 |
#include "SIZE.h" |
24 |
#include "EEPARAMS.h" |
25 |
#include "PARAMS.h" |
26 |
#include "DYNVARS.h" |
27 |
#include "GRID.h" |
28 |
#include "FFIELDS.h" |
29 |
#include "SEAICE_SIZE.h" |
30 |
#include "SEAICE_PARAMS.h" |
31 |
#include "SEAICE.h" |
32 |
#include "SEAICE_TRACER.h" |
33 |
#ifdef ALLOW_EXF |
34 |
# include "EXF_PARAM.h" |
35 |
# include "EXF_FIELDS.h" |
36 |
#endif |
37 |
#ifdef ALLOW_SALT_PLUME |
38 |
# include "SALT_PLUME.h" |
39 |
#endif |
40 |
#ifdef ALLOW_AUTODIFF_TAMC |
41 |
# include "tamc.h" |
42 |
#endif |
43 |
|
44 |
C !INPUT/OUTPUT PARAMETERS: |
45 |
C === Routine arguments === |
46 |
C myTime :: Simulation time |
47 |
C myIter :: Simulation timestep number |
48 |
C myThid :: Thread no. that called this routine. |
49 |
_RL myTime |
50 |
INTEGER myIter, myThid |
51 |
CEOP |
52 |
|
53 |
C !FUNCTIONS: |
54 |
#ifdef ALLOW_DIAGNOSTICS |
55 |
LOGICAL DIAGNOSTICS_IS_ON |
56 |
EXTERNAL DIAGNOSTICS_IS_ON |
57 |
#endif |
58 |
|
59 |
C !LOCAL VARIABLES: |
60 |
C === Local variables === |
61 |
c ToM<<< debug seaice_growth |
62 |
C msgBuf :: Informational/error message buffer |
63 |
CHARACTER*(MAX_LEN_MBUF) msgBuf |
64 |
c ToM>>> |
65 |
C |
66 |
C unit/sign convention: |
67 |
C Within the thermodynamic computation all stocks, except HSNOW, |
68 |
C are in 'effective ice meters' units, and >0 implies more ice. |
69 |
C This holds for stocks due to ocean and atmosphere heat, |
70 |
C at the outset of 'PART 2: determine heat fluxes/stocks' |
71 |
C and until 'PART 7: determine ocean model forcing' |
72 |
C This strategy minimizes the need for multiplications/divisions |
73 |
C by ice fraction, heat capacity, etc. The only conversions that |
74 |
C occurs are for the HSNOW (in effective snow meters) and |
75 |
C PRECIP (fresh water m/s). |
76 |
C |
77 |
C HEFF is effective Hice thickness (m3/m2) |
78 |
C HSNOW is Heffective snow thickness (m3/m2) |
79 |
C HSALT is Heffective salt content (g/m2) |
80 |
C AREA is the seaice cover fraction (0<=AREA<=1) |
81 |
C Q denotes heat stocks -- converted to ice stocks (m3/m2) early on |
82 |
C |
83 |
C For all other stocks/increments, such as d_HEFFbyATMonOCN |
84 |
C or a_QbyATM_cover, the naming convention is as follows: |
85 |
C The prefix 'a_' means available, the prefix 'd_' means delta |
86 |
C (i.e. increment), and the prefix 'r_' means residual. |
87 |
C The suffix '_cover' denotes a value for the ice covered fraction |
88 |
C of the grid cell, whereas '_open' is for the open water fraction. |
89 |
C The main part of the name states what ice/snow stock is concerned |
90 |
C (e.g. QbyATM or HEFF), and how it is affected (e.g. d_HEFFbyATMonOCN |
91 |
C is the increment of HEFF due to the ATMosphere extracting heat from the |
92 |
C OCeaN surface, or providing heat to the OCeaN surface). |
93 |
|
94 |
C i,j,bi,bj :: Loop counters |
95 |
INTEGER i, j, bi, bj |
96 |
C number of surface interface layer |
97 |
INTEGER kSurface |
98 |
C constants |
99 |
_RL tempFrz, ICE2SNOW, SNOW2ICE |
100 |
_RL QI, QS, recip_QI |
101 |
|
102 |
C-- TmixLoc :: ocean surface/mixed-layer temperature (in K) |
103 |
_RL TmixLoc (1:sNx,1:sNy) |
104 |
|
105 |
C a_QbyATM_cover :: available heat (in W/m^2) due to the interaction of |
106 |
C the atmosphere and the ocean surface - for ice covered water |
107 |
C a_QbyATM_open :: same but for open water |
108 |
C r_QbyATM_cover :: residual of a_QbyATM_cover after freezing/melting processes |
109 |
C r_QbyATM_open :: same but for open water |
110 |
_RL a_QbyATM_cover (1:sNx,1:sNy) |
111 |
_RL a_QbyATM_open (1:sNx,1:sNy) |
112 |
_RL r_QbyATM_cover (1:sNx,1:sNy) |
113 |
_RL r_QbyATM_open (1:sNx,1:sNy) |
114 |
C a_QSWbyATM_open - short wave heat flux over ocean in W/m^2 |
115 |
C a_QSWbyATM_cover - short wave heat flux under ice in W/m^2 |
116 |
_RL a_QSWbyATM_open (1:sNx,1:sNy) |
117 |
_RL a_QSWbyATM_cover (1:sNx,1:sNy) |
118 |
C a_QbyOCN :: available heat (in in W/m^2) due to the |
119 |
C interaction of the ice pack and the ocean surface |
120 |
C r_QbyOCN :: residual of a_QbyOCN after freezing/melting |
121 |
C processes have been accounted for |
122 |
_RL a_QbyOCN (1:sNx,1:sNy) |
123 |
_RL r_QbyOCN (1:sNx,1:sNy) |
124 |
|
125 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
126 |
_RL convertQ2HI, convertHI2Q |
127 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
128 |
_RL convertPRECIP2HI, convertHI2PRECIP |
129 |
|
130 |
#ifdef ALLOW_DIAGNOSTICS |
131 |
C ICE/SNOW stocks tendencies associated with the various melt/freeze processes |
132 |
_RL d_AREAbyATM (1:sNx,1:sNy) |
133 |
_RL d_AREAbyOCN (1:sNx,1:sNy) |
134 |
_RL d_AREAbyICE (1:sNx,1:sNy) |
135 |
#endif |
136 |
|
137 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
138 |
C ICE/SNOW stocks tendency associated with relaxation towards observation |
139 |
_RL d_AREAbyRLX (1:sNx,1:sNy) |
140 |
c The change of mean ice thickness due to relaxation |
141 |
_RL d_HEFFbyRLX (1:sNx,1:sNy) |
142 |
#endif |
143 |
|
144 |
#ifdef SEAICE_ITD |
145 |
c The change of mean ice area due to out-of-bounds values following |
146 |
c sea ice dynamics |
147 |
_RL d_AREAbyNEG (1:sNx,1:sNy) |
148 |
#endif |
149 |
c The change of mean ice thickness due to out-of-bounds values following |
150 |
c sea ice dynamics |
151 |
_RL d_HEFFbyNEG (1:sNx,1:sNy) |
152 |
|
153 |
c The change of mean ice thickness due to turbulent ocean-sea ice heat fluxes |
154 |
_RL d_HEFFbyOCNonICE (1:sNx,1:sNy) |
155 |
|
156 |
c The sum of mean ice thickness increments due to atmospheric fluxes over the open water |
157 |
c fraction and ice-covered fractions of the grid cell |
158 |
_RL d_HEFFbyATMonOCN (1:sNx,1:sNy) |
159 |
c The change of mean ice thickness due to flooding by snow |
160 |
_RL d_HEFFbyFLOODING (1:sNx,1:sNy) |
161 |
|
162 |
c The mean ice thickness increments due to atmospheric fluxes over the open water |
163 |
c fraction and ice-covered fractions of the grid cell, respectively |
164 |
_RL d_HEFFbyATMonOCN_open(1:sNx,1:sNy) |
165 |
_RL d_HEFFbyATMonOCN_cover(1:sNx,1:sNy) |
166 |
|
167 |
_RL d_HSNWbyNEG (1:sNx,1:sNy) |
168 |
_RL d_HSNWbyATMonSNW (1:sNx,1:sNy) |
169 |
_RL d_HSNWbyOCNonSNW (1:sNx,1:sNy) |
170 |
_RL d_HSNWbyRAIN (1:sNx,1:sNy) |
171 |
|
172 |
_RL d_HFRWbyRAIN (1:sNx,1:sNy) |
173 |
C |
174 |
C a_FWbySublim :: fresh water flux implied by latent heat of |
175 |
C sublimation to atmosphere, same sign convention |
176 |
C as EVAP (positive upward) |
177 |
_RL a_FWbySublim (1:sNx,1:sNy) |
178 |
_RL r_FWbySublim (1:sNx,1:sNy) |
179 |
_RL d_HEFFbySublim (1:sNx,1:sNy) |
180 |
_RL d_HSNWbySublim (1:sNx,1:sNy) |
181 |
|
182 |
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
183 |
C The latent heat flux which will sublimate all snow and ice |
184 |
C over one time step |
185 |
_RL latentHeatFluxMax (1:sNx,1:sNy) |
186 |
_RL latentHeatFluxMaxMult (1:sNx,1:sNy,MULTDIM) |
187 |
#endif |
188 |
|
189 |
C actual ice thickness (with upper and lower limit) |
190 |
_RL heffActual (1:sNx,1:sNy) |
191 |
C actual snow thickness |
192 |
_RL hsnowActual (1:sNx,1:sNy) |
193 |
C actual ice thickness (with lower limit only) Reciprocal |
194 |
_RL recip_heffActual (1:sNx,1:sNy) |
195 |
C local value (=1/HO or 1/HO_south) |
196 |
_RL recip_HO |
197 |
C local value (=1/ice thickness) |
198 |
_RL recip_HH |
199 |
|
200 |
C AREA_PRE :: hold sea-ice fraction field before any seaice-thermo update |
201 |
_RL AREApreTH (1:sNx,1:sNy) |
202 |
_RL HEFFpreTH (1:sNx,1:sNy) |
203 |
_RL HSNWpreTH (1:sNx,1:sNy) |
204 |
#ifdef SEAICE_ITD |
205 |
_RL AREAITDpreTH (1:sNx,1:sNy,1:nITD) |
206 |
_RL HEFFITDpreTH (1:sNx,1:sNy,1:nITD) |
207 |
_RL HSNWITDpreTH (1:sNx,1:sNy,1:nITD) |
208 |
_RL areaFracFactor (1:sNx,1:sNy,1:nITD) |
209 |
_RL heffFracFactor (1:sNx,1:sNy,1:nITD) |
210 |
#endif |
211 |
|
212 |
C wind speed |
213 |
_RL UG (1:sNx,1:sNy) |
214 |
#ifdef ALLOW_ATM_WIND |
215 |
_RL SPEED_SQ |
216 |
#endif |
217 |
|
218 |
C Regularization values squared |
219 |
_RL area_reg_sq, hice_reg_sq |
220 |
|
221 |
C pathological cases thresholds |
222 |
_RL heffTooHeavy |
223 |
|
224 |
_RL lhSublim |
225 |
|
226 |
C temporary variables available for the various computations |
227 |
_RL tmpscal0, tmpscal1, tmpscal2, tmpscal3, tmpscal4 |
228 |
_RL tmparr1 (1:sNx,1:sNy) |
229 |
|
230 |
#ifdef SEAICE_VARIABLE_SALINITY |
231 |
_RL saltFluxAdjust (1:sNx,1:sNy) |
232 |
#endif |
233 |
|
234 |
INTEGER ilockey |
235 |
INTEGER it |
236 |
#ifdef SEAICE_ITD |
237 |
INTEGER K |
238 |
#endif |
239 |
_RL pFac |
240 |
_RL ticeInMult (1:sNx,1:sNy,MULTDIM) |
241 |
_RL ticeOutMult (1:sNx,1:sNy,MULTDIM) |
242 |
_RL heffActualMult (1:sNx,1:sNy,MULTDIM) |
243 |
#ifdef SEAICE_ITD |
244 |
_RL hsnowActualMult (1:sNx,1:sNy,MULTDIM) |
245 |
_RL recip_heffActualMult(1:sNx,1:sNy,MULTDIM) |
246 |
#endif |
247 |
_RL a_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
248 |
_RL a_QSWbyATMmult_cover(1:sNx,1:sNy,MULTDIM) |
249 |
_RL a_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
250 |
#ifdef SEAICE_ITD |
251 |
_RL r_QbyATMmult_cover (1:sNx,1:sNy,MULTDIM) |
252 |
_RL r_FWbySublimMult (1:sNx,1:sNy,MULTDIM) |
253 |
#endif |
254 |
C Helper variables: reciprocal of some constants |
255 |
_RL recip_multDim |
256 |
_RL recip_deltaTtherm |
257 |
_RL recip_rhoIce |
258 |
|
259 |
C Factor by which we increase the upper ocean friction velocity (u*) when |
260 |
C ice is absent in a grid cell (dimensionless) |
261 |
_RL MixedLayerTurbulenceFactor |
262 |
|
263 |
#ifdef ALLOW_SITRACER |
264 |
INTEGER iTr |
265 |
CHARACTER*8 diagName |
266 |
#endif |
267 |
#ifdef ALLOW_DIAGNOSTICS |
268 |
c Helper variables for diagnostics |
269 |
_RL DIAGarrayA (1:sNx,1:sNy) |
270 |
_RL DIAGarrayB (1:sNx,1:sNy) |
271 |
_RL DIAGarrayC (1:sNx,1:sNy) |
272 |
_RL DIAGarrayD (1:sNx,1:sNy) |
273 |
#endif |
274 |
|
275 |
|
276 |
C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----| |
277 |
|
278 |
C =================================================================== |
279 |
C =================PART 0: constants and initializations============= |
280 |
C =================================================================== |
281 |
|
282 |
IF ( buoyancyRelation .EQ. 'OCEANICP' ) THEN |
283 |
kSurface = Nr |
284 |
ELSE |
285 |
kSurface = 1 |
286 |
ENDIF |
287 |
|
288 |
C avoid unnecessary divisions in loops |
289 |
#ifdef SEAICE_ITD |
290 |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
291 |
#endif |
292 |
recip_multDim = SEAICE_multDim |
293 |
recip_multDim = ONE / recip_multDim |
294 |
C above/below: double/single precision calculation of recip_multDim |
295 |
c recip_multDim = 1./float(SEAICE_multDim) |
296 |
recip_deltaTtherm = ONE / SEAICE_deltaTtherm |
297 |
recip_rhoIce = ONE / SEAICE_rhoIce |
298 |
|
299 |
C Cutoff for iceload |
300 |
heffTooHeavy=drF(kSurface) / 5. _d 0 |
301 |
|
302 |
C RATIO OF SEA ICE DENSITY to SNOW DENSITY |
303 |
ICE2SNOW = SEAICE_rhoIce/SEAICE_rhoSnow |
304 |
SNOW2ICE = ONE / ICE2SNOW |
305 |
|
306 |
C HEAT OF FUSION OF ICE (J/m^3) |
307 |
QI = SEAICE_rhoIce*SEAICE_lhFusion |
308 |
recip_QI = ONE / QI |
309 |
C HEAT OF FUSION OF SNOW (J/m^3) |
310 |
QS = SEAICE_rhoSnow*SEAICE_lhFusion |
311 |
|
312 |
C ICE LATENT HEAT CONSTANT |
313 |
lhSublim = SEAICE_lhEvap + SEAICE_lhFusion |
314 |
|
315 |
C regularization constants |
316 |
area_reg_sq = SEAICE_area_reg * SEAICE_area_reg |
317 |
hice_reg_sq = SEAICE_hice_reg * SEAICE_hice_reg |
318 |
|
319 |
C conversion factors to go from Q (W/m2) to HEFF (ice meters) |
320 |
convertQ2HI=SEAICE_deltaTtherm/QI |
321 |
convertHI2Q = ONE/convertQ2HI |
322 |
C conversion factors to go from precip (m/s) unit to HEFF (ice meters) |
323 |
convertPRECIP2HI=SEAICE_deltaTtherm*rhoConstFresh/SEAICE_rhoIce |
324 |
convertHI2PRECIP = ONE/convertPRECIP2HI |
325 |
|
326 |
DO bj=myByLo(myThid),myByHi(myThid) |
327 |
DO bi=myBxLo(myThid),myBxHi(myThid) |
328 |
|
329 |
#ifdef ALLOW_AUTODIFF_TAMC |
330 |
act1 = bi - myBxLo(myThid) |
331 |
max1 = myBxHi(myThid) - myBxLo(myThid) + 1 |
332 |
act2 = bj - myByLo(myThid) |
333 |
max2 = myByHi(myThid) - myByLo(myThid) + 1 |
334 |
act3 = myThid - 1 |
335 |
max3 = nTx*nTy |
336 |
act4 = ikey_dynamics - 1 |
337 |
iicekey = (act1 + 1) + act2*max1 |
338 |
& + act3*max1*max2 |
339 |
& + act4*max1*max2*max3 |
340 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
341 |
|
342 |
|
343 |
C array initializations |
344 |
C ===================== |
345 |
|
346 |
DO J=1,sNy |
347 |
DO I=1,sNx |
348 |
a_QbyATM_cover (I,J) = 0.0 _d 0 |
349 |
a_QbyATM_open(I,J) = 0.0 _d 0 |
350 |
r_QbyATM_cover (I,J) = 0.0 _d 0 |
351 |
r_QbyATM_open (I,J) = 0.0 _d 0 |
352 |
|
353 |
a_QSWbyATM_open (I,J) = 0.0 _d 0 |
354 |
a_QSWbyATM_cover (I,J) = 0.0 _d 0 |
355 |
|
356 |
a_QbyOCN (I,J) = 0.0 _d 0 |
357 |
r_QbyOCN (I,J) = 0.0 _d 0 |
358 |
|
359 |
#ifdef ALLOW_DIAGNOSTICS |
360 |
d_AREAbyATM(I,J) = 0.0 _d 0 |
361 |
d_AREAbyICE(I,J) = 0.0 _d 0 |
362 |
d_AREAbyOCN(I,J) = 0.0 _d 0 |
363 |
#endif |
364 |
|
365 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
366 |
d_AREAbyRLX(I,J) = 0.0 _d 0 |
367 |
d_HEFFbyRLX(I,J) = 0.0 _d 0 |
368 |
#endif |
369 |
|
370 |
#ifdef SEAICE_ITD |
371 |
d_AREAbyNEG(I,J) = 0.0 _d 0 |
372 |
#endif |
373 |
d_HEFFbyNEG(I,J) = 0.0 _d 0 |
374 |
d_HEFFbyOCNonICE(I,J) = 0.0 _d 0 |
375 |
d_HEFFbyATMonOCN(I,J) = 0.0 _d 0 |
376 |
d_HEFFbyFLOODING(I,J) = 0.0 _d 0 |
377 |
|
378 |
d_HEFFbyATMonOCN_open(I,J) = 0.0 _d 0 |
379 |
d_HEFFbyATMonOCN_cover(I,J) = 0.0 _d 0 |
380 |
|
381 |
d_HSNWbyNEG(I,J) = 0.0 _d 0 |
382 |
d_HSNWbyATMonSNW(I,J) = 0.0 _d 0 |
383 |
d_HSNWbyOCNonSNW(I,J) = 0.0 _d 0 |
384 |
d_HSNWbyRAIN(I,J) = 0.0 _d 0 |
385 |
a_FWbySublim(I,J) = 0.0 _d 0 |
386 |
r_FWbySublim(I,J) = 0.0 _d 0 |
387 |
d_HEFFbySublim(I,J) = 0.0 _d 0 |
388 |
d_HSNWbySublim(I,J) = 0.0 _d 0 |
389 |
#ifdef SEAICE_CAP_SUBLIM |
390 |
latentHeatFluxMax(I,J) = 0.0 _d 0 |
391 |
#endif |
392 |
c |
393 |
d_HFRWbyRAIN(I,J) = 0.0 _d 0 |
394 |
|
395 |
tmparr1(I,J) = 0.0 _d 0 |
396 |
|
397 |
#ifdef SEAICE_VARIABLE_SALINITY |
398 |
saltFluxAdjust(I,J) = 0.0 _d 0 |
399 |
#endif |
400 |
DO IT=1,SEAICE_multDim |
401 |
ticeInMult(I,J,IT) = 0.0 _d 0 |
402 |
ticeOutMult(I,J,IT) = 0.0 _d 0 |
403 |
a_QbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
404 |
a_QSWbyATMmult_cover(I,J,IT) = 0.0 _d 0 |
405 |
a_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
406 |
#ifdef SEAICE_ITD |
407 |
r_QbyATMmult_cover (I,J,IT) = 0.0 _d 0 |
408 |
r_FWbySublimMult(I,J,IT) = 0.0 _d 0 |
409 |
#endif |
410 |
#if (defined(SEAICE_CAP_SUBLIM) || defined(SEAICE_ITD)) |
411 |
latentHeatFluxMaxMult(I,J,IT) = 0.0 _d 0 |
412 |
#endif |
413 |
ENDDO |
414 |
ENDDO |
415 |
ENDDO |
416 |
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
417 |
DO J=1-oLy,sNy+oLy |
418 |
DO I=1-oLx,sNx+oLx |
419 |
frWtrAtm(I,J,bi,bj) = 0.0 _d 0 |
420 |
ENDDO |
421 |
ENDDO |
422 |
#endif |
423 |
|
424 |
|
425 |
C ===================================================================== |
426 |
C ===========PART 1: treat pathological cases (post advdiff)=========== |
427 |
C ===================================================================== |
428 |
|
429 |
#ifdef SEAICE_GROWTH_LEGACY |
430 |
|
431 |
DO J=1,sNy |
432 |
DO I=1,sNx |
433 |
HEFFpreTH(I,J)=HEFFNM1(I,J,bi,bj) |
434 |
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
435 |
AREApreTH(I,J)=AREANM1(I,J,bi,bj) |
436 |
d_HEFFbyNEG(I,J)=0. _d 0 |
437 |
d_HSNWbyNEG(I,J)=0. _d 0 |
438 |
#ifdef ALLOW_DIAGNOSTICS |
439 |
DIAGarrayA(I,J) = AREANM1(I,J,bi,bj) |
440 |
DIAGarrayB(I,J) = AREANM1(I,J,bi,bj) |
441 |
DIAGarrayC(I,J) = HEFFNM1(I,J,bi,bj) |
442 |
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
443 |
#endif |
444 |
ENDDO |
445 |
ENDDO |
446 |
#ifdef SEAICE_ITD |
447 |
DO K=1,nITD |
448 |
DO J=1,sNy |
449 |
DO I=1,sNx |
450 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
451 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
452 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
453 |
ENDDO |
454 |
ENDDO |
455 |
ENDDO |
456 |
#endif |
457 |
|
458 |
#else /* SEAICE_GROWTH_LEGACY */ |
459 |
|
460 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
461 |
Cgf no dependency through pathological cases treatment |
462 |
IF ( SEAICEadjMODE.EQ.0 ) THEN |
463 |
#endif |
464 |
|
465 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
466 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
467 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
468 |
C 0) relax sea ice concentration towards observation |
469 |
IF (SEAICE_tauAreaObsRelax .GT. 0.) THEN |
470 |
DO J=1,sNy |
471 |
DO I=1,sNx |
472 |
C d_AREAbyRLX(i,j) = 0. _d 0 |
473 |
C d_HEFFbyRLX(i,j) = 0. _d 0 |
474 |
IF ( obsSIce(I,J,bi,bj).GT.AREA(I,J,bi,bj)) THEN |
475 |
d_AREAbyRLX(i,j) = |
476 |
& SEAICE_deltaTtherm/SEAICE_tauAreaObsRelax |
477 |
& * (obsSIce(I,J,bi,bj) - AREA(I,J,bi,bj)) |
478 |
ENDIF |
479 |
IF ( obsSIce(I,J,bi,bj).GT.0. _d 0 .AND. |
480 |
& AREA(I,J,bi,bj).EQ.0. _d 0) THEN |
481 |
C d_HEFFbyRLX(i,j) = 1. _d 1 * siEps * d_AREAbyRLX(i,j) |
482 |
d_HEFFbyRLX(i,j) = 1. _d 1 * siEps |
483 |
ENDIF |
484 |
#ifdef SEAICE_ITD |
485 |
AREAITD(I,J,1,bi,bj) = AREAITD(I,J,1,bi,bj) |
486 |
& + d_AREAbyRLX(i,j) |
487 |
HEFFITD(I,J,1,bi,bj) = HEFFITD(I,J,1,bi,bj) |
488 |
& + d_HEFFbyRLX(i,j) |
489 |
#endif |
490 |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj) + d_AREAbyRLX(i,j) |
491 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + d_HEFFbyRLX(i,j) |
492 |
ENDDO |
493 |
ENDDO |
494 |
ENDIF |
495 |
#endif /* SEAICE_ALLOW_AREA_RELAXATION */ |
496 |
|
497 |
C 1) treat the case of negative values: |
498 |
|
499 |
#ifdef ALLOW_AUTODIFF_TAMC |
500 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
501 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
502 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
503 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
504 |
DO J=1,sNy |
505 |
DO I=1,sNx |
506 |
#ifdef SEAICE_ITD |
507 |
DO K=1,nITD |
508 |
tmpscal1=0. _d 0 |
509 |
tmpscal2=0. _d 0 |
510 |
tmpscal3=0. _d 0 |
511 |
tmpscal2=MAX(-HEFFITD(I,J,K,bi,bj),0. _d 0) |
512 |
HEFFITD(I,J,K,bi,bj)=HEFFITD(I,J,K,bi,bj)+tmpscal2 |
513 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
514 |
tmpscal3=MAX(-HSNOWITD(I,J,K,bi,bj),0. _d 0) |
515 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
516 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
517 |
tmpscal1=MAX(-AREAITD(I,J,K,bi,bj),0. _d 0) |
518 |
AREAITD(I,J,K,bi,bj)=AREAITD(I,J,K,bi,bj)+tmpscal1 |
519 |
d_AREAbyNEG(I,J)=d_AREAbyNEG(I,J)+tmpscal1 |
520 |
ENDDO |
521 |
CToM AREA, HEFF, and HSNOW will be updated at end of PART 1 |
522 |
C by calling SEAICE_ITD_SUM |
523 |
#else |
524 |
d_HEFFbyNEG(I,J)=MAX(-HEFF(I,J,bi,bj),0. _d 0) |
525 |
d_HSNWbyNEG(I,J)=MAX(-HSNOW(I,J,bi,bj),0. _d 0) |
526 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),0. _d 0) |
527 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+d_HEFFbyNEG(I,J) |
528 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+d_HSNWbyNEG(I,J) |
529 |
#endif |
530 |
ENDDO |
531 |
ENDDO |
532 |
|
533 |
C 1.25) treat the case of very thin ice: |
534 |
|
535 |
#ifdef ALLOW_AUTODIFF_TAMC |
536 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
537 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
538 |
DO J=1,sNy |
539 |
DO I=1,sNx |
540 |
#ifdef SEAICE_ITD |
541 |
DO K=1,nITD |
542 |
#endif |
543 |
tmpscal2=0. _d 0 |
544 |
tmpscal3=0. _d 0 |
545 |
#ifdef SEAICE_ITD |
546 |
IF (HEFFITD(I,J,K,bi,bj).LE.siEps) THEN |
547 |
tmpscal2=-HEFFITD(I,J,K,bi,bj) |
548 |
tmpscal3=-HSNOWITD(I,J,K,bi,bj) |
549 |
TICES(I,J,K,bi,bj)=celsius2K |
550 |
CToM TICE will be updated at end of Part 1 together with AREA and HEFF |
551 |
ENDIF |
552 |
HEFFITD(I,J,K,bi,bj) =HEFFITD(I,J,K,bi,bj) +tmpscal2 |
553 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal3 |
554 |
#else |
555 |
IF (HEFF(I,J,bi,bj).LE.siEps) THEN |
556 |
tmpscal2=-HEFF(I,J,bi,bj) |
557 |
tmpscal3=-HSNOW(I,J,bi,bj) |
558 |
TICE(I,J,bi,bj)=celsius2K |
559 |
DO IT=1,SEAICE_multDim |
560 |
TICES(I,J,IT,bi,bj)=celsius2K |
561 |
ENDDO |
562 |
ENDIF |
563 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj)+tmpscal2 |
564 |
HSNOW(I,J,bi,bj)=HSNOW(I,J,bi,bj)+tmpscal3 |
565 |
#endif |
566 |
d_HEFFbyNEG(I,J)=d_HEFFbyNEG(I,J)+tmpscal2 |
567 |
d_HSNWbyNEG(I,J)=d_HSNWbyNEG(I,J)+tmpscal3 |
568 |
#ifdef SEAICE_ITD |
569 |
ENDDO |
570 |
#endif |
571 |
ENDDO |
572 |
ENDDO |
573 |
|
574 |
C 1.5) treat the case of area but no ice/snow: |
575 |
|
576 |
#ifdef ALLOW_AUTODIFF_TAMC |
577 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
578 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
579 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
580 |
DO J=1,sNy |
581 |
DO I=1,sNx |
582 |
#ifdef SEAICE_ITD |
583 |
DO K=1,nITD |
584 |
IF ((HEFFITD(i,j,k,bi,bj).EQ.0. _d 0).AND. |
585 |
& (HSNOWITD(i,j,k,bi,bj).EQ.0. _d 0)) |
586 |
& AREAITD(I,J,K,bi,bj)=0. _d 0 |
587 |
ENDDO |
588 |
#else |
589 |
IF ((HEFF(i,j,bi,bj).EQ.0. _d 0).AND. |
590 |
& (HSNOW(i,j,bi,bj).EQ.0. _d 0)) AREA(I,J,bi,bj)=0. _d 0 |
591 |
#endif |
592 |
ENDDO |
593 |
ENDDO |
594 |
|
595 |
C 2) treat the case of very small area: |
596 |
|
597 |
#ifndef DISABLE_AREA_FLOOR |
598 |
#ifdef ALLOW_AUTODIFF_TAMC |
599 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
600 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
601 |
DO J=1,sNy |
602 |
DO I=1,sNx |
603 |
#ifdef SEAICE_ITD |
604 |
DO K=1,nITD |
605 |
IF ((HEFFITD(i,j,k,bi,bj).GT.0).OR. |
606 |
& (HSNOWITD(i,j,k,bi,bj).GT.0)) THEN |
607 |
CToM SEAICE_area_floor*nITD cannot be allowed to exceed 1 |
608 |
C hence use SEAICE_area_floor devided by nITD |
609 |
C (or install a warning in e.g. seaice_readparms.F) |
610 |
AREAITD(I,J,K,bi,bj)= |
611 |
& MAX(AREAITD(I,J,K,bi,bj),SEAICE_area_floor/float(nITD)) |
612 |
ENDIF |
613 |
ENDDO |
614 |
#else |
615 |
IF ((HEFF(i,j,bi,bj).GT.0).OR.(HSNOW(i,j,bi,bj).GT.0)) THEN |
616 |
AREA(I,J,bi,bj)=MAX(AREA(I,J,bi,bj),SEAICE_area_floor) |
617 |
ENDIF |
618 |
#endif |
619 |
ENDDO |
620 |
ENDDO |
621 |
#endif /* DISABLE_AREA_FLOOR */ |
622 |
|
623 |
C 2.5) treat case of excessive ice cover, e.g., due to ridging: |
624 |
|
625 |
CToM for SEAICE_ITD this case is treated in SEAICE_ITD_REDIST, |
626 |
C which is called at end of PART 1 below |
627 |
#ifndef SEAICE_ITD |
628 |
#ifdef ALLOW_AUTODIFF_TAMC |
629 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
630 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
631 |
DO J=1,sNy |
632 |
DO I=1,sNx |
633 |
#ifdef ALLOW_DIAGNOSTICS |
634 |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
635 |
#endif |
636 |
#ifdef ALLOW_SITRACER |
637 |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
638 |
#endif |
639 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),SEAICE_area_max) |
640 |
ENDDO |
641 |
ENDDO |
642 |
#endif /* SEAICE_ITD */ |
643 |
|
644 |
#ifdef SEAICE_ITD |
645 |
CToM catch up with items 1.25 and 2.5 involving category sums AREA and HEFF |
646 |
C first, update AREA and HEFF: |
647 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
648 |
C |
649 |
DO J=1,sNy |
650 |
DO I=1,sNx |
651 |
C TICES was changed above (item 1.25), now update TICE as ice volume |
652 |
C weighted average of TICES |
653 |
tmpscal1 = 0. _d 0 |
654 |
tmpscal2 = 0. _d 0 |
655 |
DO K=1,nITD |
656 |
tmpscal1=tmpscal1 + TICES(I,J,K,bi,bj)*HEFFITD(I,J,K,bi,bj) |
657 |
tmpscal2=tmpscal2 + HEFFITD(I,J,K,bi,bj) |
658 |
ENDDO |
659 |
TICE(I,J,bi,bj)=tmpscal1/tmpscal2 |
660 |
C lines of item 2.5 that were omitted: |
661 |
C in 2.5 these lines are executed before "ridging" is applied to AREA |
662 |
C hence we execute them here before SEAICE_ITD_REDIST is called |
663 |
C although this means that AREA has not been completely regularized |
664 |
#ifdef ALLOW_DIAGNOSTICS |
665 |
DIAGarrayA(I,J) = AREA(I,J,bi,bj) |
666 |
#endif |
667 |
#ifdef ALLOW_SITRACER |
668 |
SItrAREA(I,J,bi,bj,1)=AREA(I,J,bi,bj) |
669 |
#endif |
670 |
ENDDO |
671 |
ENDDO |
672 |
|
673 |
CToM finally make sure that all categories meet their thickness limits |
674 |
C which includes ridging as in item 2.5 |
675 |
C and update AREA, HEFF, and HSNOW |
676 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime, myIter, myThid) |
677 |
CALL SEAICE_ITD_SUM(bi, bj, myTime, myIter, myThid) |
678 |
|
679 |
#endif |
680 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
681 |
C ENDIF SEAICEadjMODE.EQ.0 |
682 |
ENDIF |
683 |
#endif |
684 |
|
685 |
C 3) store regularized values of heff, hsnow, area at the onset of thermo. |
686 |
DO J=1,sNy |
687 |
DO I=1,sNx |
688 |
HEFFpreTH(I,J)=HEFF(I,J,bi,bj) |
689 |
HSNWpreTH(I,J)=HSNOW(I,J,bi,bj) |
690 |
AREApreTH(I,J)=AREA(I,J,bi,bj) |
691 |
#ifdef ALLOW_DIAGNOSTICS |
692 |
DIAGarrayB(I,J) = AREA(I,J,bi,bj) |
693 |
DIAGarrayC(I,J) = HEFF(I,J,bi,bj) |
694 |
DIAGarrayD(I,J) = HSNOW(I,J,bi,bj) |
695 |
#endif |
696 |
#ifdef ALLOW_SITRACER |
697 |
SItrHEFF(I,J,bi,bj,1)=HEFF(I,J,bi,bj) |
698 |
SItrAREA(I,J,bi,bj,2)=AREA(I,J,bi,bj) |
699 |
#endif |
700 |
ENDDO |
701 |
ENDDO |
702 |
#ifdef SEAICE_ITD |
703 |
DO K=1,nITD |
704 |
DO J=1,sNy |
705 |
DO I=1,sNx |
706 |
HEFFITDpreTH(I,J,K)=HEFFITD(I,J,K,bi,bj) |
707 |
HSNWITDpreTH(I,J,K)=HSNOWITD(I,J,K,bi,bj) |
708 |
AREAITDpreTH(I,J,K)=AREAITD(I,J,K,bi,bj) |
709 |
|
710 |
C memorize areal and volume fraction of each ITD category |
711 |
IF (AREA(I,J,bi,bj).GT.0) THEN |
712 |
areaFracFactor(I,J,K)=AREAITD(I,J,K,bi,bj)/AREA(I,J,bi,bj) |
713 |
ELSE |
714 |
areaFracFactor(I,J,K)=ZERO |
715 |
ENDIF |
716 |
IF (HEFF(I,J,bi,bj).GT.0) THEN |
717 |
heffFracFactor(I,J,K)=HEFFITD(I,J,K,bi,bj)/HEFF(I,J,bi,bj) |
718 |
ELSE |
719 |
heffFracFactor(I,J,K)=ZERO |
720 |
ENDIF |
721 |
ENDDO |
722 |
ENDDO |
723 |
ENDDO |
724 |
C prepare SItrHEFF to be computed as cumulative sum |
725 |
DO K=2,5 |
726 |
DO J=1,sNy |
727 |
DO I=1,sNx |
728 |
SItrHEFF(I,J,bi,bj,K)=ZERO |
729 |
ENDDO |
730 |
ENDDO |
731 |
ENDDO |
732 |
C prepare SItrAREA to be computed as cumulative sum |
733 |
DO J=1,sNy |
734 |
DO I=1,sNx |
735 |
SItrAREA(I,J,bi,bj,3)=ZERO |
736 |
ENDDO |
737 |
ENDDO |
738 |
#endif |
739 |
|
740 |
C 4) treat sea ice salinity pathological cases |
741 |
#ifdef SEAICE_VARIABLE_SALINITY |
742 |
#ifdef ALLOW_AUTODIFF_TAMC |
743 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
744 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
745 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
746 |
DO J=1,sNy |
747 |
DO I=1,sNx |
748 |
IF ( (HSALT(I,J,bi,bj) .LT. 0.0).OR. |
749 |
& (HEFF(I,J,bi,bj) .EQ. 0.0) ) THEN |
750 |
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
751 |
& HSALT(I,J,bi,bj) * recip_deltaTtherm |
752 |
HSALT(I,J,bi,bj) = 0.0 _d 0 |
753 |
ENDIF |
754 |
ENDDO |
755 |
ENDDO |
756 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
757 |
|
758 |
#endif /* SEAICE_GROWTH_LEGACY */ |
759 |
|
760 |
#ifdef ALLOW_DIAGNOSTICS |
761 |
IF ( useDiagnostics ) THEN |
762 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIareaPR',0,1,3,bi,bj,myThid) |
763 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIareaPT',0,1,3,bi,bj,myThid) |
764 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIheffPT',0,1,3,bi,bj,myThid) |
765 |
CALL DIAGNOSTICS_FILL(DIAGarrayD,'SIhsnoPT',0,1,3,bi,bj,myThid) |
766 |
#ifdef ALLOW_SITRACER |
767 |
DO iTr = 1, SItrNumInUse |
768 |
WRITE(diagName,'(A4,I2.2,A2)') 'SItr',iTr,'PT' |
769 |
IF (SItrMate(iTr).EQ.'HEFF') THEN |
770 |
CALL DIAGNOSTICS_FRACT_FILL( |
771 |
I SItracer(1-OLx,1-OLy,bi,bj,iTr),HEFF(1-OLx,1-OLy,bi,bj), |
772 |
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
773 |
ELSE |
774 |
CALL DIAGNOSTICS_FRACT_FILL( |
775 |
I SItracer(1-OLx,1-OLy,bi,bj,iTr),AREA(1-OLx,1-OLy,bi,bj), |
776 |
I ONE, 1, diagName,0,1,2,bi,bj,myThid ) |
777 |
ENDIF |
778 |
ENDDO |
779 |
#endif /* ALLOW_SITRACER */ |
780 |
ENDIF |
781 |
#endif /* ALLOW_DIAGNOSTICS */ |
782 |
|
783 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
784 |
Cgf no additional dependency of air-sea fluxes to ice |
785 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
786 |
DO J=1,sNy |
787 |
DO I=1,sNx |
788 |
HEFFpreTH(I,J) = 0. _d 0 |
789 |
HSNWpreTH(I,J) = 0. _d 0 |
790 |
AREApreTH(I,J) = 0. _d 0 |
791 |
ENDDO |
792 |
ENDDO |
793 |
#ifdef SEAICE_ITD |
794 |
DO K=1,nITD |
795 |
DO J=1,sNy |
796 |
DO I=1,sNx |
797 |
HEFFITDpreTH(I,J,K) = 0. _d 0 |
798 |
HSNWITDpreTH(I,J,K) = 0. _d 0 |
799 |
AREAITDpreTH(I,J,K) = 0. _d 0 |
800 |
ENDDO |
801 |
ENDDO |
802 |
ENDDO |
803 |
#endif |
804 |
ENDIF |
805 |
#endif |
806 |
|
807 |
#if (defined (ALLOW_MEAN_SFLUX_COST_CONTRIBUTION) || defined (ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION)) |
808 |
DO J=1,sNy |
809 |
DO I=1,sNx |
810 |
AREAforAtmFW(I,J,bi,bj) = AREApreTH(I,J) |
811 |
ENDDO |
812 |
ENDDO |
813 |
#endif |
814 |
|
815 |
C 4) COMPUTE ACTUAL ICE/SNOW THICKNESS; USE MIN/MAX VALUES |
816 |
C TO REGULARIZE SEAICE_SOLVE4TEMP/d_AREA COMPUTATIONS |
817 |
|
818 |
#ifdef ALLOW_AUTODIFF_TAMC |
819 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
820 |
CADJ STORE HEFFpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
821 |
CADJ STORE HSNWpreTH = comlev1_bibj, key = iicekey, byte = isbyte |
822 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
823 |
#ifdef SEAICE_ITD |
824 |
DO K=1,nITD |
825 |
#endif |
826 |
DO J=1,sNy |
827 |
DO I=1,sNx |
828 |
|
829 |
#ifdef SEAICE_ITD |
830 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
831 |
#ifdef SEAICE_GROWTH_LEGACY |
832 |
tmpscal1 = MAX(SEAICE_area_reg/float(nITD), |
833 |
& AREAITDpreTH(I,J,K)) |
834 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K)/tmpscal1 |
835 |
tmpscal2 = HEFFITDpreTH(I,J,K)/tmpscal1 |
836 |
heffActualMult(I,J,K) = MAX(tmpscal2,SEAICE_hice_reg) |
837 |
#else /* SEAICE_GROWTH_LEGACY */ |
838 |
cif regularize AREA with SEAICE_area_reg |
839 |
tmpscal1 = SQRT(AREAITDpreTH(I,J,K) * AREAITDpreTH(I,J,K) |
840 |
& + area_reg_sq) |
841 |
cif heffActual calculated with the regularized AREA |
842 |
tmpscal2 = HEFFITDpreTH(I,J,K) / tmpscal1 |
843 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
844 |
heffActualMult(I,J,K) = SQRT(tmpscal2 * tmpscal2 |
845 |
& + hice_reg_sq) |
846 |
cif hsnowActual calculated with the regularized AREA |
847 |
hsnowActualMult(I,J,K) = HSNWITDpreTH(I,J,K) / tmpscal1 |
848 |
#endif /* SEAICE_GROWTH_LEGACY */ |
849 |
cif regularize the inverse of heffActual by hice_reg |
850 |
recip_heffActualMult(I,J,K) = AREAITDpreTH(I,J,K) / |
851 |
& sqrt(HEFFITDpreTH(I,J,K) * HEFFITDpreTH(I,J,K) |
852 |
& + hice_reg_sq) |
853 |
cif Do not regularize when HEFFpreTH = 0 |
854 |
ELSE |
855 |
heffActualMult(I,J,K) = ZERO |
856 |
hsnowActualMult(I,J,K) = ZERO |
857 |
recip_heffActualMult(I,J,K) = ZERO |
858 |
ENDIF |
859 |
#else /* SEAICE_ITD */ |
860 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
861 |
#ifdef SEAICE_GROWTH_LEGACY |
862 |
tmpscal1 = MAX(SEAICE_area_reg,AREApreTH(I,J)) |
863 |
hsnowActual(I,J) = HSNWpreTH(I,J)/tmpscal1 |
864 |
tmpscal2 = HEFFpreTH(I,J)/tmpscal1 |
865 |
heffActual(I,J) = MAX(tmpscal2,SEAICE_hice_reg) |
866 |
#else /* SEAICE_GROWTH_LEGACY */ |
867 |
cif regularize AREA with SEAICE_area_reg |
868 |
tmpscal1 = SQRT(AREApreTH(I,J)* AREApreTH(I,J) + area_reg_sq) |
869 |
cif heffActual calculated with the regularized AREA |
870 |
tmpscal2 = HEFFpreTH(I,J) / tmpscal1 |
871 |
cif regularize heffActual with SEAICE_hice_reg (add lower bound) |
872 |
heffActual(I,J) = SQRT(tmpscal2 * tmpscal2 + hice_reg_sq) |
873 |
cif hsnowActual calculated with the regularized AREA |
874 |
hsnowActual(I,J) = HSNWpreTH(I,J) / tmpscal1 |
875 |
#endif /* SEAICE_GROWTH_LEGACY */ |
876 |
cif regularize the inverse of heffActual by hice_reg |
877 |
recip_heffActual(I,J) = AREApreTH(I,J) / |
878 |
& sqrt(HEFFpreTH(I,J)*HEFFpreTH(I,J) + hice_reg_sq) |
879 |
cif Do not regularize when HEFFpreTH = 0 |
880 |
ELSE |
881 |
heffActual(I,J) = ZERO |
882 |
hsnowActual(I,J) = ZERO |
883 |
recip_heffActual(I,J) = ZERO |
884 |
ENDIF |
885 |
#endif /* SEAICE_ITD */ |
886 |
|
887 |
ENDDO |
888 |
ENDDO |
889 |
#ifdef SEAICE_ITD |
890 |
ENDDO |
891 |
#endif |
892 |
|
893 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
894 |
CALL ZERO_ADJ_1D( sNx*sNy, heffActual, myThid) |
895 |
CALL ZERO_ADJ_1D( sNx*sNy, hsnowActual, myThid) |
896 |
CALL ZERO_ADJ_1D( sNx*sNy, recip_heffActual, myThid) |
897 |
#endif |
898 |
|
899 |
#ifdef SEAICE_CAP_SUBLIM |
900 |
C 5) COMPUTE MAXIMUM LATENT HEAT FLUXES FOR THE CURRENT ICE |
901 |
C AND SNOW THICKNESS |
902 |
#ifdef SEAICE_ITD |
903 |
DO K=1,nITD |
904 |
#endif |
905 |
DO J=1,sNy |
906 |
DO I=1,sNx |
907 |
c The latent heat flux over the sea ice which |
908 |
c will sublimate all of the snow and ice over one time |
909 |
c step (W/m^2) |
910 |
#ifdef SEAICE_ITD |
911 |
IF (HEFFITDpreTH(I,J,K) .GT. ZERO) THEN |
912 |
latentHeatFluxMaxMult(I,J,K) = lhSublim*recip_deltaTtherm * |
913 |
& (HEFFITDpreTH(I,J,K)*SEAICE_rhoIce + |
914 |
& HSNWITDpreTH(I,J,K)*SEAICE_rhoSnow)/AREAITDpreTH(I,J,K) |
915 |
ELSE |
916 |
latentHeatFluxMaxMult(I,J,K) = ZERO |
917 |
ENDIF |
918 |
#else |
919 |
IF (HEFFpreTH(I,J) .GT. ZERO) THEN |
920 |
latentHeatFluxMax(I,J) = lhSublim * recip_deltaTtherm * |
921 |
& (HEFFpreTH(I,J) * SEAICE_rhoIce + |
922 |
& HSNWpreTH(I,J) * SEAICE_rhoSnow)/AREApreTH(I,J) |
923 |
ELSE |
924 |
latentHeatFluxMax(I,J) = ZERO |
925 |
ENDIF |
926 |
#endif |
927 |
ENDDO |
928 |
ENDDO |
929 |
#ifdef SEAICE_ITD |
930 |
ENDDO |
931 |
#endif |
932 |
#endif /* SEAICE_CAP_SUBLIM */ |
933 |
|
934 |
C =================================================================== |
935 |
C ================PART 2: determine heat fluxes/stocks=============== |
936 |
C =================================================================== |
937 |
|
938 |
C determine available heat due to the atmosphere -- for open water |
939 |
C ================================================================ |
940 |
|
941 |
DO j=1,sNy |
942 |
DO i=1,sNx |
943 |
C ocean surface/mixed layer temperature |
944 |
TmixLoc(i,j) = theta(i,j,kSurface,bi,bj)+celsius2K |
945 |
C wind speed from exf |
946 |
UG(I,J) = MAX(SEAICE_EPS,wspeed(I,J,bi,bj)) |
947 |
ENDDO |
948 |
ENDDO |
949 |
|
950 |
#ifdef ALLOW_AUTODIFF_TAMC |
951 |
CADJ STORE qnet(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
952 |
CADJ STORE qsw(:,:,bi,bj) = comlev1_bibj, key = iicekey,byte=isbyte |
953 |
cCADJ STORE UG = comlev1_bibj, key = iicekey,byte=isbyte |
954 |
cCADJ STORE TmixLoc = comlev1_bibj, key = iicekey,byte=isbyte |
955 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
956 |
|
957 |
CALL SEAICE_BUDGET_OCEAN( |
958 |
I UG, |
959 |
I TmixLoc, |
960 |
O a_QbyATM_open, a_QSWbyATM_open, |
961 |
I bi, bj, myTime, myIter, myThid ) |
962 |
|
963 |
C determine available heat due to the atmosphere -- for ice covered water |
964 |
C ======================================================================= |
965 |
|
966 |
#ifdef ALLOW_ATM_WIND |
967 |
IF (useRelativeWind) THEN |
968 |
C Compute relative wind speed over sea ice. |
969 |
DO J=1,sNy |
970 |
DO I=1,sNx |
971 |
SPEED_SQ = |
972 |
& (uWind(I,J,bi,bj) |
973 |
& +0.5 _d 0*(uVel(i,j,kSurface,bi,bj) |
974 |
& +uVel(i+1,j,kSurface,bi,bj)) |
975 |
& -0.5 _d 0*(uice(i,j,bi,bj)+uice(i+1,j,bi,bj)))**2 |
976 |
& +(vWind(I,J,bi,bj) |
977 |
& +0.5 _d 0*(vVel(i,j,kSurface,bi,bj) |
978 |
& +vVel(i,j+1,kSurface,bi,bj)) |
979 |
& -0.5 _d 0*(vice(i,j,bi,bj)+vice(i,j+1,bi,bj)))**2 |
980 |
IF ( SPEED_SQ .LE. SEAICE_EPS_SQ ) THEN |
981 |
UG(I,J)=SEAICE_EPS |
982 |
ELSE |
983 |
UG(I,J)=SQRT(SPEED_SQ) |
984 |
ENDIF |
985 |
ENDDO |
986 |
ENDDO |
987 |
ENDIF |
988 |
#endif /* ALLOW_ATM_WIND */ |
989 |
|
990 |
#ifdef ALLOW_AUTODIFF_TAMC |
991 |
CADJ STORE tice(:,:,bi,bj) |
992 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
993 |
CADJ STORE hsnowActual = comlev1_bibj, key = iicekey, byte = isbyte |
994 |
CADJ STORE heffActual = comlev1_bibj, key = iicekey, byte = isbyte |
995 |
CADJ STORE UG = comlev1_bibj, key = iicekey, byte = isbyte |
996 |
CADJ STORE tices(:,:,:,bi,bj) |
997 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
998 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
999 |
CADJ & key = iicekey, byte = isbyte |
1000 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1001 |
|
1002 |
C-- Start loop over multi-categories |
1003 |
#ifdef SEAICE_ITD |
1004 |
CToM SEAICE_multDim = nITD (see SEAICE_SIZE.h and seaice_readparms.F) |
1005 |
#endif |
1006 |
DO IT=1,SEAICE_multDim |
1007 |
c homogeneous distribution between 0 and 2 x heffActual |
1008 |
#ifndef SEAICE_ITD |
1009 |
pFac = (2.0 _d 0*real(IT)-1.0 _d 0)*recip_multDim |
1010 |
#endif |
1011 |
DO J=1,sNy |
1012 |
DO I=1,sNx |
1013 |
#ifndef SEAICE_ITD |
1014 |
CToM for SEAICE_ITD heffActualMult and latentHeatFluxMaxMult are calculated above |
1015 |
C (instead of heffActual and latentHeatFluxMax) |
1016 |
heffActualMult(I,J,IT)= heffActual(I,J)*pFac |
1017 |
#ifdef SEAICE_CAP_SUBLIM |
1018 |
latentHeatFluxMaxMult(I,J,IT) = latentHeatFluxMax(I,J)*pFac |
1019 |
#endif |
1020 |
#endif |
1021 |
ticeInMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1022 |
ticeOutMult(I,J,IT)=TICES(I,J,IT,bi,bj) |
1023 |
TICE(I,J,bi,bj) = ZERO |
1024 |
TICES(I,J,IT,bi,bj) = ZERO |
1025 |
ENDDO |
1026 |
ENDDO |
1027 |
ENDDO |
1028 |
|
1029 |
#ifdef ALLOW_AUTODIFF_TAMC |
1030 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1031 |
CADJ STORE ticeInMult = comlev1_bibj, key = iicekey, byte = isbyte |
1032 |
# ifdef SEAICE_CAP_SUBLIM |
1033 |
CADJ STORE latentHeatFluxMaxMult |
1034 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1035 |
# endif |
1036 |
CADJ STORE a_QbyATMmult_cover = |
1037 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1038 |
CADJ STORE a_QSWbyATMmult_cover = |
1039 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1040 |
CADJ STORE a_FWbySublimMult = |
1041 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1042 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1043 |
|
1044 |
DO IT=1,SEAICE_multDim |
1045 |
CALL SEAICE_SOLVE4TEMP( |
1046 |
#ifdef SEAICE_ITD |
1047 |
I UG, heffActualMult(1,1,IT), hsnowActualMult(1,1,IT), |
1048 |
#else |
1049 |
I UG, heffActualMult(1,1,IT), hsnowActual, |
1050 |
#endif |
1051 |
#ifdef SEAICE_CAP_SUBLIM |
1052 |
I latentHeatFluxMaxMult(1,1,IT), |
1053 |
#endif |
1054 |
U ticeInMult(1,1,IT), ticeOutMult(1,1,IT), |
1055 |
O a_QbyATMmult_cover(1,1,IT), a_QSWbyATMmult_cover(1,1,IT), |
1056 |
O a_FWbySublimMult(1,1,IT), |
1057 |
I bi, bj, myTime, myIter, myThid ) |
1058 |
ENDDO |
1059 |
|
1060 |
#ifdef ALLOW_AUTODIFF_TAMC |
1061 |
CADJ STORE heffActualMult = comlev1_bibj, key = iicekey, byte = isbyte |
1062 |
CADJ STORE ticeOutMult = comlev1_bibj, key = iicekey, byte = isbyte |
1063 |
# ifdef SEAICE_CAP_SUBLIM |
1064 |
CADJ STORE latentHeatFluxMaxMult |
1065 |
CADJ & = comlev1_bibj, key = iicekey, byte = isbyte |
1066 |
# endif |
1067 |
CADJ STORE a_QbyATMmult_cover = |
1068 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1069 |
CADJ STORE a_QSWbyATMmult_cover = |
1070 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1071 |
CADJ STORE a_FWbySublimMult = |
1072 |
CADJ & comlev1_bibj, key = iicekey, byte = isbyte |
1073 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1074 |
|
1075 |
DO IT=1,SEAICE_multDim |
1076 |
DO J=1,sNy |
1077 |
DO I=1,sNx |
1078 |
C update TICE & TICES |
1079 |
#ifdef SEAICE_ITD |
1080 |
C calculate area weighted mean |
1081 |
C (although the ice's temperature relates to its energy content |
1082 |
C and hence should be averaged weighted by ice volume [heffFracFactor], |
1083 |
C the temperature here is a result of the fluxes through the ice surface |
1084 |
C computed individually for each single category in SEAICE_SOLVE4TEMP |
1085 |
C and hence is averaged area weighted [areaFracFactor]) |
1086 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1087 |
& + ticeOutMult(I,J,IT)*areaFracFactor(I,J,K) |
1088 |
#else |
1089 |
TICE(I,J,bi,bj) = TICE(I,J,bi,bj) |
1090 |
& + ticeOutMult(I,J,IT)*recip_multDim |
1091 |
#endif |
1092 |
TICES(I,J,IT,bi,bj) = ticeOutMult(I,J,IT) |
1093 |
C average over categories |
1094 |
#ifdef SEAICE_ITD |
1095 |
C calculate area weighted mean |
1096 |
C (fluxes are per unit (ice surface) area and are thus area weighted) |
1097 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1098 |
& + a_QbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
1099 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1100 |
& + a_QSWbyATMmult_cover(I,J,IT)*areaFracFactor(I,J,K) |
1101 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1102 |
& + a_FWbySublimMult(I,J,IT)*areaFracFactor(I,J,K) |
1103 |
#else |
1104 |
a_QbyATM_cover (I,J) = a_QbyATM_cover(I,J) |
1105 |
& + a_QbyATMmult_cover(I,J,IT)*recip_multDim |
1106 |
a_QSWbyATM_cover (I,J) = a_QSWbyATM_cover(I,J) |
1107 |
& + a_QSWbyATMmult_cover(I,J,IT)*recip_multDim |
1108 |
a_FWbySublim (I,J) = a_FWbySublim(I,J) |
1109 |
& + a_FWbySublimMult(I,J,IT)*recip_multDim |
1110 |
#endif |
1111 |
ENDDO |
1112 |
ENDDO |
1113 |
ENDDO |
1114 |
|
1115 |
#ifdef SEAICE_CAP_SUBLIM |
1116 |
# ifdef ALLOW_DIAGNOSTICS |
1117 |
DO J=1,sNy |
1118 |
DO I=1,sNx |
1119 |
c The actual latent heat flux realized by SOLVE4TEMP |
1120 |
DIAGarrayA(I,J) = a_FWbySublim(I,J) * lhSublim |
1121 |
ENDDO |
1122 |
ENDDO |
1123 |
cif The actual vs. maximum latent heat flux |
1124 |
IF ( useDiagnostics ) THEN |
1125 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
1126 |
& 'SIactLHF',0,1,3,bi,bj,myThid) |
1127 |
CALL DIAGNOSTICS_FILL(latentHeatFluxMax, |
1128 |
& 'SImaxLHF',0,1,3,bi,bj,myThid) |
1129 |
ENDIF |
1130 |
# endif /* ALLOW_DIAGNOSTICS */ |
1131 |
#endif /* SEAICE_CAP_SUBLIM */ |
1132 |
|
1133 |
#ifdef ALLOW_AUTODIFF_TAMC |
1134 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1135 |
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1136 |
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
1137 |
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1138 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1139 |
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1140 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1141 |
|
1142 |
C switch heat fluxes from W/m2 to 'effective' ice meters |
1143 |
#ifdef SEAICE_ITD |
1144 |
DO K=1,nITD |
1145 |
DO J=1,sNy |
1146 |
DO I=1,sNx |
1147 |
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
1148 |
& * convertQ2HI * AREAITDpreTH(I,J,K) |
1149 |
a_QSWbyATMmult_cover(I,J,K) = a_QSWbyATMmult_cover(I,J,K) |
1150 |
& * convertQ2HI * AREAITDpreTH(I,J,K) |
1151 |
C and initialize r_QbyATM_cover |
1152 |
r_QbyATMmult_cover(I,J,K)=a_QbyATMmult_cover(I,J,K) |
1153 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1154 |
C Negative sublimation is resublimation and will be added as snow. |
1155 |
#ifdef SEAICE_DISABLE_SUBLIM |
1156 |
a_FWbySublimMult(I,J,K) = ZERO |
1157 |
#endif |
1158 |
a_FWbySublimMult(I,J,K) = SEAICE_deltaTtherm*recip_rhoIce |
1159 |
& * a_FWbySublimMult(I,J,K)*AREAITDpreTH(I,J,K) |
1160 |
r_FWbySublimMult(I,J,K)=a_FWbySublimMult(I,J,K) |
1161 |
ENDDO |
1162 |
ENDDO |
1163 |
ENDDO |
1164 |
DO J=1,sNy |
1165 |
DO I=1,sNx |
1166 |
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1167 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1168 |
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1169 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1170 |
C and initialize r_QbyATM_open |
1171 |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1172 |
ENDDO |
1173 |
ENDDO |
1174 |
#else /* SEAICE_ITD */ |
1175 |
DO J=1,sNy |
1176 |
DO I=1,sNx |
1177 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J) |
1178 |
& * convertQ2HI * AREApreTH(I,J) |
1179 |
a_QSWbyATM_cover(I,J) = a_QSWbyATM_cover(I,J) |
1180 |
& * convertQ2HI * AREApreTH(I,J) |
1181 |
a_QbyATM_open(I,J) = a_QbyATM_open(I,J) |
1182 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1183 |
a_QSWbyATM_open(I,J) = a_QSWbyATM_open(I,J) |
1184 |
& * convertQ2HI * ( ONE - AREApreTH(I,J) ) |
1185 |
C and initialize r_QbyATM_cover/r_QbyATM_open |
1186 |
r_QbyATM_cover(I,J)=a_QbyATM_cover(I,J) |
1187 |
r_QbyATM_open(I,J)=a_QbyATM_open(I,J) |
1188 |
C Convert fresh water flux by sublimation to 'effective' ice meters. |
1189 |
C Negative sublimation is resublimation and will be added as snow. |
1190 |
#ifdef SEAICE_DISABLE_SUBLIM |
1191 |
cgf just for those who may need to omit this term to reproduce old results |
1192 |
a_FWbySublim(I,J) = ZERO |
1193 |
#endif |
1194 |
a_FWbySublim(I,J) = SEAICE_deltaTtherm*recip_rhoIce |
1195 |
& * a_FWbySublim(I,J)*AREApreTH(I,J) |
1196 |
r_FWbySublim(I,J)=a_FWbySublim(I,J) |
1197 |
ENDDO |
1198 |
ENDDO |
1199 |
#endif /* SEAICE_ITD */ |
1200 |
|
1201 |
#ifdef ALLOW_AUTODIFF_TAMC |
1202 |
CADJ STORE AREApreTH = comlev1_bibj, key = iicekey, byte = isbyte |
1203 |
CADJ STORE a_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1204 |
CADJ STORE a_QSWbyATM_cover= comlev1_bibj, key = iicekey, byte = isbyte |
1205 |
CADJ STORE a_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1206 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1207 |
CADJ STORE a_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1208 |
CADJ STORE r_QbyATM_cover = comlev1_bibj, key = iicekey, byte = isbyte |
1209 |
CADJ STORE r_QbyATM_open = comlev1_bibj, key = iicekey, byte = isbyte |
1210 |
CADJ STORE r_FWbySublim = comlev1_bibj, key = iicekey, byte = isbyte |
1211 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1212 |
|
1213 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1214 |
Cgf no additional dependency through ice cover |
1215 |
IF ( SEAICEadjMODE.GE.3 ) THEN |
1216 |
#ifdef SEAICE_ITD |
1217 |
DO K=1,nITD |
1218 |
DO J=1,sNy |
1219 |
DO I=1,sNx |
1220 |
a_QbyATMmult_cover(I,J,K) = 0. _d 0 |
1221 |
r_QbyATMmult_cover(I,J,K) = 0. _d 0 |
1222 |
a_QSWbyATMmult_cover(I,J,K) = 0. _d 0 |
1223 |
ENDDO |
1224 |
ENDDO |
1225 |
ENDDO |
1226 |
#else |
1227 |
DO J=1,sNy |
1228 |
DO I=1,sNx |
1229 |
a_QbyATM_cover(I,J) = 0. _d 0 |
1230 |
r_QbyATM_cover(I,J) = 0. _d 0 |
1231 |
a_QSWbyATM_cover(I,J) = 0. _d 0 |
1232 |
ENDDO |
1233 |
ENDDO |
1234 |
#endif |
1235 |
ENDIF |
1236 |
#endif |
1237 |
|
1238 |
C determine available heat due to the ice pack tying the |
1239 |
C underlying surface water temperature to freezing point |
1240 |
C ====================================================== |
1241 |
|
1242 |
#ifdef ALLOW_AUTODIFF_TAMC |
1243 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
1244 |
CADJ & key = iicekey, byte = isbyte |
1245 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1246 |
CADJ & key = iicekey, byte = isbyte |
1247 |
#endif |
1248 |
|
1249 |
DO J=1,sNy |
1250 |
DO I=1,sNx |
1251 |
c FREEZING TEMP. OF SEA WATER (deg C) |
1252 |
tempFrz = SEAICE_tempFrz0 + |
1253 |
& SEAICE_dTempFrz_dS *salt(I,J,kSurface,bi,bj) |
1254 |
c efficiency of turbulent fluxes : dependency to sign of THETA-TBC |
1255 |
IF ( theta(I,J,kSurface,bi,bj) .GE. tempFrz ) THEN |
1256 |
tmpscal1 = SEAICE_mcPheePiston |
1257 |
ELSE |
1258 |
tmpscal1 =SEAICE_frazilFrac*drF(kSurface)/SEAICE_deltaTtherm |
1259 |
ENDIF |
1260 |
c efficiency of turbulent fluxes : dependency to AREA (McPhee cases) |
1261 |
IF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1262 |
& (.NOT.SEAICE_mcPheeStepFunc) ) THEN |
1263 |
MixedLayerTurbulenceFactor = ONE - |
1264 |
& SEAICE_mcPheeTaper * AREApreTH(I,J) |
1265 |
ELSEIF ( (AREApreTH(I,J) .GT. 0. _d 0).AND. |
1266 |
& (SEAICE_mcPheeStepFunc) ) THEN |
1267 |
MixedLayerTurbulenceFactor = ONE - SEAICE_mcPheeTaper |
1268 |
ELSE |
1269 |
MixedLayerTurbulenceFactor = ONE |
1270 |
ENDIF |
1271 |
c maximum turbulent flux, in ice meters |
1272 |
tmpscal2= - (HeatCapacity_Cp*rhoConst * recip_QI) |
1273 |
& * (theta(I,J,kSurface,bi,bj)-tempFrz) |
1274 |
& * SEAICE_deltaTtherm * maskC(i,j,kSurface,bi,bj) |
1275 |
c available turbulent flux |
1276 |
a_QbyOCN(i,j) = |
1277 |
& tmpscal1 * tmpscal2 * MixedLayerTurbulenceFactor |
1278 |
r_QbyOCN(i,j) = a_QbyOCN(i,j) |
1279 |
ENDDO |
1280 |
ENDDO |
1281 |
|
1282 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1283 |
CALL ZERO_ADJ_1D( sNx*sNy, r_QbyOCN, myThid) |
1284 |
#endif |
1285 |
|
1286 |
|
1287 |
C =================================================================== |
1288 |
C =========PART 3: determine effective thicknesses increments======== |
1289 |
C =================================================================== |
1290 |
|
1291 |
C compute snow/ice tendency due to sublimation |
1292 |
C ============================================ |
1293 |
|
1294 |
#ifdef ALLOW_AUTODIFF_TAMC |
1295 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1296 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1297 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1298 |
#ifdef SEAICE_ITD |
1299 |
DO K=1,nITD |
1300 |
#endif |
1301 |
DO J=1,sNy |
1302 |
DO I=1,sNx |
1303 |
C First sublimate/deposite snow |
1304 |
tmpscal2 = |
1305 |
#ifdef SEAICE_ITD |
1306 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HSNOWITD(I,J,K,bi,bj) |
1307 |
& *SNOW2ICE),ZERO) |
1308 |
C accumulate change over ITD categories |
1309 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1310 |
& *ICE2SNOW |
1311 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal2 |
1312 |
& *ICE2SNOW |
1313 |
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
1314 |
C keep total up to date, too |
1315 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1316 |
#else |
1317 |
& MAX(MIN(r_FWbySublim(I,J),HSNOW(I,J,bi,bj)*SNOW2ICE),ZERO) |
1318 |
d_HSNWbySublim(I,J) = - tmpscal2 * ICE2SNOW |
1319 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) - tmpscal2*ICE2SNOW |
1320 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1321 |
#endif |
1322 |
ENDDO |
1323 |
ENDDO |
1324 |
#ifdef ALLOW_AUTODIFF_TAMC |
1325 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1326 |
CADJ STORE r_FWbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1327 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1328 |
DO J=1,sNy |
1329 |
DO I=1,sNx |
1330 |
C If anything is left, sublimate ice |
1331 |
tmpscal2 = |
1332 |
#ifdef SEAICE_ITD |
1333 |
& MAX(MIN(r_FWbySublimMult(I,J,K),HEFFITD(I,J,K,bi,bj)),ZERO) |
1334 |
C accumulate change over ITD categories |
1335 |
d_HSNWbySublim(I,J) = d_HSNWbySublim(I,J) - tmpscal2 |
1336 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) - tmpscal2 |
1337 |
r_FWbySublimMult(I,J,K) = r_FWbySublimMult(I,J,K) - tmpscal2 |
1338 |
C keep total up to date, too |
1339 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1340 |
#else |
1341 |
& MAX(MIN(r_FWbySublim(I,J),HEFF(I,J,bi,bj)),ZERO) |
1342 |
d_HEFFbySublim(I,J) = - tmpscal2 |
1343 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) - tmpscal2 |
1344 |
r_FWbySublim(I,J) = r_FWbySublim(I,J) - tmpscal2 |
1345 |
#endif |
1346 |
ENDDO |
1347 |
ENDDO |
1348 |
DO J=1,sNy |
1349 |
DO I=1,sNx |
1350 |
C If anything is left, it will be evaporated from the ocean rather than sublimated. |
1351 |
C Since a_QbyATM_cover was computed for sublimation, not simple evaporation, we need to |
1352 |
C remove the fusion part for the residual (that happens to be precisely r_FWbySublim). |
1353 |
#ifdef SEAICE_ITD |
1354 |
a_QbyATMmult_cover(I,J,K) = a_QbyATMmult_cover(I,J,K) |
1355 |
& - r_FWbySublimMult(I,J,K) |
1356 |
r_QbyATMmult_cover(I,J,K) = r_QbyATMmult_cover(I,J,K) |
1357 |
& - r_FWbySublimMult(I,J,K) |
1358 |
ENDDO |
1359 |
ENDDO |
1360 |
C end K loop |
1361 |
ENDDO |
1362 |
C then update totals |
1363 |
DO J=1,sNy |
1364 |
DO I=1,sNx |
1365 |
#endif |
1366 |
a_QbyATM_cover(I,J) = a_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1367 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J)-r_FWbySublim(I,J) |
1368 |
ENDDO |
1369 |
ENDDO |
1370 |
c ToM<<< debug seaice_growth |
1371 |
WRITE(msgBuf,'(A,7F6.2)') |
1372 |
#ifdef SEAICE_ITD |
1373 |
& ' SEAICE_GROWTH: Heff increments 1, HEFFITD = ', |
1374 |
& HEFFITD(20,20,:,bi,bj) |
1375 |
#else |
1376 |
& ' SEAICE_GROWTH: Heff increments 1, HEFF = ', |
1377 |
& HEFF(20,20,bi,bj) |
1378 |
#endif |
1379 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1380 |
& SQUEEZE_RIGHT , myThid) |
1381 |
c ToM>>> |
1382 |
|
1383 |
C compute ice thickness tendency due to ice-ocean interaction |
1384 |
C =========================================================== |
1385 |
|
1386 |
#ifdef ALLOW_AUTODIFF_TAMC |
1387 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1388 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1389 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1390 |
|
1391 |
#ifdef SEAICE_ITD |
1392 |
DO K=1,nITD |
1393 |
DO J=1,sNy |
1394 |
DO I=1,sNx |
1395 |
C ice growth/melt due to ocean heat is equally distributed under the ice |
1396 |
C and hence weighted by fractional area of each thickness category |
1397 |
tmpscal1=MAX(r_QbyOCN(i,j)*areaFracFactor(I,J,K), |
1398 |
& -HEFFITD(I,J,K,bi,bj)) |
1399 |
d_HEFFbyOCNonICE(I,J)= d_HEFFbyOCNonICE(I,J) + tmpscal1 |
1400 |
r_QbyOCN(I,J) = r_QbyOCN(I,J) - tmpscal1 |
1401 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
1402 |
#ifdef ALLOW_SITRACER |
1403 |
SItrHEFF(I,J,bi,bj,2) = SItrHEFF(I,J,bi,bj,2) |
1404 |
& + HEFFITD(I,J,K,bi,bj) |
1405 |
#endif |
1406 |
ENDDO |
1407 |
ENDDO |
1408 |
ENDDO |
1409 |
#else /* SEAICE_ITD */ |
1410 |
DO J=1,sNy |
1411 |
DO I=1,sNx |
1412 |
d_HEFFbyOCNonICE(I,J)=MAX(r_QbyOCN(i,j), -HEFF(I,J,bi,bj)) |
1413 |
r_QbyOCN(I,J)=r_QbyOCN(I,J)-d_HEFFbyOCNonICE(I,J) |
1414 |
HEFF(I,J,bi,bj)=HEFF(I,J,bi,bj) + d_HEFFbyOCNonICE(I,J) |
1415 |
#ifdef ALLOW_SITRACER |
1416 |
SItrHEFF(I,J,bi,bj,2)=HEFF(I,J,bi,bj) |
1417 |
#endif |
1418 |
ENDDO |
1419 |
ENDDO |
1420 |
#endif /* SEAICE_ITD */ |
1421 |
c ToM<<< debug seaice_growth |
1422 |
WRITE(msgBuf,'(A,7F6.2)') |
1423 |
#ifdef SEAICE_ITD |
1424 |
& ' SEAICE_GROWTH: Heff increments 2, HEFFITD = ', |
1425 |
& HEFFITD(20,20,:,bi,bj) |
1426 |
#else |
1427 |
& ' SEAICE_GROWTH: Heff increments 2, HEFF = ', |
1428 |
& HEFF(20,20,bi,bj) |
1429 |
#endif |
1430 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1431 |
& SQUEEZE_RIGHT , myThid) |
1432 |
c ToM>>> |
1433 |
|
1434 |
C compute snow melt tendency due to snow-atmosphere interaction |
1435 |
C ================================================================== |
1436 |
|
1437 |
#ifdef ALLOW_AUTODIFF_TAMC |
1438 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1439 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1440 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1441 |
|
1442 |
#ifdef SEAICE_ITD |
1443 |
DO K=1,nITD |
1444 |
DO J=1,sNy |
1445 |
DO I=1,sNx |
1446 |
C Convert to standard units (meters of ice) rather than to meters |
1447 |
C of snow. This appears to be more robust. |
1448 |
tmpscal1=MAX(r_QbyATMmult_cover(I,J,K),-HSNOWITD(I,J,K,bi,bj) |
1449 |
& *SNOW2ICE) |
1450 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1451 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1452 |
Cgf no additional dependency through snow |
1453 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1454 |
#endif |
1455 |
d_HSNWbyATMonSNW(I,J)=d_HSNWbyATMonSNW(I,J)+tmpscal2*ICE2SNOW |
1456 |
HSNOWITD(I,J,K,bi,bj)=HSNOWITD(I,J,K,bi,bj)+tmpscal2*ICE2SNOW |
1457 |
r_QbyATMmult_cover(I,J,K)=r_QbyATMmult_cover(I,J,K) - tmpscal2 |
1458 |
C keep the total up to date, too |
1459 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1460 |
ENDDO |
1461 |
ENDDO |
1462 |
ENDDO |
1463 |
#else /* SEAICE_ITD */ |
1464 |
DO J=1,sNy |
1465 |
DO I=1,sNx |
1466 |
C Convert to standard units (meters of ice) rather than to meters |
1467 |
C of snow. This appears to be more robust. |
1468 |
tmpscal1=MAX(r_QbyATM_cover(I,J),-HSNOW(I,J,bi,bj)*SNOW2ICE) |
1469 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1470 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1471 |
Cgf no additional dependency through snow |
1472 |
IF ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1473 |
#endif |
1474 |
d_HSNWbyATMonSNW(I,J)= tmpscal2*ICE2SNOW |
1475 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + tmpscal2*ICE2SNOW |
1476 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J) - tmpscal2 |
1477 |
ENDDO |
1478 |
ENDDO |
1479 |
#endif /* SEAICE_ITD */ |
1480 |
c ToM<<< debug seaice_growth |
1481 |
WRITE(msgBuf,'(A,7F6.2)') |
1482 |
#ifdef SEAICE_ITD |
1483 |
& ' SEAICE_GROWTH: Heff increments 3, HEFFITD = ', |
1484 |
& HEFFITD(20,20,:,bi,bj) |
1485 |
#else |
1486 |
& ' SEAICE_GROWTH: Heff increments 3, HEFF = ', |
1487 |
& HEFF(20,20,bi,bj) |
1488 |
#endif |
1489 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1490 |
& SQUEEZE_RIGHT , myThid) |
1491 |
c ToM>>> |
1492 |
|
1493 |
C compute ice thickness tendency due to the atmosphere |
1494 |
C ==================================================== |
1495 |
|
1496 |
#ifdef ALLOW_AUTODIFF_TAMC |
1497 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1498 |
CADJ STORE r_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1499 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1500 |
|
1501 |
Cgf note: this block is not actually tested by lab_sea |
1502 |
Cgf where all experiments start in January. So even though |
1503 |
Cgf the v1.81=>v1.82 revision would change results in |
1504 |
Cgf warming conditions, the lab_sea results were not changed. |
1505 |
|
1506 |
#ifdef SEAICE_ITD |
1507 |
DO K=1,nITD |
1508 |
DO J=1,sNy |
1509 |
DO I=1,sNx |
1510 |
#ifdef SEAICE_GROWTH_LEGACY |
1511 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K)) |
1512 |
#else |
1513 |
tmpscal2 =MAX(-HEFFITD(I,J,K,bi,bj),r_QbyATMmult_cover(I,J,K) |
1514 |
c Limit ice growth by potential melt by ocean |
1515 |
& + AREAITDpreTH(I,J,K) * r_QbyOCN(I,J)) |
1516 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1517 |
d_HEFFbyATMonOCN_cover(I,J) = d_HEFFbyATMonOCN_cover(I,J) |
1518 |
& + tmpscal2 |
1519 |
d_HEFFbyATMonOCN(I,J) = d_HEFFbyATMonOCN(I,J) |
1520 |
& + tmpscal2 |
1521 |
r_QbyATM_cover(I,J) = r_QbyATM_cover(I,J) |
1522 |
& - tmpscal2 |
1523 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal2 |
1524 |
|
1525 |
#ifdef ALLOW_SITRACER |
1526 |
SItrHEFF(I,J,bi,bj,3) = SItrHEFF(I,J,bi,bj,3) |
1527 |
& + HEFFITD(I,J,K,bi,bj) |
1528 |
#endif |
1529 |
ENDDO |
1530 |
ENDDO |
1531 |
ENDDO |
1532 |
#else /* SEAICE_ITD */ |
1533 |
DO J=1,sNy |
1534 |
DO I=1,sNx |
1535 |
|
1536 |
#ifdef SEAICE_GROWTH_LEGACY |
1537 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)) |
1538 |
#else |
1539 |
tmpscal2 = MAX(-HEFF(I,J,bi,bj),r_QbyATM_cover(I,J)+ |
1540 |
c Limit ice growth by potential melt by ocean |
1541 |
& AREApreTH(I,J) * r_QbyOCN(I,J)) |
1542 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1543 |
|
1544 |
d_HEFFbyATMonOCN_cover(I,J)=tmpscal2 |
1545 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal2 |
1546 |
r_QbyATM_cover(I,J)=r_QbyATM_cover(I,J)-tmpscal2 |
1547 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal2 |
1548 |
|
1549 |
#ifdef ALLOW_SITRACER |
1550 |
SItrHEFF(I,J,bi,bj,3)=HEFF(I,J,bi,bj) |
1551 |
#endif |
1552 |
ENDDO |
1553 |
ENDDO |
1554 |
#endif /* SEAICE_ITD */ |
1555 |
c ToM<<< debug seaice_growth |
1556 |
WRITE(msgBuf,'(A,7F6.2)') |
1557 |
#ifdef SEAICE_ITD |
1558 |
& ' SEAICE_GROWTH: Heff increments 4, HEFFITD = ', |
1559 |
& HEFFITD(20,20,:,bi,bj) |
1560 |
#else |
1561 |
& ' SEAICE_GROWTH: Heff increments 4, HEFF = ', |
1562 |
& HEFF(20,20,bi,bj) |
1563 |
#endif |
1564 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1565 |
& SQUEEZE_RIGHT , myThid) |
1566 |
c ToM>>> |
1567 |
|
1568 |
C attribute precip to fresh water or snow stock, |
1569 |
C depending on atmospheric conditions. |
1570 |
C ================================================= |
1571 |
#ifdef ALLOW_ATM_TEMP |
1572 |
#ifdef ALLOW_AUTODIFF_TAMC |
1573 |
CADJ STORE a_QbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1574 |
CADJ STORE PRECIP(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1575 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1576 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1577 |
DO J=1,sNy |
1578 |
DO I=1,sNx |
1579 |
C possible alternatives to the a_QbyATM_cover criterium |
1580 |
c IF (TICE(I,J,bi,bj) .LT. TMIX) THEN |
1581 |
c IF (atemp(I,J,bi,bj) .LT. celsius2K) THEN |
1582 |
IF ( a_QbyATM_cover(I,J).GE. 0. _d 0 ) THEN |
1583 |
C add precip as snow |
1584 |
d_HFRWbyRAIN(I,J)=0. _d 0 |
1585 |
d_HSNWbyRAIN(I,J)=convertPRECIP2HI*ICE2SNOW* |
1586 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1587 |
ELSE |
1588 |
C add precip to the fresh water bucket |
1589 |
d_HFRWbyRAIN(I,J)=-convertPRECIP2HI* |
1590 |
& PRECIP(I,J,bi,bj)*AREApreTH(I,J) |
1591 |
d_HSNWbyRAIN(I,J)=0. _d 0 |
1592 |
ENDIF |
1593 |
ENDDO |
1594 |
ENDDO |
1595 |
#ifdef SEAICE_ITD |
1596 |
DO K=1,nITD |
1597 |
DO J=1,sNy |
1598 |
DO I=1,sNx |
1599 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) |
1600 |
& + d_HSNWbyRAIN(I,J)*areaFracFactor(I,J,K) |
1601 |
ENDDO |
1602 |
ENDDO |
1603 |
ENDDO |
1604 |
#else |
1605 |
DO J=1,sNy |
1606 |
DO I=1,sNx |
1607 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj) + d_HSNWbyRAIN(I,J) |
1608 |
ENDDO |
1609 |
ENDDO |
1610 |
#endif |
1611 |
Cgf note: this does not affect air-sea heat flux, |
1612 |
Cgf since the implied air heat gain to turn |
1613 |
Cgf rain to snow is not a surface process. |
1614 |
#endif /* ALLOW_ATM_TEMP */ |
1615 |
c ToM<<< debug seaice_growth |
1616 |
WRITE(msgBuf,'(A,7F6.2)') |
1617 |
#ifdef SEAICE_ITD |
1618 |
& ' SEAICE_GROWTH: Heff increments 5, HEFFITD = ', |
1619 |
& HEFFITD(20,20,:,bi,bj) |
1620 |
#else |
1621 |
& ' SEAICE_GROWTH: Heff increments 5, HEFF = ', |
1622 |
& HEFF(20,20,bi,bj) |
1623 |
#endif |
1624 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1625 |
& SQUEEZE_RIGHT , myThid) |
1626 |
c ToM>>> |
1627 |
|
1628 |
C compute snow melt due to heat available from ocean. |
1629 |
C ================================================================= |
1630 |
|
1631 |
Cgf do we need to keep this comment and cpp bracket? |
1632 |
Cph( very sensitive bit here by JZ |
1633 |
#ifndef SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING |
1634 |
#ifdef ALLOW_AUTODIFF_TAMC |
1635 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1636 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1637 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1638 |
|
1639 |
#ifdef SEAICE_ITD |
1640 |
DO K=1,nITD |
1641 |
DO J=1,sNy |
1642 |
DO I=1,sNx |
1643 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW*areaFracFactor(I,J,K), |
1644 |
& -HSNOWITD(I,J,K,bi,bj)) |
1645 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1646 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1647 |
Cgf no additional dependency through snow |
1648 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1649 |
#endif |
1650 |
d_HSNWbyOCNonSNW(I,J) = d_HSNWbyOCNonSNW(I,J) + tmpscal2 |
1651 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) - tmpscal2*SNOW2ICE |
1652 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) + tmpscal2 |
1653 |
ENDDO |
1654 |
ENDDO |
1655 |
ENDDO |
1656 |
#else /* SEAICE_ITD */ |
1657 |
DO J=1,sNy |
1658 |
DO I=1,sNx |
1659 |
tmpscal1=MAX(r_QbyOCN(i,j)*ICE2SNOW, -HSNOW(I,J,bi,bj)) |
1660 |
tmpscal2=MIN(tmpscal1,0. _d 0) |
1661 |
#ifdef SEAICE_MODIFY_GROWTH_ADJ |
1662 |
Cgf no additional dependency through snow |
1663 |
if ( SEAICEadjMODE.GE.2 ) tmpscal2 = 0. _d 0 |
1664 |
#endif |
1665 |
d_HSNWbyOCNonSNW(I,J) = tmpscal2 |
1666 |
r_QbyOCN(I,J)=r_QbyOCN(I,J) |
1667 |
& -d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
1668 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)+d_HSNWbyOCNonSNW(I,J) |
1669 |
ENDDO |
1670 |
ENDDO |
1671 |
#endif /* SEAICE_ITD */ |
1672 |
#endif /* SEAICE_EXCLUDE_FOR_EXACT_AD_TESTING */ |
1673 |
Cph) |
1674 |
c ToM<<< debug seaice_growth |
1675 |
WRITE(msgBuf,'(A,7F6.2)') |
1676 |
#ifdef SEAICE_ITD |
1677 |
& ' SEAICE_GROWTH: Heff increments 6, HEFFITD = ', |
1678 |
& HEFFITD(20,20,:,bi,bj) |
1679 |
#else |
1680 |
& ' SEAICE_GROWTH: Heff increments 6, HEFF = ', |
1681 |
& HEFF(20,20,bi,bj) |
1682 |
#endif |
1683 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1684 |
& SQUEEZE_RIGHT , myThid) |
1685 |
c ToM>>> |
1686 |
|
1687 |
C gain of new ice over open water |
1688 |
C =============================== |
1689 |
#ifdef ALLOW_AUTODIFF_TAMC |
1690 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1691 |
CADJ STORE r_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1692 |
CADJ STORE r_QbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1693 |
CADJ STORE a_QSWbyATM_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1694 |
CADJ STORE a_QSWbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1695 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1696 |
|
1697 |
DO J=1,sNy |
1698 |
DO I=1,sNx |
1699 |
c Initial ice growth is triggered by open water |
1700 |
c heat flux overcoming potential melt by ocean |
1701 |
tmpscal1=r_QbyATM_open(I,J)+r_QbyOCN(i,j) * |
1702 |
& (1.0 _d 0 - AREApreTH(I,J)) |
1703 |
c Penetrative shortwave flux beyond first layer |
1704 |
c that is therefore not available to ice growth/melt |
1705 |
tmpscal2=SWFracB * a_QSWbyATM_open(I,J) |
1706 |
C impose -HEFF as the maxmum melting if SEAICE_doOpenWaterMelt |
1707 |
C or 0. otherwise (no melting if not SEAICE_doOpenWaterMelt) |
1708 |
tmpscal3=facOpenGrow*MAX(tmpscal1-tmpscal2, |
1709 |
& -HEFF(I,J,bi,bj)*facOpenMelt)*HEFFM(I,J,bi,bj) |
1710 |
d_HEFFbyATMonOCN_open(I,J)=tmpscal3 |
1711 |
d_HEFFbyATMonOCN(I,J)=d_HEFFbyATMonOCN(I,J)+tmpscal3 |
1712 |
r_QbyATM_open(I,J)=r_QbyATM_open(I,J)-tmpscal3 |
1713 |
#ifdef SEAICE_ITD |
1714 |
C open water area fraction |
1715 |
tmpscal0 = ONE-AREApreTH(I,J) |
1716 |
C determine thickness of new ice |
1717 |
C considering the entire open water area to refreeze |
1718 |
tmpscal1 = tmpscal3/tmpscal0 |
1719 |
C then add new ice volume to appropriate thickness category |
1720 |
DO K=1,nITD |
1721 |
IF (tmpscal1.LT.Hlimit(K)) THEN |
1722 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal3 |
1723 |
tmpscal3=ZERO |
1724 |
C not sure if AREAITD should be changed here since AREA is incremented |
1725 |
C in PART 4 below in non-itd code |
1726 |
C in this scenario all open water is covered by new ice instantaneously, |
1727 |
C i.e. no delayed lead closing is concidered such as is associated with |
1728 |
C Hibler's h_0 parameter |
1729 |
AREAITD(I,J,K,bi,bj) = AREAITD(I,J,K,bi,bj) |
1730 |
& + tmpscal0 |
1731 |
tmpscal0=ZERO |
1732 |
ENDIF |
1733 |
ENDDO |
1734 |
#else |
1735 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal3 |
1736 |
#endif |
1737 |
ENDDO |
1738 |
ENDDO |
1739 |
|
1740 |
#ifdef ALLOW_SITRACER |
1741 |
#ifdef SEAICE_ITD |
1742 |
DO K=1,nITD |
1743 |
DO J=1,sNy |
1744 |
DO I=1,sNx |
1745 |
c needs to be here to allow use also with LEGACY branch |
1746 |
SItrHEFF(I,J,bi,bj,4) = SItrHEFF(I,J,bi,bj,4) |
1747 |
& + HEFFITD(I,J,K,bi,bj) |
1748 |
ENDDO |
1749 |
ENDDO |
1750 |
ENDDO |
1751 |
#else |
1752 |
DO J=1,sNy |
1753 |
DO I=1,sNx |
1754 |
c needs to be here to allow use also with LEGACY branch |
1755 |
SItrHEFF(I,J,bi,bj,4)=HEFF(I,J,bi,bj) |
1756 |
ENDDO |
1757 |
ENDDO |
1758 |
#endif |
1759 |
#endif /* ALLOW_SITRACER */ |
1760 |
c ToM<<< debug seaice_growth |
1761 |
WRITE(msgBuf,'(A,7F6.2)') |
1762 |
#ifdef SEAICE_ITD |
1763 |
& ' SEAICE_GROWTH: Heff increments 7, HEFFITD = ', |
1764 |
& HEFFITD(20,20,:,bi,bj) |
1765 |
#else |
1766 |
& ' SEAICE_GROWTH: Heff increments 7, HEFF = ', |
1767 |
& HEFF(20,20,bi,bj) |
1768 |
#endif |
1769 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1770 |
& SQUEEZE_RIGHT , myThid) |
1771 |
c ToM>>> |
1772 |
|
1773 |
C convert snow to ice if submerged. |
1774 |
C ================================= |
1775 |
|
1776 |
#ifndef SEAICE_GROWTH_LEGACY |
1777 |
C note: in legacy, this process is done at the end |
1778 |
#ifdef ALLOW_AUTODIFF_TAMC |
1779 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1780 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1781 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1782 |
IF ( SEAICEuseFlooding ) THEN |
1783 |
#ifdef SEAICE_ITD |
1784 |
DO K=1,nITD |
1785 |
DO J=1,sNy |
1786 |
DO I=1,sNx |
1787 |
tmpscal0 = (HSNOWITD(I,J,K,bi,bj)*SEAICE_rhoSnow |
1788 |
& +HEFFITD(I,J,K,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
1789 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFFITD(I,J,K,bi,bj)) |
1790 |
d_HEFFbyFLOODING(I,J) = d_HEFFbyFLOODING(I,J) + tmpscal1 |
1791 |
HEFFITD(I,J,K,bi,bj) = HEFFITD(I,J,K,bi,bj) + tmpscal1 |
1792 |
HSNOWITD(I,J,K,bi,bj) = HSNOWITD(I,J,K,bi,bj) - tmpscal1 |
1793 |
& * ICE2SNOW |
1794 |
ENDDO |
1795 |
ENDDO |
1796 |
ENDDO |
1797 |
#else |
1798 |
DO J=1,sNy |
1799 |
DO I=1,sNx |
1800 |
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
1801 |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
1802 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
1803 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
1804 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
1805 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
1806 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
1807 |
ENDDO |
1808 |
ENDDO |
1809 |
#endif |
1810 |
ENDIF |
1811 |
#endif /* SEAICE_GROWTH_LEGACY */ |
1812 |
c ToM<<< debug seaice_growth |
1813 |
WRITE(msgBuf,'(A,7F6.2)') |
1814 |
#ifdef SEAICE_ITD |
1815 |
& ' SEAICE_GROWTH: Heff increments 8, HEFFITD = ', |
1816 |
& HEFFITD(20,20,:,bi,bj) |
1817 |
#else |
1818 |
& ' SEAICE_GROWTH: Heff increments 8, HEFF = ', |
1819 |
& HEFF(20,20,bi,bj) |
1820 |
#endif |
1821 |
CALL PRINT_MESSAGE( msgBuf, standardMessageUnit, |
1822 |
& SQUEEZE_RIGHT , myThid) |
1823 |
c ToM>>> |
1824 |
|
1825 |
C =================================================================== |
1826 |
C ==========PART 4: determine ice cover fraction increments=========- |
1827 |
C =================================================================== |
1828 |
|
1829 |
#ifdef ALLOW_AUTODIFF_TAMC |
1830 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1831 |
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1832 |
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
1833 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
1834 |
CADJ STORE recip_heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
1835 |
CADJ STORE d_hsnwbyatmonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
1836 |
cph( |
1837 |
cphCADJ STORE d_AREAbyATM = comlev1_bibj,key=iicekey,byte=isbyte |
1838 |
cphCADJ STORE d_AREAbyICE = comlev1_bibj,key=iicekey,byte=isbyte |
1839 |
cphCADJ STORE d_AREAbyOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1840 |
cph) |
1841 |
CADJ STORE a_QbyATM_open = comlev1_bibj,key=iicekey,byte=isbyte |
1842 |
CADJ STORE heffActual = comlev1_bibj,key=iicekey,byte=isbyte |
1843 |
CADJ STORE AREApreTH = comlev1_bibj,key=iicekey,byte=isbyte |
1844 |
CADJ STORE HEFF(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1845 |
CADJ STORE HSNOW(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1846 |
CADJ STORE AREA(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
1847 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
1848 |
|
1849 |
#ifdef SEAICE_ITD |
1850 |
C replaces Hibler '79 scheme and lead closing parameter |
1851 |
C because ITD accounts explicitly for lead openings and |
1852 |
C different melt rates due to varying ice thickness |
1853 |
C |
1854 |
C only consider ice area loss due to total ice thickness loss |
1855 |
C ice area gain due to freezing of open water as handled above |
1856 |
C under "gain of new ice over open water" |
1857 |
C |
1858 |
C does not account for lateral melt of ice floes |
1859 |
C |
1860 |
C AREAITD is incremented in section "gain of new ice over open water" above |
1861 |
C |
1862 |
DO K=1,nITD |
1863 |
DO J=1,sNy |
1864 |
DO I=1,sNx |
1865 |
IF (HEFFITD(I,J,K,bi,bj).LE.ZERO) THEN |
1866 |
AREAITD(I,J,K,bi,bj)=ZERO |
1867 |
ENDIF |
1868 |
#ifdef ALLOW_SITRACER |
1869 |
SItrAREA(I,J,bi,bj,3) = SItrAREA(I,J,bi,bj,3) |
1870 |
& + AREAITD(I,J,K,bi,bj) |
1871 |
#endif /* ALLOW_SITRACER */ |
1872 |
ENDDO |
1873 |
ENDDO |
1874 |
ENDDO |
1875 |
#else /* SEAICE_ITD */ |
1876 |
DO J=1,sNy |
1877 |
DO I=1,sNx |
1878 |
|
1879 |
IF ( YC(I,J,bi,bj) .LT. ZERO ) THEN |
1880 |
recip_HO=1. _d 0 / HO_south |
1881 |
ELSE |
1882 |
recip_HO=1. _d 0 / HO |
1883 |
ENDIF |
1884 |
#ifdef SEAICE_GROWTH_LEGACY |
1885 |
tmpscal0=HEFF(I,J,bi,bj) - d_HEFFbyATMonOCN(I,J) |
1886 |
recip_HH = AREApreTH(I,J) /(tmpscal0+.00001 _d 0) |
1887 |
#else |
1888 |
recip_HH = recip_heffActual(I,J) |
1889 |
#endif |
1890 |
|
1891 |
C gain of ice over open water : computed from |
1892 |
C (SEAICE_areaGainFormula.EQ.1) from growth by ATM |
1893 |
C (SEAICE_areaGainFormula.EQ.2) from predicted growth by ATM |
1894 |
IF (SEAICE_areaGainFormula.EQ.1) THEN |
1895 |
tmpscal4 = MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
1896 |
ELSE |
1897 |
tmpscal4=MAX(ZERO,a_QbyATM_open(I,J)) |
1898 |
ENDIF |
1899 |
|
1900 |
C loss of ice cover by melting : computed from |
1901 |
C (SEAICE_areaLossFormula.EQ.1) from all but only melt conributions by ATM and OCN |
1902 |
C (SEAICE_areaLossFormula.EQ.2) from net melt-growth>0 by ATM and OCN |
1903 |
C (SEAICE_areaLossFormula.EQ.3) from predicted melt by ATM |
1904 |
IF (SEAICE_areaLossFormula.EQ.1) THEN |
1905 |
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) ) |
1906 |
& + MIN( 0. _d 0 , d_HEFFbyATMonOCN_open(I,J) ) |
1907 |
& + MIN( 0. _d 0 , d_HEFFbyOCNonICE(I,J) ) |
1908 |
ELSEIF (SEAICE_areaLossFormula.EQ.2) THEN |
1909 |
tmpscal3 = MIN( 0. _d 0 , d_HEFFbyATMonOCN_cover(I,J) |
1910 |
& + d_HEFFbyATMonOCN_open(I,J) + d_HEFFbyOCNonICE(I,J) ) |
1911 |
ELSE |
1912 |
C compute heff after ice melt by ocn: |
1913 |
tmpscal0=HEFF(I,J,bi,bj) - d_HEFFbyATMonOCN(I,J) |
1914 |
C compute available heat left after snow melt by atm: |
1915 |
tmpscal1= a_QbyATM_open(I,J)+a_QbyATM_cover(I,J) |
1916 |
& - d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
1917 |
C could not melt more than all the ice |
1918 |
tmpscal2 = MAX(-tmpscal0,tmpscal1) |
1919 |
tmpscal3 = MIN(ZERO,tmpscal2) |
1920 |
ENDIF |
1921 |
|
1922 |
C apply tendency |
1923 |
IF ( (HEFF(i,j,bi,bj).GT.0. _d 0).OR. |
1924 |
& (HSNOW(i,j,bi,bj).GT.0. _d 0) ) THEN |
1925 |
AREA(I,J,bi,bj)=MAX(0. _d 0, |
1926 |
& MIN( SEAICE_area_max, AREA(I,J,bi,bj) |
1927 |
& + recip_HO*tmpscal4+HALF*recip_HH*tmpscal3 )) |
1928 |
ELSE |
1929 |
AREA(I,J,bi,bj)=0. _d 0 |
1930 |
ENDIF |
1931 |
#ifdef ALLOW_SITRACER |
1932 |
SItrAREA(I,J,bi,bj,3)=AREA(I,J,bi,bj) |
1933 |
#endif /* ALLOW_SITRACER */ |
1934 |
#ifdef ALLOW_DIAGNOSTICS |
1935 |
d_AREAbyATM(I,J)= |
1936 |
& recip_HO*MAX(ZERO,d_HEFFbyATMonOCN_open(I,J)) |
1937 |
& +HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_open(I,J)) |
1938 |
d_AREAbyICE(I,J)= |
1939 |
& HALF*recip_HH*MIN(0. _d 0,d_HEFFbyATMonOCN_cover(I,J)) |
1940 |
d_AREAbyOCN(I,J)= |
1941 |
& HALF*recip_HH*MIN( 0. _d 0,d_HEFFbyOCNonICE(I,J) ) |
1942 |
#endif /* ALLOW_DIAGNOSTICS */ |
1943 |
ENDDO |
1944 |
ENDDO |
1945 |
#endif /* SEAICE_ITD */ |
1946 |
|
1947 |
#if (defined ALLOW_AUTODIFF_TAMC && defined SEAICE_MODIFY_GROWTH_ADJ) |
1948 |
Cgf 'bulk' linearization of area=f(HEFF) |
1949 |
IF ( SEAICEadjMODE.GE.1 ) THEN |
1950 |
#ifdef SEAICE_ITD |
1951 |
DO K=1,nITD |
1952 |
DO J=1,sNy |
1953 |
DO I=1,sNx |
1954 |
AREAITD(I,J,K,bi,bj) = AREAITDpreTH(I,J,K) + 0.1 _d 0 * |
1955 |
& ( HEFFITD(I,J,K,bi,bj) - HEFFITDpreTH(I,J,K) ) |
1956 |
ENDDO |
1957 |
ENDDO |
1958 |
ENDDO |
1959 |
#else |
1960 |
DO J=1,sNy |
1961 |
DO I=1,sNx |
1962 |
C AREA(I,J,bi,bj) = 0.1 _d 0 * HEFF(I,J,bi,bj) |
1963 |
AREA(I,J,bi,bj) = AREApreTH(I,J) + 0.1 _d 0 * |
1964 |
& ( HEFF(I,J,bi,bj) - HEFFpreTH(I,J) ) |
1965 |
ENDDO |
1966 |
ENDDO |
1967 |
#endif |
1968 |
ENDIF |
1969 |
#endif |
1970 |
#ifdef SEAICE_ITD |
1971 |
C check categories for consistency with limits after growth/melt |
1972 |
CALL SEAICE_ITD_REDIST(bi, bj, myTime,myIter,myThid) |
1973 |
C finally update total AREA, HEFF, HSNOW |
1974 |
CALL SEAICE_ITD_SUM(bi, bj, myTime,myIter,myThid) |
1975 |
#endif |
1976 |
|
1977 |
C =================================================================== |
1978 |
C =============PART 5: determine ice salinity increments============= |
1979 |
C =================================================================== |
1980 |
|
1981 |
#ifndef SEAICE_VARIABLE_SALINITY |
1982 |
# if (defined ALLOW_AUTODIFF_TAMC && defined ALLOW_SALT_PLUME) |
1983 |
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
1984 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
1985 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
1986 |
CADJ STORE d_HEFFbyATMonOCN_open = comlev1_bibj,key=iicekey,byte=isbyte |
1987 |
CADJ STORE d_HEFFbyATMonOCN_cover = comlev1_bibj,key=iicekey,byte=isbyte |
1988 |
CADJ STORE d_HEFFbyFLOODING = comlev1_bibj,key=iicekey,byte=isbyte |
1989 |
CADJ STORE d_HEFFbySublim = comlev1_bibj,key=iicekey,byte=isbyte |
1990 |
CADJ STORE salt(:,:,kSurface,bi,bj) = comlev1_bibj, |
1991 |
CADJ & key = iicekey, byte = isbyte |
1992 |
# endif /* ALLOW_AUTODIFF_TAMC and ALLOW_SALT_PLUME */ |
1993 |
DO J=1,sNy |
1994 |
DO I=1,sNx |
1995 |
tmpscal1 = d_HEFFbyNEG(I,J) + d_HEFFbyOCNonICE(I,J) + |
1996 |
& d_HEFFbyATMonOCN(I,J) + d_HEFFbyFLOODING(I,J) |
1997 |
& + d_HEFFbySublim(I,J) |
1998 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
1999 |
+ d_HEFFbyRLX(I,J) |
2000 |
#endif |
2001 |
tmpscal2 = tmpscal1 * SEAICE_salt0 * HEFFM(I,J,bi,bj) |
2002 |
& * recip_deltaTtherm * SEAICE_rhoIce |
2003 |
saltFlux(I,J,bi,bj) = tmpscal2 |
2004 |
#ifdef ALLOW_SALT_PLUME |
2005 |
tmpscal3 = tmpscal1*salt(I,J,kSurface,bi,bj)*HEFFM(I,J,bi,bj) |
2006 |
& * recip_deltaTtherm * SEAICE_rhoIce |
2007 |
saltPlumeFlux(I,J,bi,bj) = MAX( tmpscal3-tmpscal2 , 0. _d 0) |
2008 |
& *SPsalFRAC |
2009 |
#endif /* ALLOW_SALT_PLUME */ |
2010 |
ENDDO |
2011 |
ENDDO |
2012 |
#endif /* ndef SEAICE_VARIABLE_SALINITY */ |
2013 |
|
2014 |
#ifdef SEAICE_VARIABLE_SALINITY |
2015 |
|
2016 |
#ifdef SEAICE_GROWTH_LEGACY |
2017 |
# ifdef ALLOW_AUTODIFF_TAMC |
2018 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2019 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2020 |
DO J=1,sNy |
2021 |
DO I=1,sNx |
2022 |
C set HSALT = 0 if HSALT < 0 and compute salt to remove from ocean |
2023 |
IF ( HSALT(I,J,bi,bj) .LT. 0.0 ) THEN |
2024 |
saltFluxAdjust(I,J) = - HEFFM(I,J,bi,bj) * |
2025 |
& HSALT(I,J,bi,bj) * recip_deltaTtherm |
2026 |
HSALT(I,J,bi,bj) = 0.0 _d 0 |
2027 |
ENDIF |
2028 |
ENDDO |
2029 |
ENDDO |
2030 |
#endif /* SEAICE_GROWTH_LEGACY */ |
2031 |
|
2032 |
#ifdef ALLOW_AUTODIFF_TAMC |
2033 |
CADJ STORE hsalt(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2034 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2035 |
|
2036 |
DO J=1,sNy |
2037 |
DO I=1,sNx |
2038 |
C sum up the terms that affect the salt content of the ice pack |
2039 |
tmpscal1=d_HEFFbyOCNonICE(I,J)+d_HEFFbyATMonOCN(I,J) |
2040 |
|
2041 |
C recompute HEFF before thermodynamic updates (which is not AREApreTH in legacy code) |
2042 |
tmpscal2=HEFF(I,J,bi,bj)-tmpscal1-d_HEFFbyFLOODING(I,J) |
2043 |
C tmpscal1 > 0 : m of sea ice that is created |
2044 |
IF ( tmpscal1 .GE. 0.0 ) THEN |
2045 |
saltFlux(I,J,bi,bj) = |
2046 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2047 |
& *SEAICE_saltFrac*salt(I,J,kSurface,bi,bj) |
2048 |
& *tmpscal1*SEAICE_rhoIce |
2049 |
#ifdef ALLOW_SALT_PLUME |
2050 |
C saltPlumeFlux is defined only during freezing: |
2051 |
saltPlumeFlux(I,J,bi,bj)= |
2052 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2053 |
& *(ONE-SEAICE_saltFrac)*salt(I,J,kSurface,bi,bj) |
2054 |
& *tmpscal1*SEAICE_rhoIce |
2055 |
& *SPsalFRAC |
2056 |
C if SaltPlumeSouthernOcean=.FALSE. turn off salt plume in Southern Ocean |
2057 |
IF ( .NOT. SaltPlumeSouthernOcean ) THEN |
2058 |
IF ( YC(I,J,bi,bj) .LT. 0.0 _d 0 ) |
2059 |
& saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2060 |
ENDIF |
2061 |
#endif /* ALLOW_SALT_PLUME */ |
2062 |
|
2063 |
C tmpscal1 < 0 : m of sea ice that is melted |
2064 |
ELSE |
2065 |
saltFlux(I,J,bi,bj) = |
2066 |
& HEFFM(I,J,bi,bj)*recip_deltaTtherm |
2067 |
& *HSALT(I,J,bi,bj) |
2068 |
& *tmpscal1/tmpscal2 |
2069 |
#ifdef ALLOW_SALT_PLUME |
2070 |
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2071 |
#endif /* ALLOW_SALT_PLUME */ |
2072 |
ENDIF |
2073 |
C update HSALT based on surface saltFlux |
2074 |
HSALT(I,J,bi,bj) = HSALT(I,J,bi,bj) + |
2075 |
& saltFlux(I,J,bi,bj) * SEAICE_deltaTtherm |
2076 |
saltFlux(I,J,bi,bj) = |
2077 |
& saltFlux(I,J,bi,bj) + saltFluxAdjust(I,J) |
2078 |
#ifdef SEAICE_GROWTH_LEGACY |
2079 |
C set HSALT = 0 if HEFF = 0 and compute salt to dump into ocean |
2080 |
IF ( HEFF(I,J,bi,bj) .EQ. 0.0 ) THEN |
2081 |
saltFlux(I,J,bi,bj) = saltFlux(I,J,bi,bj) - |
2082 |
& HEFFM(I,J,bi,bj) * HSALT(I,J,bi,bj) * recip_deltaTtherm |
2083 |
HSALT(I,J,bi,bj) = 0.0 _d 0 |
2084 |
#ifdef ALLOW_SALT_PLUME |
2085 |
saltPlumeFlux(i,j,bi,bj) = 0.0 _d 0 |
2086 |
#endif /* ALLOW_SALT_PLUME */ |
2087 |
ENDIF |
2088 |
#endif /* SEAICE_GROWTH_LEGACY */ |
2089 |
ENDDO |
2090 |
ENDDO |
2091 |
#endif /* SEAICE_VARIABLE_SALINITY */ |
2092 |
|
2093 |
|
2094 |
C ======================================================================= |
2095 |
C ==LEGACY PART 6 (LEGACY) treat pathological cases, then do flooding === |
2096 |
C ======================================================================= |
2097 |
|
2098 |
#ifdef SEAICE_GROWTH_LEGACY |
2099 |
|
2100 |
C treat values of ice cover fraction oustide |
2101 |
C the [0 1] range, and other such issues. |
2102 |
C =========================================== |
2103 |
|
2104 |
Cgf note: this part cannot be heat and water conserving |
2105 |
|
2106 |
#ifdef ALLOW_AUTODIFF_TAMC |
2107 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
2108 |
CADJ & key = iicekey, byte = isbyte |
2109 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj, |
2110 |
CADJ & key = iicekey, byte = isbyte |
2111 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2112 |
DO J=1,sNy |
2113 |
DO I=1,sNx |
2114 |
C NOW SET AREA(I,J,bi,bj)=0 WHERE THERE IS NO ICE |
2115 |
CML replaced "/.0001 _d 0" by "*1. _d 4", 1e-4 is probably |
2116 |
CML meant to be something like a minimum thickness |
2117 |
AREA(I,J,bi,bj)=MIN(AREA(I,J,bi,bj),HEFF(I,J,bi,bj)*1. _d 4) |
2118 |
ENDDO |
2119 |
ENDDO |
2120 |
|
2121 |
#ifdef ALLOW_AUTODIFF_TAMC |
2122 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
2123 |
CADJ & key = iicekey, byte = isbyte |
2124 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2125 |
DO J=1,sNy |
2126 |
DO I=1,sNx |
2127 |
C NOW TRUNCATE AREA |
2128 |
AREA(I,J,bi,bj)=MIN(ONE,AREA(I,J,bi,bj)) |
2129 |
ENDDO |
2130 |
ENDDO |
2131 |
|
2132 |
#ifdef ALLOW_AUTODIFF_TAMC |
2133 |
CADJ STORE area(:,:,bi,bj) = comlev1_bibj, |
2134 |
CADJ & key = iicekey, byte = isbyte |
2135 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj, |
2136 |
CADJ & key = iicekey, byte = isbyte |
2137 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2138 |
DO J=1,sNy |
2139 |
DO I=1,sNx |
2140 |
AREA(I,J,bi,bj) = MAX(ZERO,AREA(I,J,bi,bj)) |
2141 |
HSNOW(I,J,bi,bj) = MAX(ZERO,HSNOW(I,J,bi,bj)) |
2142 |
AREA(I,J,bi,bj) = AREA(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
2143 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
2144 |
#ifdef SEAICE_CAP_HEFF |
2145 |
C This is not energy conserving, but at least it conserves fresh water |
2146 |
tmpscal0 = -MAX(HEFF(I,J,bi,bj)-MAX_HEFF,0. _d 0) |
2147 |
d_HEFFbyNeg(I,J) = d_HEFFbyNeg(I,J) + tmpscal0 |
2148 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj) + tmpscal0 |
2149 |
#endif /* SEAICE_CAP_HEFF */ |
2150 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)*HEFFM(I,J,bi,bj) |
2151 |
ENDDO |
2152 |
ENDDO |
2153 |
|
2154 |
C convert snow to ice if submerged. |
2155 |
C ================================= |
2156 |
|
2157 |
IF ( SEAICEuseFlooding ) THEN |
2158 |
DO J=1,sNy |
2159 |
DO I=1,sNx |
2160 |
tmpscal0 = (HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2161 |
& +HEFF(I,J,bi,bj)*SEAICE_rhoIce)*recip_rhoConst |
2162 |
tmpscal1 = MAX( 0. _d 0, tmpscal0 - HEFF(I,J,bi,bj)) |
2163 |
d_HEFFbyFLOODING(I,J)=tmpscal1 |
2164 |
HEFF(I,J,bi,bj) = HEFF(I,J,bi,bj)+d_HEFFbyFLOODING(I,J) |
2165 |
HSNOW(I,J,bi,bj) = HSNOW(I,J,bi,bj)- |
2166 |
& d_HEFFbyFLOODING(I,J)*ICE2SNOW |
2167 |
ENDDO |
2168 |
ENDDO |
2169 |
ENDIF |
2170 |
|
2171 |
#endif /* SEAICE_GROWTH_LEGACY */ |
2172 |
|
2173 |
#ifdef ALLOW_SITRACER |
2174 |
DO J=1,sNy |
2175 |
DO I=1,sNx |
2176 |
c needs to be here to allow use also with LEGACY branch |
2177 |
SItrHEFF(I,J,bi,bj,5)=HEFF(I,J,bi,bj) |
2178 |
ENDDO |
2179 |
ENDDO |
2180 |
#endif /* ALLOW_SITRACER */ |
2181 |
|
2182 |
C =================================================================== |
2183 |
C ==============PART 7: determine ocean model forcing================ |
2184 |
C =================================================================== |
2185 |
|
2186 |
C compute net heat flux leaving/entering the ocean, |
2187 |
C accounting for the part used in melt/freeze processes |
2188 |
C ===================================================== |
2189 |
|
2190 |
#ifdef ALLOW_AUTODIFF_TAMC |
2191 |
CADJ STORE d_hsnwbyneg = comlev1_bibj,key=iicekey,byte=isbyte |
2192 |
CADJ STORE d_hsnwbyocnonsnw = comlev1_bibj,key=iicekey,byte=isbyte |
2193 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2194 |
|
2195 |
DO J=1,sNy |
2196 |
DO I=1,sNx |
2197 |
QNET(I,J,bi,bj) = r_QbyATM_cover(I,J) + r_QbyATM_open(I,J) |
2198 |
#ifndef SEAICE_GROWTH_LEGACY |
2199 |
C in principle a_QSWbyATM_cover should always be included here, however |
2200 |
C for backward compatibility it is left out of the LEGACY branch |
2201 |
& + a_QSWbyATM_cover(I,J) |
2202 |
#endif /* SEAICE_GROWTH_LEGACY */ |
2203 |
& - ( d_HEFFbyOCNonICE(I,J) + |
2204 |
& d_HSNWbyOCNonSNW(I,J)*SNOW2ICE + |
2205 |
& d_HEFFbyNEG(I,J) + |
2206 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
2207 |
& d_HEFFbyRLX(I,J) + |
2208 |
#endif |
2209 |
& d_HSNWbyNEG(I,J)*SNOW2ICE ) |
2210 |
& * maskC(I,J,kSurface,bi,bj) |
2211 |
QSW(I,J,bi,bj) = a_QSWbyATM_cover(I,J) + a_QSWbyATM_open(I,J) |
2212 |
ENDDO |
2213 |
ENDDO |
2214 |
|
2215 |
C switch heat fluxes from 'effective' ice meters to W/m2 |
2216 |
C ====================================================== |
2217 |
|
2218 |
DO J=1,sNy |
2219 |
DO I=1,sNx |
2220 |
QNET(I,J,bi,bj) = QNET(I,J,bi,bj)*convertHI2Q |
2221 |
QSW(I,J,bi,bj) = QSW(I,J,bi,bj)*convertHI2Q |
2222 |
ENDDO |
2223 |
ENDDO |
2224 |
|
2225 |
#ifndef SEAICE_DISABLE_HEATCONSFIX |
2226 |
C treat advective heat flux by ocean to ice water exchange (at 0decC) |
2227 |
C =================================================================== |
2228 |
# ifdef ALLOW_AUTODIFF_TAMC |
2229 |
CADJ STORE d_HEFFbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2230 |
CADJ STORE d_HEFFbyOCNonICE = comlev1_bibj,key=iicekey,byte=isbyte |
2231 |
CADJ STORE d_HEFFbyATMonOCN = comlev1_bibj,key=iicekey,byte=isbyte |
2232 |
CADJ STORE d_HSNWbyNEG = comlev1_bibj,key=iicekey,byte=isbyte |
2233 |
CADJ STORE d_HSNWbyOCNonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
2234 |
CADJ STORE d_HSNWbyATMonSNW = comlev1_bibj,key=iicekey,byte=isbyte |
2235 |
CADJ STORE theta(:,:,kSurface,bi,bj) = comlev1_bibj, |
2236 |
CADJ & key = iicekey, byte = isbyte |
2237 |
# endif /* ALLOW_AUTODIFF_TAMC */ |
2238 |
IF ( SEAICEheatConsFix ) THEN |
2239 |
c Unlike for evap and precip, the temperature of gained/lost |
2240 |
c ocean liquid water due to melt/freeze of solid water cannot be chosen |
2241 |
c to be e.g. the ocean SST. It must be done at 0degC. The fix below anticipates |
2242 |
c on external_forcing_surf.F and applies the correction to QNET. |
2243 |
IF ((convertFW2Salt.EQ.-1.).OR.(temp_EvPrRn.EQ.UNSET_RL)) THEN |
2244 |
c I leave alone the exotic case when onvertFW2Salt.NE.-1 and temp_EvPrRn.NE.UNSET_RL and |
2245 |
c the small error of the synchronous time stepping case (see external_forcing_surf.F). |
2246 |
DO J=1,sNy |
2247 |
DO I=1,sNx |
2248 |
#ifdef ALLOW_DIAGNOSTICS |
2249 |
c store unaltered QNET for diagnostic purposes |
2250 |
DIAGarrayA(I,J)=QNET(I,J,bi,bj) |
2251 |
#endif |
2252 |
c compute the ocean water going to ice/snow, in precip units |
2253 |
tmpscal3=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
2254 |
& ( d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2255 |
& + d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2256 |
& + d_HEFFbyOCNonICE(I,J) + d_HEFFbyATMonOCN(I,J) |
2257 |
& + d_HEFFbyNEG(I,J) + d_HSNWbyNEG(I,J)*SNOW2ICE ) |
2258 |
& * convertHI2PRECIP |
2259 |
c factor in the heat content that external_forcing_surf.F |
2260 |
c will associate with EMPMR, and remove it from QNET, so that |
2261 |
c melt/freez water is in effect consistently gained/lost at 0degC |
2262 |
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
2263 |
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
2264 |
& HeatCapacity_Cp * temp_EvPrRn |
2265 |
ELSE |
2266 |
QNET(I,J,bi,bj)=QNET(I,J,bi,bj) - tmpscal3* |
2267 |
& HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) |
2268 |
ENDIF |
2269 |
#ifdef ALLOW_DIAGNOSTICS |
2270 |
c back out the eventual TFLUX adjustement and fill diag |
2271 |
DIAGarrayA(I,J)=QNET(I,J,bi,bj)-DIAGarrayA(I,J) |
2272 |
#endif |
2273 |
ENDDO |
2274 |
ENDDO |
2275 |
ENDIF |
2276 |
#ifdef ALLOW_DIAGNOSTICS |
2277 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2278 |
& 'SIaaflux',0,1,3,bi,bj,myThid) |
2279 |
#endif |
2280 |
ENDIF |
2281 |
#endif /* ndef SEAICE_DISABLE_HEATCONSFIX */ |
2282 |
|
2283 |
C compute net fresh water flux leaving/entering |
2284 |
C the ocean, accounting for fresh/salt water stocks. |
2285 |
C ================================================== |
2286 |
|
2287 |
#ifdef ALLOW_ATM_TEMP |
2288 |
DO J=1,sNy |
2289 |
DO I=1,sNx |
2290 |
tmpscal1= d_HSNWbyATMonSNW(I,J)*SNOW2ICE |
2291 |
& +d_HFRWbyRAIN(I,J) |
2292 |
& +d_HSNWbyOCNonSNW(I,J)*SNOW2ICE |
2293 |
& +d_HEFFbyOCNonICE(I,J) |
2294 |
& +d_HEFFbyATMonOCN(I,J) |
2295 |
& +d_HEFFbyNEG(I,J) |
2296 |
#ifdef SEAICE_ALLOW_AREA_RELAXATION |
2297 |
& +d_HEFFbyRLX(I,J) |
2298 |
#endif |
2299 |
& +d_HSNWbyNEG(I,J)*SNOW2ICE |
2300 |
C If r_FWbySublim>0, then it is evaporated from ocean. |
2301 |
& +r_FWbySublim(I,J) |
2302 |
EmPmR(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2303 |
& ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2304 |
& * ( ONE - AREApreTH(I,J) ) |
2305 |
#ifdef ALLOW_RUNOFF |
2306 |
& - RUNOFF(I,J,bi,bj) |
2307 |
#endif /* ALLOW_RUNOFF */ |
2308 |
& + tmpscal1*convertHI2PRECIP |
2309 |
& )*rhoConstFresh |
2310 |
ENDDO |
2311 |
ENDDO |
2312 |
|
2313 |
#ifdef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION |
2314 |
C-- |
2315 |
DO J=1,sNy |
2316 |
DO I=1,sNx |
2317 |
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2318 |
& PRECIP(I,J,bi,bj) |
2319 |
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2320 |
# ifdef ALLOW_RUNOFF |
2321 |
& + RUNOFF(I,J,bi,bj) |
2322 |
# endif /* ALLOW_RUNOFF */ |
2323 |
& )*rhoConstFresh |
2324 |
# ifdef SEAICE_ADD_SUBLIMATION_TO_FWBUDGET |
2325 |
& - a_FWbySublim(I,J)*AREApreTH(I,J) |
2326 |
# endif /* SEAICE_ADD_SUBLIMATION_TO_FWBUDGET */ |
2327 |
ENDDO |
2328 |
ENDDO |
2329 |
C-- |
2330 |
#else /* ndef ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
2331 |
C-- |
2332 |
# ifdef ALLOW_MEAN_SFLUX_COST_CONTRIBUTION |
2333 |
DO J=1,sNy |
2334 |
DO I=1,sNx |
2335 |
frWtrAtm(I,J,bi,bj) = maskC(I,J,kSurface,bi,bj)*( |
2336 |
& PRECIP(I,J,bi,bj) |
2337 |
& - EVAP(I,J,bi,bj) |
2338 |
& *( ONE - AREApreTH(I,J) ) |
2339 |
# ifdef ALLOW_RUNOFF |
2340 |
& + RUNOFF(I,J,bi,bj) |
2341 |
# endif /* ALLOW_RUNOFF */ |
2342 |
& )*rhoConstFresh |
2343 |
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2344 |
ENDDO |
2345 |
ENDDO |
2346 |
# endif |
2347 |
C-- |
2348 |
#endif /* ALLOW_SSH_GLOBMEAN_COST_CONTRIBUTION */ |
2349 |
|
2350 |
#endif /* ALLOW_ATM_TEMP */ |
2351 |
|
2352 |
#ifdef SEAICE_DEBUG |
2353 |
CALL PLOT_FIELD_XYRL( QSW,'Current QSW ', myIter, myThid ) |
2354 |
CALL PLOT_FIELD_XYRL( QNET,'Current QNET ', myIter, myThid ) |
2355 |
CALL PLOT_FIELD_XYRL( EmPmR,'Current EmPmR ', myIter, myThid ) |
2356 |
#endif /* SEAICE_DEBUG */ |
2357 |
|
2358 |
C Sea Ice Load on the sea surface. |
2359 |
C ================================= |
2360 |
|
2361 |
#ifdef ALLOW_AUTODIFF_TAMC |
2362 |
CADJ STORE heff(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2363 |
CADJ STORE hsnow(:,:,bi,bj) = comlev1_bibj,key=iicekey,byte=isbyte |
2364 |
#endif /* ALLOW_AUTODIFF_TAMC */ |
2365 |
|
2366 |
IF ( useRealFreshWaterFlux ) THEN |
2367 |
DO J=1,sNy |
2368 |
DO I=1,sNx |
2369 |
#ifdef SEAICE_CAP_ICELOAD |
2370 |
tmpscal1 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
2371 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2372 |
tmpscal2 = MIN(tmpscal1,heffTooHeavy*rhoConst) |
2373 |
#else |
2374 |
tmpscal2 = HEFF(I,J,bi,bj)*SEAICE_rhoIce |
2375 |
& + HSNOW(I,J,bi,bj)*SEAICE_rhoSnow |
2376 |
#endif |
2377 |
sIceLoad(i,j,bi,bj) = tmpscal2 |
2378 |
ENDDO |
2379 |
ENDDO |
2380 |
ENDIF |
2381 |
|
2382 |
C =================================================================== |
2383 |
C ======================PART 8: diagnostics========================== |
2384 |
C =================================================================== |
2385 |
|
2386 |
#ifdef ALLOW_DIAGNOSTICS |
2387 |
IF ( useDiagnostics ) THEN |
2388 |
tmpscal1=1. _d 0 * recip_deltaTtherm |
2389 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_cover, |
2390 |
& tmpscal1,1,'SIaQbATC',0,1,3,bi,bj,myThid) |
2391 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyATM_open, |
2392 |
& tmpscal1,1,'SIaQbATO',0,1,3,bi,bj,myThid) |
2393 |
CALL DIAGNOSTICS_SCALE_FILL(a_QbyOCN, |
2394 |
& tmpscal1,1,'SIaQbOCN',0,1,3,bi,bj,myThid) |
2395 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyOCNonICE, |
2396 |
& tmpscal1,1,'SIdHbOCN',0,1,3,bi,bj,myThid) |
2397 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_cover, |
2398 |
& tmpscal1,1,'SIdHbATC',0,1,3,bi,bj,myThid) |
2399 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyATMonOCN_open, |
2400 |
& tmpscal1,1,'SIdHbATO',0,1,3,bi,bj,myThid) |
2401 |
CALL DIAGNOSTICS_SCALE_FILL(d_HEFFbyFLOODING, |
2402 |
& tmpscal1,1,'SIdHbFLO',0,1,3,bi,bj,myThid) |
2403 |
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyOCNonSNW, |
2404 |
& tmpscal1,1,'SIdSbOCN',0,1,3,bi,bj,myThid) |
2405 |
CALL DIAGNOSTICS_SCALE_FILL(d_HSNWbyATMonSNW, |
2406 |
& tmpscal1,1,'SIdSbATC',0,1,3,bi,bj,myThid) |
2407 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyATM, |
2408 |
& tmpscal1,1,'SIdAbATO',0,1,3,bi,bj,myThid) |
2409 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyICE, |
2410 |
& tmpscal1,1,'SIdAbATC',0,1,3,bi,bj,myThid) |
2411 |
CALL DIAGNOSTICS_SCALE_FILL(d_AREAbyOCN, |
2412 |
& tmpscal1,1,'SIdAbOCN',0,1,3,bi,bj,myThid) |
2413 |
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_open, |
2414 |
& convertHI2Q,1, 'SIqneto ',0,1,3,bi,bj,myThid) |
2415 |
CALL DIAGNOSTICS_SCALE_FILL(r_QbyATM_cover, |
2416 |
& convertHI2Q,1, 'SIqneti ',0,1,3,bi,bj,myThid) |
2417 |
C three that actually need intermediate storage |
2418 |
DO J=1,sNy |
2419 |
DO I=1,sNx |
2420 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2421 |
& * d_HSNWbyRAIN(I,J)*SEAICE_rhoSnow*recip_deltaTtherm |
2422 |
DIAGarrayB(I,J) = AREA(I,J,bi,bj)-AREApreTH(I,J) |
2423 |
ENDDO |
2424 |
ENDDO |
2425 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2426 |
& 'SIsnPrcp',0,1,3,bi,bj,myThid) |
2427 |
CALL DIAGNOSTICS_SCALE_FILL(DIAGarrayB, |
2428 |
& tmpscal1,1,'SIdA ',0,1,3,bi,bj,myThid) |
2429 |
#ifdef ALLOW_ATM_TEMP |
2430 |
DO J=1,sNy |
2431 |
DO I=1,sNx |
2432 |
CML If I consider the atmosphere above the ice, the surface flux |
2433 |
CML which is relevant for the air temperature dT/dt Eq |
2434 |
CML accounts for sensible and radiation (with different treatment |
2435 |
CML according to wave-length) fluxes but not for "latent heat flux", |
2436 |
CML since it does not contribute to heating the air. |
2437 |
CML So this diagnostic is only good for heat budget calculations within |
2438 |
CML the ice-ocean system. |
2439 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
2440 |
#ifndef SEAICE_GROWTH_LEGACY |
2441 |
& a_QSWbyATM_cover(I,J) + |
2442 |
#endif /* SEAICE_GROWTH_LEGACY */ |
2443 |
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
2444 |
C |
2445 |
DIAGarrayB(I,J) = maskC(I,J,kSurface,bi,bj) * |
2446 |
& a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2447 |
C |
2448 |
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj)*( |
2449 |
& PRECIP(I,J,bi,bj) |
2450 |
& - EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2451 |
#ifdef ALLOW_RUNOFF |
2452 |
& + RUNOFF(I,J,bi,bj) |
2453 |
#endif /* ALLOW_RUNOFF */ |
2454 |
& )*rhoConstFresh |
2455 |
& - a_FWbySublim(I,J) * SEAICE_rhoIce * recip_deltaTtherm |
2456 |
ENDDO |
2457 |
ENDDO |
2458 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2459 |
& 'SIatmQnt',0,1,3,bi,bj,myThid) |
2460 |
CALL DIAGNOSTICS_FILL(DIAGarrayB, |
2461 |
& 'SIfwSubl',0,1,3,bi,bj,myThid) |
2462 |
CALL DIAGNOSTICS_FILL(DIAGarrayC, |
2463 |
& 'SIatmFW ',0,1,3,bi,bj,myThid) |
2464 |
C |
2465 |
DO J=1,sNy |
2466 |
DO I=1,sNx |
2467 |
C the actual Freshwater flux of sublimated ice, >0 decreases ice |
2468 |
DIAGarrayA(I,J) = maskC(I,J,kSurface,bi,bj) |
2469 |
& * (a_FWbySublim(I,J)-r_FWbySublim(I,J)) |
2470 |
& * SEAICE_rhoIce * recip_deltaTtherm |
2471 |
c the residual Freshwater flux of sublimated ice |
2472 |
DIAGarrayC(I,J) = maskC(I,J,kSurface,bi,bj) |
2473 |
& * r_FWbySublim(I,J) |
2474 |
& * SEAICE_rhoIce * recip_deltaTtherm |
2475 |
C the latent heat flux |
2476 |
tmpscal1= EVAP(I,J,bi,bj)*( ONE - AREApreTH(I,J) ) |
2477 |
& + r_FWbySublim(I,J)*convertHI2PRECIP |
2478 |
tmpscal2= ( a_FWbySublim(I,J)-r_FWbySublim(I,J) ) |
2479 |
& * convertHI2PRECIP |
2480 |
tmpscal3= SEAICE_lhEvap+SEAICE_lhFusion |
2481 |
DIAGarrayB(I,J) = -maskC(I,J,kSurface,bi,bj)*rhoConstFresh |
2482 |
& * ( tmpscal1*SEAICE_lhEvap + tmpscal2*tmpscal3 ) |
2483 |
ENDDO |
2484 |
ENDDO |
2485 |
CALL DIAGNOSTICS_FILL(DIAGarrayA,'SIacSubl',0,1,3,bi,bj,myThid) |
2486 |
CALL DIAGNOSTICS_FILL(DIAGarrayC,'SIrsSubl',0,1,3,bi,bj,myThid) |
2487 |
CALL DIAGNOSTICS_FILL(DIAGarrayB,'SIhl ',0,1,3,bi,bj,myThid) |
2488 |
|
2489 |
DO J=1,sNy |
2490 |
DO I=1,sNx |
2491 |
c compute ice/snow water going to atm, in precip units |
2492 |
tmpscal1 = rhoConstFresh*maskC(I,J,kSurface,bi,bj) |
2493 |
& * convertHI2PRECIP * ( - d_HSNWbyRAIN(I,J)*SNOW2ICE |
2494 |
& + a_FWbySublim(I,J) - r_FWbySublim(I,J) ) |
2495 |
c compute ocean water going to atm, in precip units |
2496 |
tmpscal2=rhoConstFresh*maskC(I,J,kSurface,bi,bj)* |
2497 |
& ( ( EVAP(I,J,bi,bj)-PRECIP(I,J,bi,bj) ) |
2498 |
& * ( ONE - AREApreTH(I,J) ) |
2499 |
#ifdef ALLOW_RUNOFF |
2500 |
& - RUNOFF(I,J,bi,bj) |
2501 |
#endif /* ALLOW_RUNOFF */ |
2502 |
& + ( d_HFRWbyRAIN(I,J) + r_FWbySublim(I,J) ) |
2503 |
& *convertHI2PRECIP ) |
2504 |
c factor in the advected specific energy (referenced to 0 for 0deC liquid water) |
2505 |
tmpscal1= - tmpscal1* |
2506 |
& ( -SEAICE_lhFusion + HeatCapacity_Cp * ZERO ) |
2507 |
IF (temp_EvPrRn.NE.UNSET_RL) THEN |
2508 |
tmpscal2= - tmpscal2* |
2509 |
& ( ZERO + HeatCapacity_Cp * temp_EvPrRn ) |
2510 |
ELSE |
2511 |
tmpscal2= - tmpscal2* |
2512 |
& ( ZERO + HeatCapacity_Cp * theta(I,J,kSurface,bi,bj) ) |
2513 |
ENDIF |
2514 |
c add to SIatmQnt, leading to SItflux, which is analogous to TFLUX |
2515 |
DIAGarrayA(I,J)=maskC(I,J,kSurface,bi,bj)*convertHI2Q*( |
2516 |
#ifndef SEAICE_GROWTH_LEGACY |
2517 |
& a_QSWbyATM_cover(I,J) + |
2518 |
#endif |
2519 |
& a_QbyATM_cover(I,J) + a_QbyATM_open(I,J) ) |
2520 |
& -tmpscal1-tmpscal2 |
2521 |
ENDDO |
2522 |
ENDDO |
2523 |
CALL DIAGNOSTICS_FILL(DIAGarrayA, |
2524 |
& 'SItflux ',0,1,3,bi,bj,myThid) |
2525 |
#endif /* ALLOW_ATM_TEMP */ |
2526 |
|
2527 |
ENDIF |
2528 |
#endif /* ALLOW_DIAGNOSTICS */ |
2529 |
|
2530 |
C close bi,bj loops |
2531 |
ENDDO |
2532 |
ENDDO |
2533 |
|
2534 |
RETURN |
2535 |
END |